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Summary

Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) can be used to
probe the microstructure of biological tissue. In DW-MRI water molecules are
sensitized to the microscopic thermal motion (diffusion) of water molecules. In
the brain, diffusion is hindred by various tissue processes such as intracellular
and extracellular volume and the direction of oriented structures. As such it
can be used to characterize the white matter in the human brain. This can be
used for the diagnosis of stroke, tumor and degenerative white matter diseases
to delineating axonal fiber bundles that connect remote regions in the brain.

The most frequently approach to tractography — deriving the complete trajecto-
ries of fibre-bundles through the brain — is two-staged. In the first, local models
are fitted to each voxel in the dataset to obtain the local fiber-bundle direction.
In the second stage, a tractography algorithm connects these local directions
step-by-step through the whole 3D data set to form estimated fiber bundles. In
global tractography both the parameters of local models and the trajectories of
the fiber-bundles are estimated at the same time.

In both local and global tractography it is necessary to model DW-MRI data per
voxel. This thesis presents a toolkit aimed at the fitting and sampling of multi-
compartment models to DW-MRI data. Using this toolbox it is possible to easily
fit a multitude of local models to each voxel of a 3D DW-MRI dataset. Next
to fitting models the toolbox also contains sampling methods with Automatic
Relevance Detection (ARD) which allow sampling of the posterior distribution
of the model parameters. This last feature can be used as a fitting tool (by
taking the mean of the sampled parameter distributions) but it is also the first
step in the direction of global tractography.



Contents

1 Introduction

1.1

1.2

1.3

14
1.5

The human brain . . . . . .. ... .. ..
Diffusion weighted MRI . . . . .. .. ..
1.2.1 Diffusion weighting . . . . . . . ..
1.2.2 Data representation . . ... ...
Tractography . . . . ... ... ... ...
1.3.1 Local models . .. ... ... ...
Research questions . . . . . ... ... ..
Outline . ... ... ... ... ......

2 A DW-MRI Toolkit

2.1
2.2
2.3

24

Data pre-processing . . . .. .. ... ..
Tissuemodels . . . . ... .. ... .. ..
Model fitting . . . . . ... oL
2.3.1 Model selection . . . . ... .. ..
2.3.2 Parameter spaces . . . . .. .. ..
Sampling of the posterior distributions . .
2.4.1 The posterior distribution function
2.4.2 Automatic Relevance Detection . .

3 Experiments and results

3.1
3.2

Model fitting . . . . ... ... L.
Metropolis Hasting sampler . . . . . . ..

4 Conclusions

A Parameter transformations

B Priors for posterior distribution sampling

© O 0 0o~ ~1 Ul

26

29

30



Chapter 1

Introduction

Diffusion-weighted Magnetic Resonance Imaging (DW-MRI) allows us to depict
the organization of the white matter of a brain in vivo, using the random, ther-
mally driven motion of water molecules as a contrast mechanism [11]. In the
brain the movement of water molecules is restricted and hindered by various
tissue processes and can therefore be used to reconstruct neuronal pathways
in white matter. This process of reconstruction is called tractography, which
can be divided into two groups: local and global tractography [18]. In local
tractography, fibres are constructed one by one and do not influence each other.
Long pathways are constructed step-by-step using a local voxel-wise definition
of the brain. This can be done either deterministically, or probabilistically using
an Orientation Distribution Function (ODF). In global tractography the whole
projectome (the complete set of white matter fascicles, see [16]) of the brain is
computed at once by finding the configuration of fibres which best describes the
data measured. This approach implicitly requires calculating the fit between
the proposed fibres and the measured DW-MRI signal.

Both tractography methods require the prediction of the DW-MRI signal mea-
sured using a given neuronal direction. This can be done by using either non-
parametric or parametric models. The focus of this thesis is on parametric
models and the main product of this thesis is a toolkit which can be used to
pre-process DW-MRI data, fit parametric models and, using a sampler, to ap-
proximate the posterior distribution of the model parameters. This posterior
distribution can then be used to create an ODF. The additional advantage of
this toolkit over other toolkits such as Camino [7] is that this toolkit is written in
Matlab (used by many researchers), is easily extendable to new parametric mod-
els and includes sampling methods with Automatic Relevance Detection (ARD).

In order to be able to interpret and appreciate the toolkit and the experimental
results some background information is given about the brain, MRI and trac-
tography. Section 1.1 introduces the brain and white matter fibres, section 1.2
introduces MRI and DW-MRI and section 1.3 introduces tractography. Sec-
tion 1.4 lists the different research questions and finally section 1.5 provides an
outline of the remainder of this thesis.



1.1 The human brain

The human brain is a highly complex organ containing between 80 to 120 billion
neurons [12]. The outermost layer of the brain is called the cortex; here, all in-
formation processing takes place. One layer deeper, contained by the cortex, the
white matter of the brain is situated. White matter forms the bridge between
various parts of the cortex, acting as a relay and coordinating communication
between different brain regions [10]. Understanding the structure of white mat-
ter may help to understand the functioning of white matter. As S. Jbabdi puts
it [13]:

For example, a hierarchical network architecture allows for the pos-
sibility of bottom-up and top-down message passing, and ladder-like
hierarchies can allow shared computations between parallel hierar-

chies [...] Understanding these topographies can potentially give us
indicators, or even predictors, for the activity of target cortical re-
gions.

There are two ways by which these white matter bundles can be located.
One way is ex vivo by cutting and slicing the brain to locate the bundles. This
however is inappropriate in a clinical setting. To visualize white matter bundles
in vivo and non-invasively there is currently only one approach which is by
means of diffusion weighted MRI and tractography.

1.2 Diffusion weighted MRI

Diffusion weighted Magnetic Resonance Imaging (DW-MRI) is an MRI tech-
nique in which the apparent diffusion of water molecules in white matter is
measured along a number of different gradient directions. Molecular diffusion,
or Brownian motion as first formally described by A. Einstein in 1905 [9], refers
to the notion that any kind of molecule is randomly displaced when agitated by
thermal energy (Fig. 1.1).This movement is completely random and is only hin-
dered by the boundaries of its container. In statistical terms this displacement
can be captured in a displacement distribution which can give the proportion
of molecules undergoing displacement in a given direction over a given distance.
For example, suppose we have a one-dimensional system of water molecules
in which, for each molecule, we track the one-dimensional displacement over a
specific time interval. In general this distribution will follow a Gaussian distri-
bution in which most of the molecules travel only a short distance and only a
few travel a long distance (Fig. 1.2).

Since the brain is a three-dimensional object, in MRI imaging of the brain the
water molecules are displaced in three directions. To get a high resolution MR
image of the brain, the brain is partitioned into small three dimensional cubes
called voxels (currently in the order of mm?). For each of these voxels we
then measure the diffusion of water molecules. To visualise the displacement
distribution in such a voxel we can use colors to indicate a low probability (red,
for example) and a high probability (blue) of displacement. See for example fig.
1.3a for an example of isotropic diffusion. Neuronal tissue consists of tightly
packed and coherently aligned axons (nerve fibres) surrounded by glial cells



Figure 1.1: Figure showing the random movement of a single molecule during
diffusion in the time interval t1=0 to t2=A. The white line (vector r) shows
the net displacement of the molecule. Image taken from [11].

(provide support and protection for neurons in the brain [14]) and are often
organized in bundles [11]. ”Often”, since in some areas of the brain, for example
near the cortex, the axons may not be bundled. The diffusion of water molecules
is mostly hindered by these axon bundles which results in a lower diffusion
perpendicular to the axons and a higher diffusion parallel to the axons. In
the case of a single fibre bundle of aligned axons the resulting displacement
distribution is cigar shaped (Fig. 1.3b). In the case of, for example, a crossing
of two fibres we get a cross shaped displacement distribution (Fig. 1.3c). Other
distributions are of course equally possible.
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Figure 1.2: In a one-dimensional setting we can plot the diffusion distribution
in a two-dimensional graph with the displacement on the x-axis and the propor-
tion of molecules that are displaced over the given distance on the y-axis. For
each displacement distance r the corresponding probability is the proportion of
molecules n/N displaced over that distance.
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Figure 1.3: Diffusion within a single voxel. On the left of each case a,b and ¢
the structure of the voxel is shown, and in the center the resulting 3D displace-
ment distribution. The bar on the right shows the color coding representing
the probabilities of displacement, from low (red) to high (blue). (a) Diagram
shows the displacement distribution for a voxel which contains spherical cells
(top) or randomly oriented cylindrical structures which intersect, such as axons
(bottom). This results in a symmetric image since there is no preferential direc-
tion of diffusion. (b) Diagram showing the distribution function following from
a voxel in which all the axons are aligned in a uniform direction. This results
in a cigar shaped distribution. (¢) Diagram showing the resulting displacement
distribution for a voxel in which there are two aligned sets of axons perpendicu-
lar to each other. The resulting distribution is cross shaped. Figure taken from
[11].



1.2.1 Diffusion weighting

In normal MR imaging the images are gray scale images depicting the signal in-
tensity for each voxel, which results in a 3D image of the brain. In mathematical
terms this image is the graph of a three-dimensional function f(p) : N* — R,
where for each voxel p in the brain f(p) gives the signal intensity in a black
and white range. Since this function only gives the nett molecule displacement
for each voxel this 3D function is not helpful in locating white matter bundles.
To characterize the molecular displacement for each voxel better we would have
to approximate the displacement distribution for each voxel. This displacement
distribution is again a 3D function. If we combined these two three-dimensional
functions we would obtain a six-dimensional (6D) function f(p,r), which gives
for each voxel p the proportion of water molecules that have been displaced over
direction r.

To construct this function f(p,r) for each location p the displacement in direc-
tion r must be measured. How this is done exactly is explained by P. Hagmann
et al in [11]. For this thesis a less detailed explanation will suffice. To capture
the displacement in direction r in each voxel, during the MRI sequencing the
water molecules in the brain are ’activated’ in the direction of a gradient q. If,
after activating the water molecules an MR image is taken we will observe a low
intensity signal in regions where diffusion along the applied gradient direction q
is high and vice versa. By sampling over this g-space we can calculate for each
voxel the displacement distribution and hence construct the function f(p,r).
The gradient strength (proportional to the length of the vector q), often named
diffusion weighting, is sometimes expressed in terms of a b value. This b value
is proportional to the product of the square of the gradient strength q and the
diffusion time interval A, so: b~ ¢* - A [11].

1.2.2 Data representation

In general, the acquisition settings and the measured signal are stored inde-
pendently of each other in two different datasets. The acquisition settings
are often stored in a so called scheme file. The basic scheme file is a two-
dimensional dataset with, in its first three columns columns, gradient direction
9 = {9z, gy, 9.} and in the last column the b value (the diffusion weighting) (Ta-
ble 1.1) where q = b- g for each line in the scheme file. The measured DW-MRI
signal is stored in a four-dimensional matrix in which dimension one to three
are the voxels and dimension four represents for each of the rows in the scheme
file the measured signal intensity. Together these two matrices hold the same
information as represented by the function f(p,r) mentioned before.

| 9o 9y g9 b

\V]

Table 1.1: Basic scheme file listing the acquisition gradients



1.3 Tractography

Tractography is about deriving the complete trajectories of fibre-bundles through
the brain. In general there are two approaches, local and global tractography.
Local tractography is two-staged. In the first, voxel-wise estimates of local mod-
els are obtained which define the local fibre bundle direction. In the second, a
tractography algorithm follows local directions through the whole 3D data set to
form estimated fibre bundles. The global approach to tractography estimates
both the parameters of local models and trajectories of fibre-bundles at the
same time. In both approaches a good approximation of the local (voxel-wise)
models is necessary to locate the trajectory of the fibres. Approximating the
fibre orientation from DW-MRI data is a difficult problem since different fibre
orientations can give the same displacement distribution. For example a kiss-
ing (touching of two bended fibre bundles) and a crossing (two fibre bundles
perpendicular to each other) can give the same displacement distribution (Fig.
1.4). Predicting the correct orientation is important since it directly affects the
quality of the tractography. If a crossing is supposed where a kissing is present
the calculated fibre model can be erroneous.

tensor PDDs fanning +polarity

bending

kissing M

Figure 1.4: The table on the left shows various fibre orientations (left column)
and their representation by a few different models. The tensor model is unable
to differentiate between different orientations. Adding the Principal Diffusion
Direction (PDD) already gives more information about the fibre orientation.
Further modelling of the fanning and polarity can help to distinguish all the
different cases. The image on the right shows the consequences of the ambiguity
of the axonial orientation. The same (local) structure can lead to different fibre
orientations. Image taken from [13].

1.3.1 Local models

The first stage of local tractography is to get a voxel-wise estimate of local
models which define the local fibre bundle direction. In general there are two
different methods which can be used to model these fibre directions, namely



non-parametric and parametric models. Non-parametric models are for exam-
ple multi-dimensional polynomial functions. These models can be fitted to the
data to get a representation of the underlying fiber orientation, but the opti-
mized parameters have no biological representation and lack specificity as they
are affected by many features of the micro structure [17]. To overcome these
limitations, the recent trend in the diffusion MRI field is towards more descrip-
tive models of tissue; the parametric models. In the parametric models the
parameters of the model represent specific properties of the tissue, such as cell
size and cell density. The focus of this thesis is on the parametric models.

1.4 Research questions

The majority of approaches to tractography are local tractography approaches
in which the fibres are tracked one-by-one by first fitting a local model and then
linking the local fibre parts. These methods are rather fast, but are problematic
in an important way. Small imperfections in the determination of local steps
can accumulate and significantly affect the tracked fibre. Global tractography
tries to overcome these problems by trying to reconstruct the fibres directly
from the DW-MRI data. The goal of this thesis is two-fold, the first is to
build a DW-MRI toolkit with parametric models and the second is a ’global
estimation algorithm’ which estimates both the parameters of local models and
trajectories of fiber-bundles at the same time. The latter is a high-dimensional
optimization problem which will require an efficient Markov Chain Monte Carlo
(MCMC) algorithm. The accompanying research questions are:

e What are the likelihood models which tie parameter values to observed
data, which can be estimated from current-day DW-MRI data?

e Which heuristics in the form of proposal distributions tune the perfor-
mance of the global MCMC algorithm?

e Does global MCMC estimation make local model parameter estimates
better?

e Does global MCMC estimation make fiber trajectory estimates better?

1.5 Outline

Chapter 2 introduces the DW-MRI toolkit we developed for fitting and sampling
parametric models to DW-MRI data. Next, chapter 3 lists the experiments per-
formed and the results which illustrate the applicability of the toolkit. Finally,
chapter 4 concludes this thesis and gives suggestions for further research.
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Chapter 2

A DW-MRI Toolkit

The primary contribution of this thesis to the field of DW-MRI is a Matlab
toolkit aimed at pre-processing and processing DW-MRI data. Pre-processing
includes loading DW-MRI data in various formats, creating a brain mask based
on the unweighted MRI signal and normalizing the data using the unweighted
MRI signal. Processing includes fitting a multitude of parametric models to the
MRI data using a point-optimal algorithm and, using a sampler, to generate
samples from the posterior parameter distributions. The main advantage of
this toolkit over other toolkits such as Camino [7] is that it is easily extendable
to new parametric models, features sampling with Automatic Relevance Detec-
tion (ARD), and that is it written in Matlab. The latter item is an advantage,
since Matlab is a widely recognized and accepted mathematical software plat-
form and as such our toolkit is available to a large group of researchers.

The structure of this chapter follows the steps from raw DW-MRI data to opti-
mized local tissue models. Section 2.1 explains the pre-processing the MRI data,
section 2.2 lists the various tissue models implemented, section 2.3 explains how
the model is fitted to the data and finally section 2.4 explains the sampling of
the posterior parameter distributions.

2.1 Data pre-processing

Loading MRI data When loading DW-MRI using a combination of multiple
third-party libraries it is possible to load DW-MRI data from most of the pop-
ular formats into the right format for this toolkit, which is a four-dimensional
matrix of type double (64 bits of storage per entry). The first three dimen-
sions of this matrix are the locations of the voxels and the last dimension is
the signal intensity for each gradient direction of the scheme file. The scheme
file (a two-dimensional matrix ,also of type double), should be loaded seper-
ately. This can either be in a basic format {g,b} with as columns the gradient
direction ¢ = {g, gy, 9.} and the diffusion weighting b or in a more advanced
format {g,b,G,A,0, TE}, with G the gradient strength, A the pulse separation,
0 the pulse duration, and TF the echo time for the measurement. Some of the
parametric methods discussed in section 2.2 require this more advanced format.
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Creating a brain mask After having loaded the dataset it is now possible
to create a brain mask. This is a three-dimensional matrix of type boolean (1
bits of storage per entry), masking the voxels which are outside of the brain and
irrelevant for tracking white matter. Locating these voxels is done by thresh-
olding on the unweighted MRI signal. An unweighted MRI signal is an MRI
measurement with b-value zero, i.e. an MRI image without diffusion weighting.
In general, during acquisition multiple unweighted signals are measured and the
average of these is taken to represent the unweighted signal. Since air contains
very few water molecules it has a very low MRI intensity. This results in a
higher unweighted signal inside the brain than outside the brain. This makes it
possible to create a brain mask by masking all voxels in which the unweighted
signal is lower than a certain threshold.

Pre-processing MRI data The next and last pre-processing step is to nor-
malize the data in such a way that the signal values are between 0 and 1. Again
this can be done by using the unweighted MRI signal. In brain tissue the un-
weighted signals should always be higher than the diffusion weighted signals (if
not, the weighted and/or the unweighted signal will contain noise). This means
that for each voxel we can divide the diffusion weighted MRI signals by the
mean of the unweighted MRI signals. Next, the unweighted signals are removed
from the four-dimensional signal matrix and from the scheme file.

2.2 Tissue models

Brain tissue consists of multiple compartments which each have their own char-
acteristic diffusion pattern. When modeling DW-MRI data the output of mul-
tiple models is combined to form the output of the total model. In this thesis
the available models are partitioned into three compartment types. These com-
partment types are a) water inside the axons (fig 2.1a), b) water from outside
the axons (fig. 2.1b) and c¢) water from other cellular structures, such as glial
cells, trapped water on membranes or non-parallel fibres. We refer to models
of these types as a) intra-axonal, which are restricted models of diffusion, b)
extra-axonal, which include isotropic and anisotropic non-restricted models and
¢) compartments of isotropic restriction. Isotropic models are meant to model
unrestricted water molecules, water molecules which can diffuse in most of the
directions. Anisotropic models are meant to model restricted water diffusion in
which diffusion in one direction is larger than in another.

When using multiple models to model DW-MRI data, we use the name multi-
compartment models for the total model (the combination of the sub-models)

even if only models of one compartment are used. The total diffusion MRI signal
for a multi-compartment model is

S = i filSi
i=0

where n is the number of models, S; is the normalized MRI signal of each of the
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models and f; is the weighting of the models with
n

> fi=1, 0<f;<1Vi

i=0
In his paper Panagiotaki [17] lists a number of known tissue models. To make
results comparable and reproducable, all his methods are implemented in this
toolkit. Each of the models listed below generate a signal S. This signal is the
signal for one gradient direction g with diffusivity . To get the total signal for
a voxel these signals must be summed for each g and b in the scheme file.

Figure 2.1: Figure showing how diffusion is limited by intra- and extra-axonal
biological tissue. a) inside each cell the motion of water molecules is restricted
by the cellular walls. b) biological cells hinder the motion of extra-cellular water
molecules.

Intra-axonal models

1. The first is the ”Stick” models of Behrens et al. 2003 [4]. This anisotropic
model is meant to model fibres with direction n and diffusivity d along
gradient direction ¢ with diffusivity b. The signal for this model is

S = e—bd(gm,)2

2. The second model is the ” Cylinder” model of Alexander 2008 [1], using the
Gaussian Phase Distribution (GPD) approximation given by Douglass and
McCall [8]. This model extends the ”Stick” model by adding a parameter
R for a single axion radius.

3. The third model, the ? GDRCylinders” extends the ”Cylinder” model by
having multiple cylinders with gamma-distributed radii as used in Assaf
and Basser 2005 [3]. The radii are drawn from a gamma distribution

1 =R

RF-1e=
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Intra-axonal models

Degrees of
freedom

S = e—bd(g-n)2 d7 07 ¢
Stick

\ GPD approximation, see [1] d.0.6 R
for implementation details R

Cylinder

Model Signal function

:,‘\\\l ':’\ ?&;ﬂ
3 '-‘ w.:_'
a (]

i T T
'S o~

War /ol ] s

GDRCylinders

)¢ k-1 =E
: P(R, k,’U) = Rr(k)evkv dv 97 (ba k7 v

Table 2.1: Table listing the intra-axonal compartment models. The vector n is
defined by the angles 6 and ¢. Illustrations taken from [17].

where I is the gamma function. The shape parameter k£ and scale param-
eter v define the cylinders’ radii.

Extra-axonal models

1. The first of the extra-axonal is the ”Ball” model as described by Behrens
et al. 2003 [4]. This model only has the diffusivity d as parameter and is
meant to model isotropic signals. The signal function is given by:

S =e

2. The second model is the ”Zeppelin” model as in Alexander 2008 [1]. This
model has as parameters n, the principal direction of diffusion, d; the
diffusivity parallel to the principal direction and d; the diffusivity per-
pendicular to the principal direction. The resulting signal is:

S = b4 —d1)(gm)>+di)

3. The last model is a full tensor model referred to as ” Tensor”. This model
extends the ”Zeppelin” model by having a third diffusivity parameter d,
and a parameter « rotating the tensor around its principal axis. By having
this extra parameters it has three principal directions, n, n; and ny,. The
signal function is:

S = et (gn)?+di(gni)®+di,(gmi,)?)
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Extra-axonal models

Model Signal function Degrees of
freedom
3 ...\
o’ s= e d
Ball
( S — e—b((dj—=dr)-(gm)*+dL) dy,dy, 0,9
Zeppelin
@ S = e~ b(d(gn)?+dL(gni)’+di,(gni,)?) d, 0, ¢, k, v
Tensor

Table 2.2: Table listing the extra-axonal compartment models.

Isotropic restriction models The last set of models are intended to capture
all other cellular structures not captured by the previous methods. All of these
models assume isotropic restriction. The ” Astrosticks” and the ” Astrocylinders”
assume restrictions from isotropically oriented cylinders and the ”Sphere” and
”Dot” assume spherically bounded restrictions. For implementation details see
[17]. The models are as follows:

1. The ” Astrosticks” model has cylinders with uniformly distributed orien-
tation and zero radius. It is used to represent populations of arbitrarily
oriented axons.

2. The next model ” Astrocylinders” extends the ” Astrosticks” by adding a
non-zero radius R.

3. The ”Sphere” model is a spherical model modelling signal coming from
water molecules inside spherical glial cells [20].

4. The "Dot” model is a special case of the ”Sphere” model with a radius of
0. Alexander et al. in [2] suggests that the "Dot” model is used to model
signals coming from molecules trapped in glial cells or stuck into cellular
membranes in fixed tissue. The generated signal is S = 1.

Note on implementation Some of the methods have as parameter n, a three
dimensional vector, for the principal direction of diffusion. The ” Tensor” model
also has the parameters n, and n,,. Optimizing n would require optimizing
three parameters, but we can do better than that, by optimizing two angles,
and ¢. The vector n can then be calculated using:

n = [cos(¢)sin(f), sin(p)sin(8), cos(8)]T
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Isotropic restriction models

Model Signal function Degrees of
freedom
S¢ = [ Srp(n)dn, R =0 d
=

/ S¢ = [ Sp(n)dn, R >0 d, R
Astrocylinders

o GPD approx. Rs >0 d, R

Sphere

Dot

R=0,8=1

Table 2.3: Table listing the isotropic restriction compartment models.
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For the tensor we use an additional angle « to calculate n; and n,,. All these
vectors are normalized between 0 and 1, this is because the parameter d is used
to scale the vector.

Naming convention In the remainder of this thesis combined multi-compartment
models are referred to by the combined names of the sub-models. For exam-

ple a ”BallStickStick” model uses two ”Stick” models to model intra-axonal
fibres and a ”Ball” model to model the isotropic extra-axonal compartments.

No additional isotropic restriction model is used. Other combinations are also
possible. The signal resulting from such a combined model is the weighted sum

of each of the single models. Note that the order of the methods does not make

a difference, i.e. the ”BallStick” model is equal to the ”StickBall” model.

2.3 Model fitting

In model fitting a chosen set of models are fitted to the measured MRI signal
by means of an iterative procedure. That is, for a given set of models we try to
find the optimal set of parameters in such a way that the models best describe
the measured signal. Since the model parameters do not relate linearly to the
signal a non-linear optimization routine is required. For this we use the trust-
region-reflective algorithm by which we fit the models using the least squares
objective function:

where M is the number of measurements (the number of rows in the scheme
file), S, is the model predicted signal for measurement n and S, is the mea-
sured MRI signal for measurement n. The use of this local model fitting is for
(deterministic) local tractography in which the first stage was to calculate the

local main direction of diffusion.

Multiple runs During optimization it is possible to specify a perturbation
function p(x) and a scalar s which enables the optimization to run the opti-
mization routine s times each with a different starting position. After each run
of the optimization routine the optimal point is perturbated using the function
p(x) and the result is used as starting point for the next optimization run. In
the end the result of the run with the lowest error value is returned. The default
perturbation function uses a Gaussian distribution with o = 0.1.

Model cascade It is also possible to fit a cascade of models to the data. For
example, if we wish to fit the ”BallStickStick” model it is possible to specify
that first a ”BallStick” should be fitted and the result should be used to initial-
ize the ”BallStickStick” model. In general, the starting positions of the more
detailed model can be initialized by fitting a smaller, less detailed model. This
initialization can be specified in two ways, model based and parameter based.
In a model based cascade the starting point for the next run are the optimized
parameters of the same model(s) of the previous run. The ”BallStickStick” ex-
ample above is such a model based cascade. In a parameter based cascade the
parameters of the previous fit are used to initialize the same parameters in the
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next optimization. This allows, for example, initializing some of the parameters
of the ”Tensor” model with the parameters of the ”Zeppelin” model.

2.3.1 Model selection

The toolkit also supports model selection based on the Bayesian Information
Criterion (BIC) [19]. BIC can be used to choose the analytically most optimal
model by rewarding those which minimize the objective function while penaliz-
ing increasing numbers of model parameters:

BIC =-2InL+klnn

where L is the likelihood of the estimated model, k is the number of free param-
eters and n is the number of measurements. The model with the lowest BIC is
the one to be preferred. One use of this functionality is for example in fitting
one, two and three stick models to the same data and then voxel-wise selecting
the optimal model based on BIC voxel-wise.

2.3.2 Parameter spaces

During optimization the model parameters are transformed to another param-
eter space. In the toolkit the two parameter spaces are referred to as ”model
space” and ”optimization space”. The models use the parameters when in model
space and the optimization routine uses the parameters when in optimization
space. Before optimization the starting position xq is transformed from model
space to optimization space using a function f(x). The optimization routine
then optimizes the parameters in optimization space. To calculate the fit be-
tween the models and the DW-MRI data, during optimization, the proposed
optimization space parameters are transformed back to model space using a
function g(x).

One of the advantages of using this intermediate step during optimization is
that the parameters can be constrained to biologically plausible ranges. The
complete set of transformations is given in appendix A. For the experiments in
chapter 3 the transformations for the ”Ball” and ”Stick” method are needed,
so we list them here. Both the ”Ball” and ”Stick” method have as parameter
d the diffusivity of the molecules. To restrict these parameters to positivity
the square roots of these parameters are optimized. Furthermore, for numerical
precision the parameter is scaled by 10°. The transformation functions are

f(z) = v109%

to go from model space to optimization space and

to go from optimization space to model space. The ”Stick” model additionally
requires the direction of diffusion. As shown in the previous section this direction
vector is encoded using two angles, 6 and ¢. For both these parameters f(z) = «
and g(x) = z mod 27. The weights of a composed model are also transformed.
Here the functions are f(x) = cos™!(y/r) and g(x) = cos?®(x).

18



Parameter locking Another useful aspect of having this intermediate param-
eter transformation step is that parameters can be locked together. By locking
common parameters together it is possible to decrease the number of parame-
ters which are actually optimized. For example, the d parameter, which is the
diffusivity, is a common parameter for most of the models. If assumed that the
diffusivity in a voxel is equal for all compartments, the model complexity can be
reduced. Also, when optimizing n models, n — 1 model weightings are sufficient
to restore the complete set of weightings. For example, the ”BallStick” model
requires the parameters:

Xmodel = [f15 f25 dait; dstick, 0, )

in model space. When locking the model fractions (weightings) and the d pa-
rameter, in optimization space this vector looks like:

Lopt = [60871(\/%)7 \/ Cibzél ) 9’ ¢]

Note on implementation In Matlab these transformation functions are re-
cursively constructed anonymous functions (functions without a specific source
file). Recursively so that they may automatically be constructed for a given
set of models and anonymous so that they may be passed around as variables.
There is a small performance penalty for repeatedly transforming the param-
eters but this is needed to guarantee biologically plausible ranges. Also, the
extra time consumption is small compared to the time in the optimization rou-
tine and finally locking some of the parameters may give a speed gain which can
compensate for the performance penalty.

2.4 Sampling of the posterior distributions

There are two types of local tractography, deterministic and probabilistic. In
deterministic tractography for each voxel a model is fitted to look for the set of
parameters (w) which best describe the measured data. This point estimate is
then used for tracking the white matter bundles. Probabilistic models extend
this information by adding uncertainty about the direction of diffusion. This
information can be in the form of a standard deviation of the directions, or in
the form of the complete Orientation Distribution Function (ODF). This ODF
can be calculated by associating a probability distribution function (pdf) to
the parameters. In a Bayesian framework the ODF is given by the posterior
distribution on the parameters given the data:

P(Y |w, M)P(w|M)
P(Y|M)

where Y is the data and M is the model. This posterior density allows us to
pose questions like ”Given a hypervolume V € ) and the measured data, to
what extend can we assume that the true value of w is in V?”. Such questions
and their answers represent the uncertainty we have with respect to the values of
the parameters w. Unfortunately, calculating the denominator of the posterior
density function in eq. 2.1 involves an integral over the parameter space €Q:

Pw|Y, M) = (2.1)

PYIM) = /Q PY |, M)P(w|M)de (2.2)
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which often is not tractable analytically. This joint posterior pdf is often not the
disribution we are interested in. Most often we are interested in the posterior
pdf of a single parameter or a subset of parameters. Obtaining these marginal
distributions again involves performing large integrals:

P(w/|Y,M) = P(w|Y,M)dw_; (2.3)
Q-1

Where w; are the parameters of interest and w_; are all other parameters.
Again, these integrals are often not tractable analytically. Omne solution to
approximating the joint posterior distribution is by using a sampler to draw
samples in parameter space from the joint posterior distribution. In this way
we implicitly calculate the integrals numerically. The sampler used in this thesis
is the Metropolis Hastings sampler (MH sampler), which uses the Markov Chain
Monte Carlo (MCMC) algorithm [6]. The MH sampler is able to simulate
multivariate distributions by proposing samples preferentially in areas of high
probability. A downside of MH is that drawn samples are not independent of
each other. An upside is that the high probability of acceptance allows for many
samples to be drawn in a relative short period of time.

Optimization with sampling The sampling can also be used for optimiza-
tion purposes by taking the mean of the sampled posterior distribution. This
is especially useful in combination with Automatic Relevance Detection (see
subsection 2.4.2).

2.4.1 The posterior distribution function

The posterior distribution function is a product of two parts, the likelihood dis-
tribution of the parameters and the prior distribution on those parameters. The
likelihood function for a single measurement y,, is the probability of observing
the data under the given models and parameters: P(Y |w, M). Assuming Rician
noise [1] this likelihood is given as:

P(yn|w7M) = R(Sn|gm‘7)

where S,, is the measured signal for measurement n, S, is the model predicted
signal and the function

x —(22+v?) v

R(zlp,0) = 5 e~ 5% Bo(5)

is the probability density function for the Rician noise model with By(z) the
zero'™ order modified Bessel function of the first kind. See figure 2.2 for a graph
of the pdf of the Rice distribution. The total likelihood function (for all the
measurements) is given by:

M
P(Y|w, M) = ] P(ynlw, M)

n=1

The second part of the posterior distribution function is the prior over the
parameters. The complete list of prior functions is given in Appendix B, here it
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suffices to give the priors for the d, # and ¢ parameters of the ”Ball” and ” Stick”
models and the prior for model weightings. The prior for the d parameter is
p(x) = I(z>0) which constrains d to positive values. Here the function I,y is
an indicator function returning a 1 if the expression z evaluates to true and a
0 if z evaluate to false. For 6 the prior is p(z) = I(z>0) - |sin®| - I(;<2x) Which
assures values between 0 and (inclusive) 27, and the absolute sinus ensures we
cover the entire angle space. For ¢ the prior is p(z) = U(z|0, 27) with U(z|a, b)
the uniform distribution between ¢ and b. All the weightings f; are restricted
to values between 0 and 1, and the sum of the weightings should be lower than
1 and higher than 0.98, so: 0.98 < " | fi < 1.

E T T T
06 6=1.00

E —v=0.0 E
05F v=0.5 3

: —v=10 E

E —v=20 E
04F —v=40 E
03F E
02F E
0.1§ 3
0.0 1 1

0 2 4 6 8

Figure 2.2: Figure showing the Rice probability density function used for Rician
noise.

Parameter spaces For the optimization we used two transformation func-
tions to convert the parameters between parameter spaces. The same is done
during sampling except that here most of the transformations are identity func-
tions. Only the the d parameter is scaled again for precision and the angles 6
and ¢ are transformed in the same manner. Parameter locking is supported in
the same way as for the optimization transformations.

2.4.2 Automatic Relevance Detection

Automatic Relevance Detection (ARD) is a model selection technique used in
a Bayesian setting. ARD, or shrinkage priors, were originally devised for use in
Neural Networks by McKay 1995 [15]. It has since been used in Neuroimaging
[5] as a technique for inferring multiple fibre orientations if, and only if, there is
evidence in the data to support them. If we tried to fit multiple fibre directions
to a voxel which truly only has one, that fit may lead to a bad estimate of the
local fibre orientation. Such minor errors in local fibre fitting may accumulate
and provide a significant error in tracked fibres.
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Most model selection techniques require fitting multiple models of varying com-
plexity from which the optimal model will be selected based on a metric on the
goodness of fit and the model complexity. ARD differs from these models in
that it will fit the more complex model but also ensures that parameters which
are not supported by the data, do not contribute to the likelihood [5]. ARD
can be applied to a number of parameters and will act independently on each
of those parameters.

Applying ARD The first step in using ARD is to select one or more param-
eters on which ARD will function. The next step is that a prior distribution
is placed on each of the selected parameters, which will force that parameter
to zero if, and only if, there is no evidence in the data for its existence. The
most common prior is a Gaussian distribution with mean zero, but unknown
variance. This variance is added as a hyperparameter to the sampling routine.
If there is no evidence in the data for the existence of one of the selected param-
eters the hyperparameter will be estimated as very small, forcing the original
parameter to zero. However, if there is evidence in the data for the existence of
the parameter, the hyperparameter (the variance of the prior) will be very large,
allowing the original parameter to take any value. In this setup the posterior
distribution we try to sample is multiplied by the prior distribution(s) of the
ARD (of each parameter) and by the prior of the hyperparameter(s).

ARD on model weightings In this thesis we will use ARD on the weightings
of one or more of the submodels of a combined multi-compartment model. This
allows ARD to select which and how many models are supported by the data.
For example, if we fitted a ”BallStickStickStick” with ARD we could place a
prior on the weightings of one or more of the ”Stick” models so that we only
infer multiple ”Sticks” (and thus multiple fibres) if there is support for this in
the data. Since the model weightings are restrained between 0 and 1 we will
use the Beta distribution for the priors instead of the Gaussian distribution.
This means that for each weighting we apply ARD on, we need to multiply the
posterior distribution with the shrinkage prior:

P(filn) = B(fil1,n)

and with the prior of the hyperparameter:

in which 7 is the hyperparameter of the ARD and 8(z|a, b) is the Beta pdf with
parameters a and b.
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Chapter 3

Experiments and results

In this chapter we will present some experiments performed, and results obtained
by applying the toolkit to various DW-MR images of human brain tissue. In his
paper, E. Panagiotaki [17] provides a taxonomy of various compartment models;
we will not repeat those experiments here. Instead we will focus on one model,
the ”BallStick” model of Behrens 2003 [4] extended to three sticks, i.e. ”Ball-
StickStickStick”. This model uses the ”Ball” model for isotropic compartments
and three ” Stick” models for modelling anisoptric compartments. The direction
of the fitted ”Stick” models represents the supposed direction of the underlying
fibres (see Chapter 2). Both the ”Ball” as the ”Stick” model are relatively sim-
ple models with only a few parameters, which makes them relatively easy to fit
to the data. Furthermore it is easy to optimize the models in a cascade by first
fitting " BallStick”, then ”BallStickStick” and finally ”BallStickStickStick”.

The experiments in this chapter use two datasets, the Skyra and the Juelich
dataset, named after the name of the MRI scanner which scanned the tissue.
The Skyra dataset is the result of a whole brain measured in vivo with a whole-
body 3T MRI machine scanned at b-value 3¢”s/m? using 137 gradient directions
of which 9 are unweighted. The Juelich dataset is measured ez vivo on a small
sample of post-mortem human tissue (motor cortex) on a 9.4T small bore MRI
system scanned at b-value 2.7250e”s/m? using 66 gradient directions of which
6 are unweighted.

This chapter is divided into two sections. Section 3.1 discusses model fitting us-
ing the optimization routine and section 3.2 discusses parameter sampling using
the Metropolis Hastings sampler and model fitting using Metropolis Hastings
sampling (MH sampling) with Automatic Relevance Detection (ARD).

3.1 Model fitting

This section shows the results of fitting the ”BallStickStickStick” model to the
two datasets mentioned. The Skyra set was optimized using a cascade of one
stick, two sticks and finally three sticks of which each intermediate step is run
five times. The Juelich set was optimized with three sticks in only one run, due
to time constraints. The results of the fitting are visualized using Trackmark, a
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program written by Alard Roebroeck. In this visualization the gray-scale map
is the sum of all the ”Stick” model fractions, with white a high value (close to 1)
and black a low value (close to 0). The directions of the ”Sticks” are visualized
using cylinders which are color coded by their direction in the brain. Red is from
left to right (ear to ear), blue is from superior to inferior (top of skull to spinal
cord) and green from posterior to anterior (back to front). In the visualization
only those directions are shown in voxels of which the summed stick fraction is
higher than 0.2.

Skyra dataset The first visualization is that of the model fitting on the Skyra
dataset. Figure 3.1 shows a central axial slice of the brain containing the Corpus
Callosum. The second figure, figure 3.2 shows a coronal slice with a region
marked in red of which a close-up is found in figure 3.3. This region is of
interest since in this region three major fibre bundles cross each other. At least
two of these fibres are clearly visible. In some places there appear to be gaps in
places where it seems quite evident that at least one ”Stick” should be present.
It could be that in these places multiple anisotropic signals are present in such
a way that fitting them all at once with a large isotropic ”Ball” model gives a
better fit.

Juelich dataset The other dataset is the Juelich dataset which was fitted
once using a ”BallStickStickStick” model. Figure 3.4 shows a centre slice of the
dataset. Two regions are marked of which close-ups are found in figures 3.5 and
3.6.
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Figure 3.2: A coronal slice of the Skyra dataset. A close up of the region marked
in red is found in figure 3.3.
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Figure 3.3: Close up of a part of a coronal slice of the Skyra dataset. The full
slice is visible in figure 3.2.
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Figure 3.4: Figure showing an overview of a slice of the Juelich dataset. A
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Figure 3.5: Zoomed-in region of the slice of figure 3.4. This figure shows how
the fitted model found the track (in yellow) around the cortex.

Figure 3.6: Zoomed-in region of the slice of figure 3.4. A nice illustration of the
fit of three ”Sticks”.
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3.2 Metropolis Hasting sampler

In this section two illustrations are given of the functionability of the MH sam-
pler with ARD. For the first illustration we will apply the sampler to a single
voxel of the Skyra dataset and show the samples of the model fraction. The sec-
ond illustration shows the result of sampling an axial slice of the Skyra dataset.

Sampling a voxel The voxel chosen for the demonstration of the single voxel
is one of the Corpus Callosum of which it is known that it has one prevailing
direction of diffusion. This suggests that ARD should limit the amount of sticks
to one, or at most two. We will sample three ”Stick” models to this voxel of
which the first is initialized using the optimization routine and the other two
will be governed by ARD. The sampler is initialized with 2000 steps without
sampling after which 200 samples are taken with intermediate jumps of 10 steps.
This gives a total of 4000 steps and 2000 samples. Of the resulting samples an
illustration is given of the four model fractions. At the left is an histogram of the
sampled values with in red a fitted Gaussian on the histogram. On the right the
chain of the samples is given. This chain is an important cue for choosing the
correct proposal distributions. If the chain appears to linger in one area too long
the step-size is too small and many proposed samples will not be accepted. If
this is the case the resulting samples will give a bad estimation of the sampled
distribution and either more samples are needed or the step-size needs to be
increased. Figure 3.7 gives the overview of the samples of the ”Ball” model
fraction, followed by figure 3.8, 3.9 and 3.9 of the samples of ”Stick” model 1,
2 and 3 respectively. In the figures, the left figure gives an histogram of the
samples with the weight of the model on the x-axis and the count of accepted
samples with that probability on the y-axis. In this figure a graph is plotted of
a Gaussian fit to the histogram. The mean of this is taken as the point-optimal
model weight. The figure on the right gives the chain followed by the sampler.
Here the x-axis is the sample number and the y-axis is the sampled probability.
As predicted ARD limits the weighting of the second and third stick for lack of
evidence as can be seen by the low probabilities of the weights of the accepted
samples.

Sampling a slice The next illustration gives the sampling results of an entire
slice of the Skyra set (the same slice as for figure 3.1 in the previous section).
This slice was sampled again by initializing the first stick using the optimization
routine; sticks two and three are again governed by ARD. The sampler is then
run for a burn-in of 2000 jumps after which 200 samples are taken with intervals
of 10 jumps. For each voxel and for each parameter the mean and variance are
calculated and returned in a five-dimensional (5D) matrix (three for the location
of the voxels, one for the parameters and the last for the mean and variance).
For this illustration only the mean is used to generate the directions per voxel,
which can again be visualized using TrackMark. The results are shown in figure
3.11. When we compare this sampling result with the optimization result of the
former section the sampling result contains more noise. This can have multiple
causes, for example, the number of burn-in jumps is too few, more intermediate
jumps are required between samples or the proposal distributions need tuning.
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Figure 3.7: Sampling results of ”Ball” fraction of a single voxel
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Figure 3.8: Sampling results of the first ”Stick” fraction of a single voxel
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Figure 3.9: Sampling results of the second ”Stick” fraction of a single voxel
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Figure 3.10: Sampling results of the third ”Stick” fraction of a single voxel
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Chapter 4

Conclusions

The goal of this thesis was to develop a toolkit for local and possibly in the
future global tractography. This goal is met for the toolkit contains multiple
popular local diffusion models for use in both local and global tractography. The
part of local directions is covered by the toolkit presented in this thesis and with
it a foundation for global tractography, which is left for further development.

Before local or global tractography can be performed using parametric models
an implementation of those parametric models is needed. In his paper Panagio-
taki [17] lists a number of different local diffusion models currently in use in the
field of Neuroscience. All of these methods are programmed in a toolkit called
Camino [7] which can fit these models to a given Diffusion Weighted Magnetic
Resonance Image (DW-MRI) dataset. Camino however has numerous draw-
backs, which lead us to develop a new toolkit for fitting parametric models to
DW-MRI data. This new toolkit, as presented in this thesis, contains all the
parametric models of Camino and extends Camino with Automatic Relevance
Detection of model parameters.

The toolkit The presented toolkit was built in Matlab, which allows it to
run on any operating system capable of running Matlab. It contains a num-
ber of parametric diffusion models and a fitting routine which can fit a set of
models to DW-MRI data. Next to that, a sampling routine was built which
allows sampling from the posterior distribution of model parameters, using a
Metropolis Hasting sampler. This sampling can be used for local probabilistic
tracking, but is also a part of global tractography. Finally this toolkit has a few
supportive functions for loading and normalizing DW-MRI dataset from various
containers and was built in such a way that it is easily extendable to include
new parametric models.

Further research The toolkit presented here is a large step in the direction
of global tractography, but it is not yet the end point. The next step in this
field of research would be to implement a datastructure for storing globally
tracked fibres and to program the connection between global fibres and the
local diffusion models. This can follow the structure of Reister et al. 2011 [18],
but with different combinations of local diffusion models.
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Appendix A

Parameter transformations

This table lists the transformation functions which transform the parameters
of the various implemented models to optimization space (f(z)) and back to
model space (g(z)).

Model Optimized Transformation f(x) Transformation g(x)
parameter  parameter

d 0, 0, = V10°d d= 9

R 02 02 = cos (/e (R — 1e~7)) R =1e™" +20e~% cos*(62)
® 04 0s=0¢ ¢ = 04 mod 27

k 05 95 = cos 1(\/0 05k) k = 20 cos?(6s)

B O =|cos t(y/5et(B — 1e~7))| B =1e™" +20e° cos?(6s)
bins 07 = cos™1(1/0.01(bins — 1)) bins = |1 + 10 cos®(67)]
R 0s 6’8 =cos (1/2.5¢4(Rs — 1e=7))  Rs = le™" + 40e~% cos?(02)
dLl 99 99 = sin 1(m ( dLl/ )) dLl :sin2(99) -d

dJ_Z 010 910 = sin l(mzn( dJ_2/dJ_1)) dJ_z = sin2(99) 'dJ_l

(% 911 911 =« o = 911 mod 27

In this table the parameter k, 8 and bins are specific to the ? GDRCylinders”
model and « is for rotating the ” Tensor” model.

The weightings are transformed to optimization-space using the functions f(w)
= {cos™(y/w;) : i < n} with w the model weightings and n the number of
models. The function g(w) uses the following algorithm:

end
return t/sum(t)
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Appendix B

Priors for posterior
distribution sampling

This table lists the prior function for each parameter used during the sampling
process of the posterior pdf.

Model parameter Prior function

d p(z) = I(x>0)
R p(z) =T'(z(3,3)
0 p(m) = I(x>()) . |Sin$| . I(ISQTF)
10} p(x) = U(x|0,27)
k p(x) =T'(x(3,3)
B p(x) =T'(z(3,3)
bins p(z) = U(zx|1,10)
R, p(z) =T'(z|3,3)
dl—l p(a:) = I(ZL’>0)
sz p(.I‘) = I(w>0)
«a p(x) = Iz>0) | sin x|

In this table the parameter k, 8 and bins are specific to the ” GDRCylinders”
model and « is for rotating the " Tensor” model. The function /) is an indicator
function returning a 1 if the expression z evaluates to true and a 0 if z evaluates
to false. I'(z|0, k) is the Gamma pdf and U(x|a,b) is the uniform distribution.
The prior information for the model weightings restricts the weightings to values
between 0 and 1: p(x) = U(z|0, 1) and restricts the sum of the weightings to 1.
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