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Summary 
 
Foraging strategies are widely studied and are of great help in finding solutions for all kinds of 
problems. These strategies are interpreted by for instance biologists, economists and 
mathematicians to explain certain behaviour. Why do animals act in a certain manner? What can 
explain their optimal foraging behaviour? How can these strategies be used to solve the traffic 
congestion problem? 
 
Two strategies based on foraging behaviour are ε-Sampling Strategy and Failures strategy. These 
strategies are based on the foraging behaviour of bumblebees. Bees tend to do the right thing in 
an environment of many bees, but seem to do the wrong thing when they are alone. The right 
thing is adopting the Ideal Free Distribution and the wrong is stick to the Matching Law. Both of 
the strategies explain that in a multi-bee environment, the will distribute themselves over the 
flowers (nectar sources) according to the Ideal Free Distribution. But in a single-bee situation a 
bee will match, by its number of visits, the nectar supply of the available flowers (nectar sources), 
according to the Matching Law. 
 
Since they are so simple, can these basic strategies be extended or merged into new strategies 
with possible better performance and results? For this question some extensions to the basic 
strategies and a new strategy were developed and these extensions and strategies were simulated. 
Furthermore, in the paper introducing the basic ε-Sampling strategy, this strategy was only 
explained by situations with 2 different sources / types of flowers. When raising this number of 
sources, will the same results be found and what has to be adjusted to the basic strategy to 
perform these situations? 
 
In the case of the ε-Sampling strategy, the extensions include an dynamic ε and the addition of 
more types of flowers. For the Failures strategy an extension is proposed, that relates the number 
of failures to a time window. Additionally a new strategy, named ε-Failures strategy, which 
combines the key elements of the basic strategies is introduced. 
 
After defining the extensions and new strategies, they are tested by simulations and the results are 
compared to the basic strategies. It can be concluded that all of the extensions and also the new 
combined strategy won’t perform as good as the basics strategies and although some results may 
show that they perform as well, this is due to the fact that in this cases the effect of the 
extensions can be neglected and thus the extended strategies will perform as if they are the basic 
strategies. 
 
It can be said that the strength of these basic strategies is just their robustness and simplicity, by 
disturbing these basic principles the results and performance will drop.   
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rs and bees, but now I am! Many have 
cratched their head when I started talking about the subject of this thesis. It is not an everyday 
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over the past period. Without these people, I was not able to complete this thesis.  
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Xavier Gubbels 
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. Preliminaries 1
 

Introduction 
This chapter is intended to initiate the thesis written in the context of the graduation of the 

 in Operations Research at the University of Maastricht. The research concerns 

otivation 
Foraging theory studies the foraging behaviour of animals in response to the environment in 

imal lives. It considers the foraging behaviour of animals in reference to the payoff 

 to be categorized and compared, it is important to have a (simulation) 
rogram which can be used to experiment. On the basis of the performances of different 

cted on, for example, the behaviour of people. Strategies 
sed by bees, are also used by people in daily living in a certain way. Where do we obtain our 

 literature, are `ε-Sampling 
trategy' and `Failures strategy'. These strategies will be further explained in the next chapter. 

master program
the development of 'new' foraging strategies, which are based on the observed foraging 
behaviour of bumblebees. First, a study should be done to the background of the problem and 
existing foraging strategies used by bees, which the 'new' strategies are based on. In order to test 
the strategies and to view and analyze the results, a program is developed that simulates a bee-
flower environment. From the results, obtained by the program and analysis on the basis of other 
existing strategies, conclusions and recommendations for further research will follow.  
 

M

which the an
that an animal obtains from different foraging options. Foraging theory predicts that the foraging 
options that deliver the highest payoff should be favored by foraging animals, because it will have 
the highest fitness payoff (Stephens, D.W. & J.R. Krebs, 1986). One animal (or insect in this 
case) whose foraging behaviour has been studied is the bee. There are many articles published on 
the way that bees search for food in order to comply in their life requirements (e.g. Heinrich, 
1976; Cartar & Dill, 1990). These ways can be characterized by strategies, and most of them are 
different in intent. We can distinguish between strategies that are deterministic or stochastic, 
discrete or continuous in nature, whether or not use fill-rate or fill-time, and for example look at 
the behaviour of bees at individual level (energy intake and consumption for its own life) or the 
effect within a group. 
 
For all these strategies
p
strategies, they can be compared to one another. These benefits are to be classified and 
categorized. It may take into account individual or group behaviour, maximizing nectar intake or 
minimization of flight time or energy.   
 
The behaviour of bees can also be proje
u
groceries, which car we do have buy, on which party is to be voted? These choices are made by 
means of assumptions, expectations, feeling and more. To be able to understand these choices, 
models can be made of the reality. These models give (in a limited way) a view of reality, by the 
way of restricting possibilities and the surroundings. This simplification of reality can improve the 
ability to examine behaviour and making it easier to take conclusions. 
 
Two strategies which have been examined and described already in
s
These strategies assume behaviour of bees, but as said, can also be applied in our daily lives, for 
example in choosing a restaurant. The variables get another meaning, but the outcome is the 
same; an optimization of the reward given at a certain choice. The reward can be indicated in the 
case of the restaurant choice with the appreciation for price/quality proportion.  
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Some other problem: When commuting to work, the quickest route is pursued. When people 

he subject of this thesis is the possible improvement of 2 existing strategies, `ε-Sampling' and 

Background 
ady studied by former philosophers such as Aristoteles and Virgil, where the 

ven Albert Einstein is supposed to have said: “If the bee disappeared off the surface of the 

ientists from the twentieth century have discovered how the sense organs of bees work, how 

eanwhile bees are subject to a lot of research areas from several fields of biology, such as 

ore recently it has been shown, that bees develop a long-term expectation of the nectar income 

n Ideal Free Distribution (IFD) is an ecological term, which describes the manner which 

cologists frequently use this theory to test for violations. If a population of animals isn’t 
distributed according to the ideal free distribution, it is interesting to find out why. 

have to travel from A to B and the roads are crowded, then they tend to distribute themselves 
over all possible tracks in such a way (without communicating to each other directly), that traffic 
will be equally distributed over all possible routes from A to B. As a result the average travel time 
of all commuters from A to B is minimized.  
 
T
`Failures'. The strategies are adapted and combined with each other to develop new strategies, 
with possibly better results, where better should be interpreted as more realistic. Results concern 
amongst other things, how the bees distribute themselves over flower  types (Ideal Free 
Distribution), how rapidly this distribution is reached and what this means for the behaviour of 
individual bees. 
 

Bees were alre
emphasis lay especially on their history and product. A lot of others have studied bees, in all 
kinds of manners, by the centuries, however most of the knowledge has been gathered since the 
sixteenth century.  
 
E
globe then man would only have four years of life left. No more bees, no more pollination, no 
more plants, no more animals, no more man.” 
  
Sc
bees communicate, the effect of the poison which is released when a bees stings and they have 
determined and analyzed the behaviour of bees by means of more and more sophisticated 
measuring systems. We now know for example that bees see several colours and flickering 
patterns (which they observe when they fly on short distance above flowers) and that they use 
certain strategies to optimize their nectar consumption.  
 
M
evolutionary biology, to (among other things in this case) mathematics. In mathematics, research 
concerning bees is done often in association with other research areas, for example biologists. 
Many models, concerning the choices which bees make during foraging, have been made, to get 
more insight on how and why bees forage and approach flowers in a certain manner (Kadmon, 
R, et al, 1991).  
 
M
and by means of the size of a bee, we can make an estimation of the size of the foraging area is 
(Greenleaf et al, 2007).  
 
A
animals distribute themselves over different areas with food. The theory explains that the 
individual animals will distribute themselves proportionally to the available quantities of resources 
in each area. For example, if area A contains twice as much food as area B, then there will be 
twice as many animals in area A than in area B. The IFD theory predicts the partitioning of 
animals which forage in certain areas. This term and theory have been introduced by Fretwell and 
Lucas in 1970 (Fretwell & Lucas, 1970).  
 
E
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The Matching Law was first formulated by R.J. Hernstein in 1961 (Hernstein, 1961) following an 
experiment with pigeons. Pigeons had to choose between two buttons, each of which would lead 

he aim of this thesis is a research on foraging strategies used by bees. This means examining and 
trategies and developing new strategies, which are based on the observed 

 
 from the basic paper hold for situations with more than 2 types of flowers 

nd if the basic strategies are extended to meet more complex situations, how will this 

 
hold in more complex situations, i.e. more than 2 

pes of flowers? 

the basic strategies be adjusted or extended to meet the more complex 
conditions? 

extended, new strategies perform in comparison to the basic strategies? 
 

utline of the thesis  
The outline of the remaining part of this thesis is as follows: In chapter 2, several existing 

 and some new strategies will be introduced. Then in chapter 3, the 

to varying rates of food reward. It was observed that pigeons would choose the button with the 
higher food reward more often than the button with the lower payoff. Remarkable was, they did 
so at a rate that was similar to the rate of reward. Stated simply, the Matching Law suggests that 
an animal's response rate to a scenario will be proportionate to the amount or duration of 
positive reinforcement delivered. 
 
Goal of the thesis 
T
analyzing existing s
foraging behaviour of bumblebees. Furthermore the implementation of a program/tool, by 
which the strategies can be compared on their performances. The main goal is to get an answer 
to the problem statement and research questions. 
 
Problem statement:  

 Do the results
a
perform compared to the basic strategies? 

 
This leads to the following research questions: 

 Will the results in the basic paper also 
ty

 
 In what way have 

 
 How do the 

O

strategies are discussed
existing and new strategies will be simulated and compared to each other. Chapter 4 describes the 
results, which are obtained during the research. Finally in chapter 5, the conclusions will be 
described and recommendations for further research are given. 
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. Strategies 2
 

Introduction 
In this chapter the strategies examined are explained. To start it is motivated why these particular 

osen. Next these basic strategies are discussed to give a good explanation of these 

otivation 
The basis for my research is an article (Thuijsman et al, 1995), which attempts to explain 

aviour of animals (bumblebees, in this particular research). These bees do the wrong 

 representation of 
e reality. Bumblebees do not exchange foraging information and they try to maximize its 

 therefore easy to understand. They are 
escribed by finite automata (Ben-Porath & Beleg, 1987; Kalai, 1990), by which the bees only 

 and (ii) the 
ailures Strategy.  

ved behaviour, both strategies have the characteristics that (i) in a single-bee 
etting, a bee will match it’s number of visits to the nectar supply from the available sources, 

 

strategies are ch
basic strategies, ε-Sampling Strategy and Failures Strategy. Hereafter the extension of the number 
of colours is discussed, since the results of the basic strategies only take 2 different colours into 
account. At the end of the chapter we introduce some extensions to this basic strategies (dynamic 
ε-Sampling Strategy and Failures Windows Strategy) and formulate a new strategy, ε-Failures 
Strategy, which uses the basic principles of the ε-Sampling Strategy and Failures Strategy. 
 

M

observed beh
thing when they are alone, namely stick to the Matching Law. But in an environment of many 
foragers they act in the right way, that is adopting the Ideal Free Distribution.  
 
The strategies have to meet the bees’ distinctive characteristics to give a good
th
average nectar intake per time unit. Nectar will be considered as the only reward for the bee in 
the model. A given flower type has a typical colour and gives a certain reward. In the basic paper 
(Thuijsman et al, 1995) only 2 types of flowers are used. 
 
Furthermore, the strategies are very simple in design and
d
respond to their own payoffs and remember only the payoffs of the last few visits. The decision 
rules, used to decide whether to stay in or to leave a patch, take only the last one or two flowers 
into account. This is in line with the small brains and  bounded memory of the bees. 
 
In the article, 2 simple foraging strategies are introduced; (i) the ε-Sampling Strategy
F
 
To meet the obser
s
according to the Matching Law (Hernstein, 1961) and (ii) in a multi-bee community, the bees will 
distribute themselves over the available nectar sources according to the Ideal Free Distribution 
(Fretwell & Lucas, 1970). 
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ε-Sampling Strategy 
 

asics 
In common words; a bee visits flowers of a certain (initial) colour repeatedly, but sometimes the 

mples a flower of a different colour by mistake. If the reward at the accidentally visited 

mpling strategy 
represent the action selected and let r(t) ∈ ℝ be the payoff at time t ∈ 

 and cl(t+1)=αcl(t)+(1-α)r(t) for t≥1. 

ote the mixed action: choose Y with probability 1-ε and B 
therwise and let B  be defined similarly. The ε-sampling strategy is defined by playing: 

t t=2 use a(1) , 
 in case a(t-1)≠a(t-2) and r(t-1)≥cl(t-1), use a(t-2) otherwise.  

 the population to stabilize in the Ideal 
ree Distribution, namely: 

tar at Y is equally distributed over the visiting bees at Y at each stage; 
at is, if at some stage t ∈ ℕ there are n bees at Y, then we assume that at this stage each of 

ken by the bees at each stage and 
 at some stage there are no bees at a patch then at the next stage the total quantity is still the 

e bees’ sampling factors ε are sufficiently close to 0 to have a negligible probability of two 
r more bees moving at the same time. Thus the distribution of bees over flower types changes 

ee has been in Y sufficiently long to have its 
ritical level close to y/n . 

 

B

bee sa
flower is higher, then the bee will stay at this new type of flower. If not, it will return  
immediately to the patch with the original colour. 
 
More formal: 
 
Definition ε-Sa
Let α, ε ∈ (0,1), let a(t) ∈ {Y,B} 
{1,2,3,…}.  
 
Define cl(1)=0
 
Then cl(t) is called the critical level at time t. Let Yε den
o ε
 
at t=1 use Y0.5,  
a ε
at t>2 use a(t-1)ε
 
In this definition α and ε are the individual bee’s factors.  
 
In the multi-bee situation, we need some assumptions for
F
 
(i) The total quantity of nec
th Y 

these bees is receiving r(t)=y/nY units of nectar. Likewise for B. 
 
(ii) There is no accumulation of nectar at a patch. All nectar is ta
if
same. 
 
(iii) Th
o
by one bee moving either from Y to B or from B to Y. (Here ‘moving from Y to B’ means: 
previously the bee was at Y, now it has gone to B for a sample and since the payoff received at B 
is larger than the critical level it decides to stay at B.) 
 
(iv) We assume that, when going out sampling, the b
c Y
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The population will stabilize in the Ideal Free Distribution under the above assumptions. Firstly, 

,  1/   1/   

 
here ∑ 1/  is understood to be equal to 0. With each bee movement the potential strictly 

s and since

n a single-bee situation we use an artificial type of flowers, namely Bernoulli flowers Y (yellow) 

he strategy can be described by the following Markov chain. 

 
 

Figure 1: Markov chain for the ε–Sampling strategy 

 
n this situation, we have 2 types of flowers (Y and B). Each time a bee visits a flower of type Y, 

1 and B1 are the sample stages (the bee gets there with probability ε) and Y2 and B2 are the stages 
where a bee has chosen to stay in that patch (if the bee finds a full flower with probability p or q 
respectively). 

due to its ε, each bee will sample the other colour infinitely often. Hence, if the process stabilizes 
in some distribution of bees over Y and B, then it must be such that no single bee strictly 
improve its payoff by moving to the other colour. Secondly, whenever a bee moves from Y to B 
we must have that y/nY < b/(nB+1), where nY and nB are the numbers of bees before the move at 
Y and B respectively. If a potential function (Monderer & Shapley, 1988) is defined as 
 

w
increase  there are only finitely many distributions of the n bees and the bees will keep 
moving as long as possible, the potential function will eventually reach its maximum. This leads 
to the situation (at this maximum) that y/nY ≥ b/(nB+1) and b/nB ≥ y/(nY+1), hence y/nY ≈ b/nB. 
Furthermore, if y/nY = b/nB, then nY /nB = y/b and thus the bees will be distributed over the 
colours according to the Ideal Free Distribution. 
 
I
and B (blue). The yellow flowers give a reward of 1 unit of nectar with probability p and 0 units 
otherwise. For the blue flower we have probability q for a full flower. In a natural situation, this 
can be described as a constant fraction p of the patch of yellow flowers is full (and fraction (1-p) 
is empty) and a constant fraction q of the blue flowers is full (and fraction (1-q) is empty). 
 
T
 

  Y1   B1 

  Y2   B2 

p  q 

1‐q

1‐p

1‐ε 

1‐ε

ε

ε 

I
the bee will get 1 unit of nectar with probability p and 0 units otherwise. This is the same for 
colour B, except in this case the bee will get a reward of 1 unit with probability q. 
 
Y
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As seen in the multi-bee situation, ε is the bee’s sampling factor. Because of the rewards, the bee’s 
critical level will always be between 0 and 1, and a bee will only stay in a sampled patch if it gets a 

ll flower.  

  

fu
 
This Markov chain corresponds with the following transition matrix T given by: 
 

      
 

 

 

The stationary distribution π = (Y1, 2, B1, B2) of T gives us the frequency of visits at Y (Y1 + Y2) 
nd B (B1 + B2). The vector π is nonnegative, adding its components gives 1 and πT= π.  

Matching Law). 

taying 
ng enough in a patch to get a good estimation of the patch’s payoff.  

 different colours. This is 
omething we want to examine and analyze, for both the single-bee and multi-bee setting.  

es too 
rge and close to 1? It is also stated that ε has to be sufficiently small for the bee to stay in a 

mpling strategy.    
 

Y
a
 
Computing this vector shows that the number of visits of colour Y is p + qε and the number of 
visits of flowers of colour B is q+ pε. Hence nY : nB ≡ p + qε : q+ pε ≈ p : q.  
 
This leads to the theorem that: If ε is small, then a bee applying the sampling strategy in a single-bee 
experiment will exhibit matching the payoff probabilities by the frequency of its visits (the 
 
There has to be emphasized that the results presented in the paper do not really depend on ε. The 
only obligation which must obeyed is that ε has to be close to 0, in order to have the bee s
lo
 
After examining this strategy some questions can be asked. The paper only focuses on 2 different 
colours, it is said that the results will hold in situations with more than 2
s
 
In the paper it is also said that ε can be payoff dependent, thus getting larger if the bee gets low 
payoffs and will decrease if the bee receives high payoffs. But what if this dynamic ε becom
la
patch long enough and get a good estimate of the payoff in the patch. In the case of an ε close to 
1, the bee has a great probability of leaving the patch and thus no opportunity to get an 
estimation of the patch’s payoff. Another question is how ε has to be defined if it becomes 
dynamic.  
 
These questions will be discussed in the following sections, which will be about the ‘extensions’ 
of the ε-Sa
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From 2 to n colours  
ifferent colours into account. But will the results also 

 has to be extended with 

at random.  

and colours in the foraging area. Following 

) the sampling, what is the bee’s action when it receives 

lour if the bee doesn’t get a positive 

n a multi-bee situation, the population reaches the Ideal free Distribution if 

 0    

qi is the total am unt of nectar at patch i, ni is the number of bees at colour i and i is the 

nd transition matrix T have to 

with colour n, giving a reward of 1 unit of nectar and thus 

 

The experiments in the paper only took 2 d
stand for instances of the strategies with more than 2 different colours? 
 
Probably they will. But when there are more than 2 colours, the model
some rules. For instance, when a bee samples, it has to sample a different colour. For the choice 
of  the sampling colour we assume that: 
 

 A bee chooses a different colour 
 
I
to
t is possible that a bee doesn’t know all the flowers 
 this, if a bee doesn’t know all the flowers and colours in a patch, it surely doesn’t know the 

highest estimated payoff of those flowers and colours and the last 2 assumption don’t hold. 
Therefore a colour is chosen at random. 
     
Furthermore, after (or more exact during
a payoff with a value below the critical level (or in the case of Bernoulli flowers gets a empty 
flower)? For this matter we made the following assumption: 
 

 A bee will return to a flower of its previous visited co
payoff at the sampled flower (and colour). 

 
 
I

 
 

 

 
oWhere 

number of colours. With the help of the simulations we can computed these ratios and see if the 
population is distributed according to the Ideal Free Distribution. 
 
For the case of a single-bee situation and n>2, the Markov chain a
be extended. For the Markov chain we introduce a new system of states and variables. The states 
and transitions can be characterized by 
 

 pn is the probability, for flowers 
for the bee obtaining a success. 

 cnm, corresponds to a state of the bee, where the bee is sampling colour m while coming 
from colour n. 

 ε, the sampling factor, with this probability the bee will sample another colour. 
 
For an organized view the states have been grouped by colour, all states with c11 to c1m have to be 
grouped, such as c22 to c2m and cn1 to cnm have to be grouped. With numbers, a state c14 
corresponds to a bee which is currently visiting a flower of colour 1, but is sampling a flower of 
colour 4.  
 
 

12 
 



As an example a Markov chain for 4 colours is presented: n example a Markov chain for 4 colours is presented: 

Colour 3

p1 

 
Colour 1 

p1 

Colour 2

Colour 4

p2

p1 

p4 

p2 

p2 p3 
p3 

p3 

p4 

p4 

Figure 2: The Markov chain for 4 colours

  
 

 colour node in the Markov chain above can be subdivided by the inner colour states: 

 

or the example the ‘inner-colour’ chain of colour 1 is chosen, the other colours can be 

  
 

 colour node in the Markov chain above can be subdivided by the inner colour states: 

 

or the example the ‘inner-colour’ chain of colour 1 is chosen, the other colours can be 

AA
  
  
  

  C11    C12   C13    C14 

Colour 2 Colour 3
 

Colour 4 p1 
p1 

p1 

p2 p3 p4 
1‐p2 

1‐p3  1‐p4 

ε 
ε 

ε 1‐3*ε 
Colour 1 

  

  
  
  

Figure 3: Inner colour states of the Markov chain

  
FF
represented similar.   represented similar.   
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The corresponding transition matrix Tn is given by: 

  1,

    

 

 

 

, for ,  

 
 
The elements of matrix Tn (each have n rows and n columns) have to be defined as:  

 

0 0 0 0 0

0 0 0 0 0
0 0 0 0
0 0 0 0 0

0 0 0 0 0

 , if  

 

 

 

 

0 0 1 0 0

0 0 1 0 0
1 1

0 0 1 0 0

0 0 1 0 0

 , if  

 
For a situation with 3 types of flowers, the following Transition matrix T3 is defined: 
 

1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1

 

  

 
By finding the stationary distribution π = (c11, c12, ..., cij, c21, c22, …, c2j, …, ci1, ci2, …, cjj) we can 
compute the frequency of visits of each colour. For colour 1 the frequency is  c11 + c12 + … + c1j, 
for colour 2 is  c21 + c22 + … + c2j and so one. 
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Thus for the situation where n=3 (3 colours), p1=0.2, p2=0.3, p =0.5 and ε = 0.05, we’ll get the 

 
eplacing the variables with the corresponding probabilities gives: 

3
following Markov chain and Transition matrix: 
 

 

 C31

   C32

   C33 

  C11 

   C12

   C13

 C21    C22 

   C23

ε 

ε 
ε 

1‐p1

ε

ε

ε

1‐p3 

p3 

p3 
p2

p2

p1

p1 

1‐2*ε 

1‐p1

1‐p21‐2*ε 

1‐2*ε 

1‐p2 

1‐p3 

Figure 4: Markov chain for n=3

R

0.9 0.05 0.05 0 0 0 0 0 0
0.7 0 0 0 0.3 0 0 0 0
0.4 0 0 0 0 0 0 0 0.6
0.2 0 0 0 0.8 0 0 0 0
0 0 0 0.05 0.9 0.05 0 0 0
0 0 0 0 0.4 0 0 0 0.6

0.2 0 0 0 0 0 0 0 0.8
0 0 0 0 0.3 0 0 0 0.7
0 0 0 0 0 0 0.05 0.05 0.9

 

 

 
or computing the frequencies of visits to the different colours, we have to find stationary 

  

F
distribution π =(c11, c12, c13, c21, c22, c23, c31, c32, c33) of T. This can be done by solving πT= π and 
∑ .We get π = (0.1653, 0.0083, 0.0083, 0.0124, 0.2479, 0.0124, 0.0248, 0.0248, 0.4959).  
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Hence the frequency of visits per colour is; 

 Colour 1 = 0.1653 + 0.0083 + 0.0083 = 0.1819  

The frequency may not be matching the probabilities of getting a positive reward (and even is 

Since p1+p2+p3 = 1.1, the probabilities have to be divided by 1.1 to get the normalized 

 Colour 1 = p  / (p  + p  + p ) = 0.2 / 1.1 = 0.1818 

These values match with the computed values for the stationary distribution of T.  

With the help of the simulations we can compute and analyze these rates for all of the desired 

 

 
 

 Colour 2 = 0.0124 + 0.2479 + 0.0124 = 0.2727 
 Colour 3 = 0.0248 + 0.0248 + 0.4959 = 0.5455  

1.0001 due to rounding error), but this occurs since p1+p2+p3 = 0.2 + 0.3 + 0.6 = 1.1. In this case 
we have to take a look at the normalized probabilities, so we get a clear view of the allocation of 
the frequency of the visits per colour. 

probabilities. For the colours, the normalized probabilities for visiting a flower with reward 1 are: 

1 1 2 3

 Colour 2 = p2 / (p1 + p2 + p3) = 0.3 / 1.1 = 0.2727 
 Colour 3 = p3 / (p1 + p2 + p3) = 0.6 / 1.1 = 0.5455 

situations. These will be discussed in de next chapters, where we start with how the simulations 
have been done and after that we discuss the results.  
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Dynamic ε-Sampling Strategy 
 based on the fact that a bee accidentally visits the ‘wrong’ patch with 

ut what if the frequency of the sampling depends on the current payoff? We want to see what 

he model has to be extended with a function, which describes this dynamic ε. We chose to let 

he dynamic ε function is defined as 

0 ,  0,1  
 

1 0  
 

1 0 , for t > 1 
 

or this function a variable k is introduced. This variable is a perspective of the number of 

he first manner can be defined as just counting the difference between total number of failures 

et k(t), s(t), f(t) ∈ℕ, s(t) is the total number of successes and let f(t) be the number of failures.  

efine k(0)=0, s(0)=0 and f(0)=0, 

 , 1 1  1 , 
 

 1   1 1 
 

 , 0  

As can be stated from the above, this function is colour independent. We assume that a bee’s 

The ε–Sampling Strategy is
flowers of a different colour. This mistake, or sample, is indicated by the probability ε, with ε ∈ 
(0,1). This probability does not differ during the foraging of the bee and is considered to be ‘close 
to 0’ (it’s a mistake and happens very rare).  
 
B
happens, when the bee will sample more often when the rewards at the current patch are below 
it’s critical level. On the other hand, the bee will feel less need to explore (sample) the patches 
with flowers of other colours when the bee only gets payoffs above its critical level.  
 
T
the dynamic ε function to be quadratic. It could also be linear, but the changes of epsilon would 
not be noticeable when ε is near 0 and thus would not have enough impact on the behaviour. 
 
T
 

F
failures and successes. This number can be defined in 2 ways, (i) from the beginning of the 
simulation and (ii) from the last success. The initial value of k is 0. 
 
T
and total number of successes witnessed until then. The definition of the ε–Sampling Strategy has 
to be extended with the following lines to satisfy this condition. 
 
L
Furthermore r(t) is the current reward and cl(t) is the current critical level. 
 
D
 

memory does not keep track of the ratio in successes and failures per colour. A bee only 
remember the ratio of successes and failures of the current visiting colour. When a bee moves to 
another colour, the memory will be cleared and both numbers of successes and failures are set to 
0.   
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The second method is the most straightforward of both. The bee will start counting after 
attaining an empty flower, thus failure. With every consecutive failure, k will be added with 1. 
Whenever the bee visits a full flower, a success, the value of k will be reset to 0. By this means, 
the definition of the ε–Sampling Strategy has to be extended with the following. 
 
Let k(t) ∈ℕ and define k(0)=0, r(t) is the current reward and cl(t) is the current critical level, then  
 

 , 0,  1 1 

 1, 0,  1 1 

  

 
 
Notice that, when in both methods artificial Bernoulli flowers are used, cl(t) doesn’t have to be 
used. Because r(t)∈{0,1}, we can speak of noticing a failure (r(t)=0) or a success (r(t)=1), and 
since cl(t)∈(0,1), a success has always r(t )> cl(t) and for a failures the reverse r(t) < cl(t).  
 
Thus the latter definition extension can be rewritten as: 
 

 
Another way of taking failures into account when deciding to stay or leave a patch is considered, 
but this fits more in an adaptation or extension of the Failures strategy and will be discussed in 
the next section. This method puts focus on a certain window of the last visits and the number of 
failures in that window. For instance, raise ε if 3 of the last 5 visited flowers are empty. This 
method could also be colour dependent, a bee could leave colour Y after 2 (consecutive) failures 
and leave colour B after 3 (consecutive) failures.  

Both methods will be simulated and analyzed after the simulations and discussed in the following 
chapters.  
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Failures Strategy 
 

asics 
In common words; A bee will move to another foraging patch after visiting a certain number of 

utive empty flowers, empty should be interpreted as ‘below critical level’. 

s strategy 
et y, b be positive integers. The finite automaton A(y,b) is given by: 

secutive failures and move to B, 

 Y and B, that give 1 unit of nectar with 
robability p and q respectively (and 0 units otherwise). The event of receiving 1 unit shall be 

he corresponding Markov chain can be displayed as 
een in figure 5. 

 
Figure 5: Automaton A(3,2) and corresponding Markov chain (right) 

 
Yk indicates the state of being at Y, while the last k visits were failures (the Bk states should be 

terpreted similarly). This automaton leads to a transition matrix T, which is given by: 

 
 
The stationary distribution π = (y0, y1, y2, b0, b1) of T gives us the frequency of visits at Y (y0 + y1 + 

) and B (b  + b ). The vector π is nonnegative, adding its components gives 1 and πT= π.  

B

consec
 
In a formal way;  
 
Definition Failure
L

(i) Leave Y after y con
(ii) Leave B after b consecutive failures and move to Y. 

 
In this experiment, there are two artificial flowers
p
called a success, and receiving 0 is a failure.  
 
As an example, the automaton A(3,2) and t
s
 

in
 

y2 0 1
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sing A(3,2) the bee would confirm the Matching Law if and only if 
 
  y0 + y1 + y2 = p/(p+q) 
  b0 + b1 = q/(p+q) 
 
For generality we use A(y,b) instead of A(3,2), one can show the following theorem (Thuijsman 
et al, 1995). 
 
Theorem: The finite automaton A(y,b) matches the payoff probabilities p and q respectively if and only if  
 

1

U

 1  

 
For any p,q-situation of yellow and blue flowers with p, q ∈ [δ, 1- δ], with δ ∈ (0, 0.5) this 
theorem provides the existence of real number y, b ∈ [1, M], where M∈ℕ. When we take the 
bounded recall of the bee into account, we have to notice that with M=2, δ cannot be smaller 
than  0.22, while with M=3, δ can be handled as small as 0.18. This leads to the fact that all p, q  
[0.22, 0.78], matching can be obtained with an automata A(y,b), with y, b ∈ [1, 2]. 
 
In natural situations, it is frequently observed that p and q are small if there are many visits 
(Schreiber, 1993). In this case ( p≤q≤1-p or q≤p≤1-q ) the bee can use a special automaton A(x,x) 
(Thuijsman et al, 1995).  
 
If p≤q≤1-p or q≤p≤1-q, then there exists x≥1 such that 
 

1  1  

 
With a population of finitely many bees using A(x,x), the Ideal Free Distribution can be 
observed. By the strong  law of large numbers it can be said that the fraction of number of bees 
visiting patch Y converges to p/(p+q), and the other part q/(p+q) will be at B for large numbers 
bees and a large time t. 
 
Consider a population of infinitely may bees, using A(r,s) to forage patches Y and B, with 
respectively total nectar supply of y and b. Then p and q are determined by the proportions of 
bees currently present in each of the patches and this population can be distributed according to 
the Ideal Free Distribution. 
 
Then with certain p and q a static result for the existence of the Ideal Free Distribution can be 
calculated, but there is no dynamic process for reaching the Ideal Free Distribution. We have to 
assume an infinite number of bees in order to have p and q not affected by a single bee moving 
from one state of the automaton to another state. With a finite number of bees these 
probabilities would depend on the precise number of bees in those states. 
  

{ 
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Failures Time Window Strategy 
what happens if the failures 

indow is extended?  With failures time window, we mean that not only 
nsecu its n is kept track of, 

here m y ac but we expect that at the end 
e distribution of the populat tegy.  

, instead of chan consecutive failures, a bee will move to another 
olour if 2 of the last 5 visits 

e extend the Failures strateg  stands for the size of the window 
of last visited flowers, then this strategy can be def
 

   

old for an automaton Ax(x,x), because with automaton Ax(x,z) where 
>z, the bee doesn’t have to approach x consecutive failures on colour Z to move to colour X.  

e consider that there has to be a model An(2,2) which gives the same results as A(2,2). By 
simulating and testing we try to find a suiting n. 
 

wo of these automa n the single-bee situation are displayed in figure 6 and figure 7: 

In the strategy only consecutive failures are taken into account, but 
w  extending the 

red, but the number m of failures in the last vis
y, a bee will stay longer at a patch, 

ion is the same as for the original stra

ging colour after 2 
at the current colour are failures. 

y model A(y,b) to An(y,b), where n
ined as:  

  ,   

co tive failures are measu
w  ≤ n. B ting this wa
th
 
For instance
c
 
W

 
                

               
 

 , ,  ,    
 
Note that in the case of Ax(x,x) the model can be thought as if it’s equal to A(x,x). Because it 
takes the last x failures of the last x visits into account and this can be seen as x consecutive 
failures. This will only h
x
 
W

T ta i
 
  A(2,2)

C11 

 C10  C21 

 C20 

1 

0 0

0

11

0 1

Figure 6: Automaton for A(2,2)
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 computed.  

d settings 
ave to be chosen carefully. This is also a belief for a multi-bee situation, where an Ideal Free 

Distribution can be obtained if the variables are chosen carefully, but just in a couple of cases.  
 
By simulating we try to resolve the matching and an Ideal Free Distribution by testing with a 
number of cases and variables. These simulations will be discussed in chapter 4 and the results 
accompanying these simulations will be discussed in chapter 5. 
  

 
 
 
A state cij is characterized by 2 elements, i represents the colour and j represents the ‘failure 
sequence’. A failure is indicated by a 0-arrow and a success by a 1-arrow. These can be replaced 
with the probabilities pi in case of a success and (1-pi) in case of a failure. 
 
Again, by finding the stationary distributions of the transition matrices of the Markov chains 
above the frequencies of visits per colour can be
 
For a single-bee situation we expect to be able obtain matching, but the variables an
h

 C1 

 C10  C11 

 C101 

 C1011 

 C2 

 C20   C21 

 C201 

 C2011

A4(2,2) 

0

0

0

1

1 

11 

1 
1 

Colour 1 

0

1

0

0

0

0 

1 

1 

0 

0 

Colour 2 

1 

Figure 7: Automaton for A4(2,2)



Combination of ε–Sampling Strategy and Failures Strategy 
 

Introduction 
After reading and discussing the paper, we thought it may be interesting to combine both of the 
strategies and see what the results of this combined strategy are. Take some of the characteristics 
of both strategies and merge them into a new strategy. These features are: 
 

 he sa pling factor ε of the ε–Samplin
 Change colour after a certain number of consecutive failures 

 

The ε-Failures Strateg
This strategy can be described in common words as: A bee will use the ε-Sampling Strategy, but 
after a certain number of failures (this can be consecutive of a number ailure the last m 
visits), the bee will move to another colour. 
 
This can be viewed as a special case of the dynamic ε-Sampling Strategy, where ε come 1 after 
a number of failures, otherwise it will remain the same. The dynamic ε function can be defined as 
a step function, for instance: 
 

0 0,1  
 

1 0  

w 
f last visited flowers. The last method is already introduced in the section ‘Extending the Failures 

fore creating this strategy) we 
concluded that using the first method for k(t), ε became too much of a disruptive factor in the 
results. The frequency of visits was matching the probability of a successful visit (with reward of 
1 unit of nectar) and matching would occur, but the way it worked was not according to the ε-
Sampling Strategy. We chose to use the second manner, because this is more of a combination of 
both basic strategies. The last method is already an extension of the Failures Strategy and we 
would like to combine only the basics of both strategies and see and analyze if this ‘new’ strategy 
will produce good and interesting results.  
 
  

T m g Strategy 

y 

n f s in 

 be s 

,  

1  
  0 ,  

1,    
, for t > 1 

 

 
where K stands for the maximum number of failures which may be perceived before leaving the 
patch and visit another colour. 
 
The variable k is a perspective of the number of failures and successes and some of them already 
have been discussed in a  section ‘Dynamic ε-Sampling Strategy’. This number can be defined in 3 
ways, (i) from the beginning of the simulation, (ii) from the last success and (iii) using a windo
o
time window’. 
 
After simulating the dynamic ε-Sampling Strategy (and be
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. Simulation 3
 

Introduction 
The previous chapter discussed the strategies and their adjustments and extensions. In this 

 their results) can be 
ompared to each other. We chose for experimenting and simulating instead of a theoretical 

 in an orderly overview with simulated 

e, a simulation shows how the situation is changing and evolving in the 

he effect of a strategy. 

imulations 
All of the str odeled and implemented using Matlab. The choice for Matlab is simple, 

ecause it’s a very extended mathematical program and easy to work with.  
 
At first we started by implementing the ε-Sampling Strategy es strategy and creating a 
user interface to represent the results. The initial idea was to create a tool, which could simulate 
nd compare both of the basic strategies and their extensions. By the hand of this tool also 

pare almost every little detail. This was not working very well, 
lso because of the lack in knowledge in creating a usable user interface in Matlab. Creating 

st everything could be viewed apart. 

chapter the simulations, carried out in order to obtain the results, are described.  
 
The need for the simulations is quite clear, because the strategies (and
c
comparison, because in this way results can be compared
data. 
 
From a given baselin
course of time.  With the results of the simulations, the strategies can be compared. These results 
are given in different ways, as numbers and graphs. With the help of these numbers and graphs, 
we can try to explain the behaviour of bees according to  the different characteristics of the 
trategy. s

 
With a simulation every single action of a bee can be watched and examined. In this way the 
behaviour of bees, using a certain strategy, can be explained and understood in a better way. This 

olds also for understanding th
  

S
ategies are m

b

 and Failur

a
individual flowers and bees could be viewed separately. But instead of focusing on particular data, 
we wanted to visualize and com
a
different graphs and charts, which were quite nice looking and gave a lot of information, took a 
enormous amount of time and slowed the total simulation down. Furthermore the program 
became too complex, because there were a lot of variables which had to be set before starting a 
simulation. Also all of the different kinds of representations of the data were little confusing, 
because almo
 
After experiencing the slow speed of the simulations, mostly because of creating the plots, we 
decided to skip a nice looking interface and to focus on the data of the results of the simulations 
(and thus strategies). The raw data could always be transformed and represented by graphs and 
charts afterwards. This worked out right and we got the results quicker and were able to do more 
simulations in period of time. 
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Matching Test for ε-Sampling Strategy 
Thus for ε-Sampling Strategy we started simulating with 1 bee, 2 flowers of different colours with 

g a reward of 1 unit of nectar of respectively p1 = 0.3 and p2 = 0.7, ε = 0.05 

 as the number of steps we simulate. Each step can be interpreted as a moment in 

 First the makes a decision to stay (with probability 1- ε) in the current patch or sample a 

In case of sampling, the bee will decide to stay in the new patch or return to the original 

e started simulating the ε-Sampling Strategy for a single-bee situation (test for Matching Law). 

ties of giving a reward of 1 unit of nectar of 
e colours. 

 
hat the sampling visits cause some disturbance in the expected results. This 

*ε has more influence 
n the total p + p *ε, because p < p .  

stance: 

r 1 
 663.697 steps on colour 2 
 50.113 steps sampled 

 

probabilities of givin
and t = 1.000.000.  
 
We introduce t
time. In the case of the ε-Sampling Strategy a bee does some actions per step t: 
 

patch of a different colour (with probability ε). 
 After the decision to stay or sample, the bee will visit a flower of the current or sampling 

colour and remember the pay-off.  
 

colour, according to the payoff it received. 
 In both cases the critical level is updated (which is not necessary, because we used 

Bernoulli flowers with reward 0 or 1, thus always above or below every critical level 
cl∈(0,1) ). 

 
W
At the end of the simulation, the results showed the total number of visits per colour. By dividing 
the number of visits by the total number of steps the average number of visits per colour are 
computed and this can be compared to the probabili
th

We noticed t
disturbance is greater on the side of the colour with the smallest ‘success’ probability, which can 
be explained by the ‘error’-part of the quotation p1 + p2*ε. The error-part p2
o 1 2 1 2
 
Furthermore we noticed that ε and the number of steps in the simulation had to be chosen 
wisely. Since we couldn’t set the number of steps to ∞, ε had to be not too close to 0, so 
(enough) sampling visits were noticed. 
 
Therefore we have to exclude the sampling visits from counting the number of visits per colour, 
to get a pure proportion of the frequencies of visits per colour. When a bee samples, this will not 
affect the number of visits of the sampled colour nor the number of visits of the original colour.  
Not just this, but also the whole step has to be neglected, because otherwise the values of the 
number of visits divided by the total number of steps will never reach to the flower’s probabilities 
of giving a successful reward(which have to be found, according to the Matching Law). For 
in
 
After simulating with the following settings (p1 = 0.3, p2 = 0.7, ε = 0.05 and t = 1.000.000) we got 
the following results: 
 

 286.218 steps on colou
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Then 286.218/1.000.000 ≈ 0.286 and 663.697/1.000.000 ≈ 0.664. These ratios are almost 
s, but since we make an error by counting the steps a bee 

50.113) ≈ 0.699. These value are almost exact the probabilities of the flowers 
iving a successfully reward and we can conclude that the bee will match the ‘success’ 

fter we got this right we started simulating with more colours and the results were as expected. 

he payoff probability of that colour. The 

 results of the basic strategy. The frequency of the visits per colour matched 
etting a positive payoff per colour, but after taking a closer look of the results, 

≥ 1, the bee is expected to visit more full flowers then empty flowers and this leads 

ε will increase close to 1. In the case of ε close to 1, the 

 

 it may look that this strategy show a good matching behaviour, it doesn’t meet our 

to try method 2 (set the number of failures back to 0 after getting a positive 
nclude that 

. Since k is set back to 0 after visiting a full flowers, k won’t be 
eadily or stay 0 (otherwise). Hence ε will not remain the same 

according to the success probabilitie
samples, these cannot reach the probabilities.  
 
But after correcting the number of steps, we get 286.218/(1.000.000-50.113) ≈ 0.301 and 
663.697/(1.000.000-
g
probabilities of the colours by the frequency of visits per colour. 
 
A
We expected that the ε-Sampling Strategy would give the same results for more than 2 colours, 
thus that the frequency of visits of a colour matches t
results of the simulations showed that for 3 or more different colours matching could be 
observed as well.  
 

Matching Test for Dynamic ε-Sampling Strategy 
For simulating with the dynamic ε, we had to look at the 2 different ways of computing k.  
We started with the first method (counting from the beginning) and noticed that the results were 
almost equal to the

e probability of gth
we noticed that the final value of ε (at the end of the simulation) is very dependant of the payoff’s 
probability. If the sum P of the chosen probabilities (p1 + p2 + … + pn) is smaller than 1, then ε 
becomes close to 1. Otherwise ε will stay 0.05 until the end of the simulation. We can explain this 
by the fact that if P < 1, a bee will encounter more empty flowers then full flowers during the 
simulation, thus k is expected to become larger instead of staying 0 (according to the function for 

). When P k
to the value for k staying 0. 
 
When simulating long enough (t>25.000) matching will occur, but this is due to the fact that: 
 

 In the case of P < 1, since k will, 
bee will sample almost every step. The sampling steps have no effect on the matching, 
because these steps are disregarded. From the time until ε becomes too great, the bee will 
behave according to the basic ε-Sampling Strategy (since ε is small enough). So only the 
‘good’ steps are counted and this will match.
 

 In the case of P ≥ 1, the dynamic epsilon ε isn’t really dynamic. Since k will be 0, ε will 
stay ε(0) and the bee will behave as if it uses the basic ε-Sampling Strategy and this is 
proven to match. 

 
Because of this effect, the first method isn’t very usable. We want to have a robust function, 
which will perform well under all kinds of situations and not only under well formed situations. 

lthoughA
requirements. 
   

fter this we decided A
payoff) for the simulations. After simulating and analyzing the results, we could co
this method was more appropriate

) stgrowing (in the case of P < 1
(0)) or be near to 1.   (ε

26 
 



There are some comments on the second method. First it doesn’t perform as well as the basic 
strategy. Matching can be perceived, but not as exact as the matching in the basic ε-Sampling 
strategy. If the successful payoff probabilities of the different colours are (almost) the same the 
xtent of matching will be better and more according to the basic strategy. When the successful 

ts per colour. For 2 colours the 
umber of visits on colour 1 is p +p *ε, the ‘error’-part is p *ε. When p <p  and ε close to 0, then 

e reason. This happens to be an effect of the dynamic ε function. A bee will 
ample more often when it visits a colour with small payoff, because the sample factor ε increases 

at the sampled colour is bigger, because the 
g 

ee. At the end of each stage the number of bees per patch Bi  is 
ounted and then the ratio F  / B  is computed.  

riginally we showed all these ratios of the different colours in one graph, but this turned out to 

the distribution of the population vary a lot 
and after getting an Ideal Free Distribution the population wouldn’t stay distributed in that way. 

ime. If the number of steps would be much more, the influence of ε 
ould be smaller and a particular distribution would hold longer. 

ecause they haven’t decided to stay at or leave a patch. For each colour a line is 
tted with the number of bees at that colour, divided by the number of flowers of that colour 

uted the average number of these fractions, to see if, over all the steps 
simulated, the ‘average’ distribution will be according to the Ideal Free Distribution. During the 

e
payoff probabilities differ more, the error noticed in the extent of matching will be greater at the 
colour with the smallest probability.  
 
This could be explained by the ‘error’-part in the number of visi
n 1 2 2 1 2
p1+p2*ε < p2+p1*ε and p2*ε has more influence on p1+p2*ε then p1*ε influences p2+p1*ε. If p1=p2, 
then the error will be the same on both sides.  
 
But since we exclude these sample steps from the computation of the frequency of the visits, 
there has to be som
s
faster. Furthermore, the probability of staying 
probability of receiving a better payoff at the sampled colour is bigger, and hence the matchin
will be disturbed. 
 

IFD Test for ε-Sampling Strategy 
This simulation was more difficult because of the assumptions, for instance all of the nectar in a 
patch should be distributed over the bees visiting that patch. Not all assumptions were taken into 
account for the implementation. We implemented this strategy very simple. There are Fi flowers 
in patch i and they all are full. A bee will choose to stay in the current patch or sample (with 
probability ε) another. When a bee visits a patch it will go to a flower. If no flowers are free (thus 
all the flowers are taken by another bee), it will remain in the patch, but accidently do nothing, 
there is no payoff for the b
c i i
 
O
be confusing. The lines in the graph looked very shaky and it looked like the strategy wasn’t 
behaving as expected. But this was because of the fact that we computed the wrong results. After 
adjusting the simulation and the scale of the graph, the results were better. But our expectations, 
the population would need some time to come to a stable Ideal Free Distribution and stay 
distributed in that way, weren’t met. Instead we saw 

This can be justified by the numbers we used for the variables. Because the speed of the 
simulation we chose not as much steps, bees and flowers as desired, since the simulation would 
crash or take too much t
w
 
For comparing the results we used the number of bees (ni) per colour and the number of flowers 
per colour (fi). Bees, which are sampling during a specific time step aren’t taken into account for 
this numbers, b
plo
per time step (ni / fi). In that way we can how the bees distribute themselves over the available 
flowers. If these fractions are equal, an Ideal Free Distribution is observed. In our simulations 
this wasn’t observed very often, but the fraction were close to each other, so we can say that the 
population of the bees is almost distributed according to the Ideal Free Distribution. 
Furthermore we comp
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Matching test the sampling stages of the single bee weren’t counted to neglect the sampling 
stages of the bee and get no disturbed results. This wasn’t possible for the IFD test, because this 
test consists of more bees. If we would neglect the stages where one (or more) bee(s) would 
sample, too much steps would have to be neglected. When the number of flowers per colour is 
(almost) equal to each other, the disturbing effect hasn’t much influence on the results, but if they 
differ (a lot), the disturbing effect is noticeable, especially on the side of the smallest patch.      

lated the IFD test for the basic strategy, we could 
se the observations and settings for this simulations. 

o take a look of the actions of a single bee during one stage: 

nd one single flower per colour with a certain 
robability of giving a reward of 1 unit of nectar (a success). During the testing of the 

re chosen different, it became 
ifficult  to find the correct value for the number of failures per colour, after which a bee will 

 
IFD Test for Dynamic ε-Sampling Strategy 
This simulation is the same as the simulation for the basic ε-Sampling Strategy. The only part we 
had to adjust was the value for ε. Both of the methods for adjusting ε were implemented during 
the test for matching. Because we already simu
u
 

Matching Test for Failures Strategy 
This strategy was implemented on the basics of the ε-Sampling Strategy. But instead of sampling 
a colour with probability ε, the bee counts the number of failures (empty flowers) and moves to 
another colour if this number becomes high enough. 
 
T
 

 The bee visits a flower of certain colour and examines the payoff.  
o If the payoff is 0, the bee will add 1 to the number of failures.  

 The bee checks if the total number of failures has become high enough. 
o If the total number of failures has reached a certain number, the bee will move to 

another colour at the next stage and the number of failures will be set back to 0. 
o Otherwise the bee will stay at the current patch 

 
For the matching test we’ll use a single bee a
p
simulations, we saw that when the total number of failures before moving to another patch are 
equal for each colour, the bee will match its frequency of visits per colour to the probability of 
getting a success on that colour.  
 
This was also noticed if more than 2 colours were used in the simulation. We didn’t do a lot of 
research on the Failures strategy with more than 2 colours, ie. A(c1, c2, …, ci), because the 
computing of the values for matching and an Ideal Free Distribution is more difficult and finding 
the correct values for all the variables is hard. But the implementation was able to use more than 
2 colours, therefore we tested a little with this simulations to see how the strategy would behave. 
 
But when the probabilities of getting a success on a colours we
d
move to another colour and obtain matching. This was, as expected, very difficult when the 
number of colours would be more than 2. 
 
The results of the simulations will be discussed in the next chapter. 
 

Matching Test for Failures Time Windows Strategy 
The implementation of this strategy is almost the same as the basic strategy. The only thing a bee 
would have to check is the number of failures in the last couple of steps, different to only 
counting consecutive failures.  
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Therefore we added a certain memory for the bee, so the bee remembers the last m visits. Then if 
the number n (number of failures) becomes too high in the last m visits, a bee will leave and move 
to another colour. 
 
From the results of the simulations with equal probabilities of receiving a successful payoff at the 
olours, we perceived the same results as seen by the basic Failures strategy. But a mistake was 

ty’ history of a bee wasn’t updated in the right way after a 

 simulation was a good representation of 
e extended Failures strategy. These results will be explained in the next chapter. 

ulation. The basic of this strategy consists 
ore out of the ε-Sampling Strategy  and a counter for the number of failures. After some 

nother colour, instead of staying at 
e patch or sampling. 

As  of the ε-Sampling 

 
Becaus , 
the er with the results. 

c
found in the implementation. The ‘emp
change of colour. By this mistake it was possible that failures, a bee encountered in the previous 
colour, would be counted by the failures at the current colour.  
 
After adjusting implementation of the simulation, the
th
 

Testing the ε–Failures Strategy 
We implemented this strategy by taking the implementation of the ε-Sampling Strategy and the 
Failures strategy and combine these into a new sim
m
number of consecutive failures, the bee is forced to move to a
th
 

 said the main part for this simulation is copied from the implementation
Strategy and added a part for switching colours after some number of failures.  

e the tests for Matching and IFD are already explained before for both basic strategies
se won’t be discussed here and we’ll move on the next chapt
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. Results 4
 

Introduction 

will be divided 
 2 instances, (i) a single-bee setting and (ii) a multi-bee setting. The single-bee setting will be 

e, using the ε–Sampling Strategy, behaves according to the Matching 

used the following setup [the probability of a flower giving a  reward of 1 
nit nectar is mentioned by the term full chance]: 

 1 flower of colour B, full chance b = 0.7  

 

 
Figure 8 

 
As we can see from the figure above, the bee will actually behave according to the Matching Law. 
The bars on the right represent the average number of visits divided by the full chance per colour 
(we call this the Matching Factor), and when this number is 1 (see the dotted line in the figure), the 
bee matches exactly it’s visits to the full chances.  

In this chapter the results, derived from the experiments, are described. First we give an outline 
of the configuration of the experiment, thereafter the obtained results will be explained. The 
experiments and results are categorized by strategy and particular instance of a strategy. The first 
simulations will be explained more extended, since they are the first to be described. 
 

ε-Sampling Strategy 
At first we start with the results of the simulations of the basic ε–Sampling Strategy, as described 
n the paper which serves as the basic assumption for this thesis. The simulation i
in
used to check if a solitary be
Law. The multi-bee setting is simulated to check if the population will stabilize in the Ideal Free 
Distribution.   
 
Basic single-bee setting [test for Matching Law] 
For this simulation we 
u

 1 bee 
 1 flower of colour Y, full chance y = 0.3 

 10.000.000 time steps 
 ε = 0.05 
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The average number of visits per colour is almost equal to the full chance of the particular 
colour, as can be noticed from the following table. 

Colour Full chance Average number of visits Matching Factor  
 

Y 0.3 0.3009 1.0029 
B 0.7 0.6991 0.9988 

 

more than 2 
olours. So we extended the number types of flowers in the simulation to 3 and ran the 

simulation again, and the setup is as following.  

 

 
Figure 9 

 
Colour Full chance Average number of visits Matching Factor  

Table 1 

 
From 2 to n flowers in a single-bee setting [test for Matching Law] 
We wanted to test if the assumptions from the basic paper, can be also applied to 
c

 1 bee 
 1 flower of colour Y, full chance y = 0.1 
 1 flower of colour B, full chance b = 0.3  
 1 flower of colour R, full chance r = 0.6  
 10.000.000 time steps 
 ε = 0.05

 

Y 0.1 0.0995 0.9992 
B 0.3 0.3003 1.0009 
R 0.6 0.6002 1.0004 

 
Table 2  
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The outcome of the simulation is as expected. The bee will visit the flowers in those proportions 
given by the full chances. Because the sum of the full chances is equal to 1 (0.1 + 0.3 + 0.6 = 1), 

f the sum of the full chances is greater than 1, a normalized full chance is used to see if the bee 
b in terms w ing Law ance  as a 
w hted full chance  is described as:  
 

normalized full   ∑

the average number of visits is (almost) equal to the full chance. 
 
I

ehaves ith the Match . The normalized full ch  can be interpreted
eig  and

chance  
 

olour i, 

 with the following setup: 

alized full chance nfc1 = 0.06 
2 alized full chance nfc2 = 0.11 

ull chance c3 = 0.2, normalized full chance nfc3 = 0.11 
f colour C4, full chance c4 = 0.5, normalized full chance nfc4 = 0.28 

 1 flower of colour C5, full chance c5 = 0.8, normalized full chance nfc5 = 0.44 
 10.000.000 time steps 
 ε = 0.05 

 
 

 
e 10 

  

where ci = full chance of c
nc = number of colours 

 
 
This situation is demonstrated by the simulation
 

 1 bee 
 1 flower of colour C1, full chance c1 = 0.1, norm

full chance c  = 0.2, norm 1 flower of colour C2, 
of colour C3, f 1 flower 

 1 flower o

 
Figur
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Colour Full chance 
Normalized Full Average number 

Matching Factor
chance of visits 

C1 0.1 0.0556 0.0551 0.9926 
C2 0.2 0.1111 0.1113 1.0014 
C3 0.2 0.1111 0.1111 1.0000 
C4 0.5 0.2778 0.2780 1.0009 
C5 0.8 0.4444 0.4445 1.0000 

 

From the results above, it can be noticed th  if the bee uses the ε-Sampling strategy, the 
frequency of the visits of the di lized full chance (the Matching 
Law) and this also holds for situations of more than 2 different colours.  

was more difficult to 
he number of bees and the total number of flowers had to be chosen wisely to 

arge and the 
e’ll explain 

nformative. 

s nb1/q1 = nb2/q2 = … = nbi/qi per step, this will look like: 

         
 

Figure 11: Example of 2 graphs with the ratios for colour 1 (red line) and colour 2 (blue line) 

 
These graphs are not very useful. Sure we can see that the ration are almost equal, but we cannot 
see the stages with an Ideal Free Distribution.  
 
For comparing the results of the simulations we count the average fractions nb1/q1, nb2/q2, …, 
nbi/qi for each colour, this value will be called average IFD rate Ai. This can be defined as the
average fraction of bees per colour (the nu bees per colour divided by the number of 
flowers of that colour). The closer these numbers are to 1, the more the population will be 
distributed according to the Ideal Free Distribution. 
 
We will start with the simulations of 2 different colours and 10 bees and increase the number of 
steps. For each number of Ai we took the average value of a 10 simulations. 

Table 3 

at
fferent colours matches the norma

 
Basic multi-bee setting [test for Ideal Free Distribution] 
Because of the assumptions made in the basic paper, this simulation 
implement. T
accomplish an Ideal Free Distribution.  
 
For good and understandable results, the number of simulation steps has to be l
number of bees has to be approximately the same as the total number of flowers. W
this by the simulations. The results will be shown  in tables, since the graphs are less i
 
If we show a graph of the ratio
 

 
mber of 
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Steps Bees 1   Colour Colour 2 ε A1 A2 

1.000 10 5 5 0.05 987 1.002 0.9
10.000 10 5 5 0.05 0.9998 9997 0.
100.000 10 5 5 0.05 0.9997 0003 1.
1.000.000 10 5 5 0.05 0.9998 0001 1.

 
ble 4 

We noticed that in the average fraction of bee lmost) equally distributed over the 
available colours and flowers, hence on average the bees will be distributed according to the Ideal 

hen simulating, the simulation of 100.000 and 1.000.000 steps took quite a long time to 
ulation will be skipped, because the results look 

iven in the following table: 

Ta

s per colour is (a

Free Distribution. The fractions aren’t equal to 1, because of the disturbing effect of the sampling 
bees. 

W
perform and for the other simulations this big sim
the same for smaller simulations. 

We wanted to see the influence of ε, the results of the simulations with different values for ε are 
g

Steps Bees Colour 1 Colour 2 ε A1 A2 
10.000 10 5 5 0.01 0.9982 1.0125 
10.000 10 5 5 0.05 0.9998 0.9997 
10.000 10 5 5 0.10 0.9984 1.0024 

10.000 10 10 10 0.01 0.5029 0.4972 

10.000 10 10 10 0.05 0.5007 0.4988 
10.000 10 10 10 0.10 0.5042 0.4978 
10.000 10 8 12 0.01 0.6104 0.4276 
10.000 10 8 12 0.05 0.6220 0.4265 
10.000 10 8 12 0.10 0.6299 0.4258 

 
Table 5 

esults of the simulation show that the influence of ε on Ai is noticeable. But this is due to 
When the number of steps will increase, the effect 

of the samp , with ε = 
.01, a bee will sample 10 times on average, but when ε = 0.1, a bee will sample 100 times on the 

e also see that if the total number of flowers is greater than the number of bees, the average 

1 2

 

The r
the fact that the number of steps is too little. 

les can be neglected and this will hold for any ε close to 0. On 10.000 steps
0
average. So, with such little steps, the influence of ε is noticeable.  

W
number of bees per colour won’t be 1. This can easily be explained by the fact that there are too 
much flowers and some flowers won’t be visited during one step, since there are not enough bee 
to visit all the flowers in one step. But for an IFD, they have to be (almost) equal, as can be seen 
in the simulations with 10 bees and 10 flowers on both colours. The ratios A  and A  are almost 
qual. But when the total number of flowers is greater than the number of bees, but the numbere

34 
 



of flowers at a patch will be less than the number of bees, the bees won’t be distributed according 
to the Ideal Free Distribution. This can be described to the fact the bees will visit the smallest 

atch too often compared to the patch with the most flowers. We will try to explain this with the 
ext simulations.  

Next we look at the value of  when the number of flowers per colour is changed: 

s lour 1 lour 2 

p
n

Ai

Steps Bee Co Co ε A1 A2 
10.000 10 5 5 0.05 0.9998 0.9997 
10.000 10 2 4 0.05 1.8598 1.5707 
10.000 10 3 7 0.05 1.1645 0.9286 
10.000 10 2 2 0.05 2.5371 2.4607 
10.000 10 1 7 0.05 1.7302 1.1825 
10.000 10 3 6 0.05 1.2423 1.0446 
10.000 10 10 10 0.05 0.5007 0.4988 
10.000 10 5 15 0.05 0.9251 0.3580 
10.000 10 8 12 0.05 0.6220 0.4265 
10.000 10 7 13 0.05 0.7031 0.3908 
10.000 10 10 20 0.05 0.4907 0.2550 
10.000 10 50 50 0.05 0.1022 0.0987 
10.000 10 100 100 0.05 0.0492 0.0507 

 
Table 6 

From table 6, we notice that if the total number of flowers is equal to th e 
average distribution of the bees will be (almost) as if it’s in an Ideal Free Distribution. This is also 
observed if the number of fl ers per colo  is the same
 
If the number of bees is greater than the total number of bees, the results show that the bees will 
be almost distributed as in an Ideal Free Distribution. If food sources (flowers) are scarce, the 
results show that bees using the ε-Sampling Strategy will divide themselves (on average) over the 
available sources, following the Ideal Free Distribution.  
 
But when the total number of flowers greater than th mber of nd the number of 
flowers per colour differ, the average distribution won’t be according to the Ideal Free 
Distribution. If we compute Colour 1 * A1 and Colour 2 * A2, we note that these values will both 
be close to 5 (7*0.7031 = 4.92 and 13*0.3908 = 5.08). So the bees will distribute themselves 

e number of bees th

ow ur .  

e nu  bees a

equally over the patches (as in 50% on patch 1 and 50% on patch 2), whatever the number 
flowers in the patches are, if the total number of flowers is greater than the number of bees. 
 
It doesn’t matter what flower a bee chooses, since there is always a full flower available. Hence 
the bees will be distributed equally over the patches. 
 
If we simulate with more bees and more flowers, the results will be the same as the previous 
results as we can see in table 6. Only the numbers will be closer to the expected values since we 
use the average value of more bees and more flowers (this will also hold for more steps). 
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Steps Bees Colour 1 Colour 2 ε A1 A2 
10.000 100 50 50 0.05 1.0029 0.9973 
10.000 100 100 100 0.05 0.5009 0.4983 
10.000 100 20 50 0.05 1.5751 1.3688 
10.000 1000 500 500 0.05 1.0009 1.0007 
10.000 1000 1000 1500 0.05 0.4995 0.3341 

 
Table 7 

 
From 2 to n flowers in a multi-bee setting [test for IFD] 
Next we will expand the number of colours and test if the results are the same for this 
simulations.. The results of the simulations with 3 colours are shown hereafter: 
 

Be Colour  Colour 2 Colour 3 A1 2 ASteps es 1  ε A 3 
10.000 15 2 4 6 5 1.4453 1.2753 1.1694 0.0
10.000 15 5 5 5 5 1.0045 0.9913 1.0062 0.0
10.000 15 2 5 8 5 1.3348 1.0801 0.8616 0.0
10.000 15 3 6 6 5 1.1906 0.9499 0.9529 0.0
10.000 15 5 10 15 5 0.9041 0.5377 0.3343 0.0
10.000 15 10 10 10 5 0.5021 0.4988 0.5014 0.0
10.000 15 10 20 30 5 0.5002 0.2502 0.1677 0.0
10.000 15 100 100 100 5 0.0497 0.0502 0.0499 0.0
10.000 150 35 50 5 1.1058 1.0283 0.9225  65 0.0

 
Table 8 

It can be seen if the total number of flowers is equal to the number of bees or the number of 
flowers per patch is equal an average Ideal Free Distribution is observed, just as we saw in the 
situation with 2 types of flowers.  
 
But the more the numbers of flowers per patch differ, the more disturbance in the ratios Ai. 
Since we don’t simulate an infinite amount of time, there is a disturbance, caused by ε and this 
disturbance is the greatest at the patch with the smallest number of flowers. This disturbance will 
be less if the number of bees, number of flowers and number of steps will be greater. 

s. If 

 
In the case of food scarcity (more bees than flowers), the results match with the results found for 
the less complex situations with only 2 types of flowers. 
 
If the number of bees is smaller than the total number of flowers, also the same distribution as in 
the less complex situation with 2 types of flowers is noticed. Thus the bees will distribute 
themselves equally over the patches, such that at each patch there are an equal number of bee
we have 15 bees and 3 different flower types, then there will be an average of 5 bees per colour 
per step. 
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Dynamic ε-Sampling Strategy 
For this strategy we will discuss both of the methods as stated in comparison to the basic 
strategy, firstly focusing on the matching test. The results for an Ideal Free Distribution will be 
discussed at the end of this section. 
 
Basic single-bee setting [test for Matching Law] 
For this simulation we used the following setup: 

Y, full chance y = 0.
 1 flower of colour B, full chance b = 0  
 1.000.000 time steps 

 
Figure 12 

 1 bee 
 1 flower of colour 3 

.7 

 ε = 0.05 
 
First we show the results for the first method (counting from the beginning of the simulation) 
illustrating it’s behaviour. 
 

 
 
Colour Full chance Average number of visits Matching Factor  
Y 0.3 0.3064 1.0212 
B 0.7 0.6936 0.9909 

 
Table 9 
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The results of the second method (set number of failures back to 0 after a success) are shown 
below: 

 
Figure 13 

 
Colour Full chance Average number of visits Matching Factor  

 

Y 0.3 0.2795 0. 9316 
B 0.7 0.7205 1.0293 

 
Table 10 

As we can see from the figures and tables above, the bee will almost behave according to the 
Matching Law and the performance of the first method looks better. But as stated in chapter 3, 
this method acts a little more complicated as can be perceived from the results. Note that in this 
case the bee encountered 549934 successes and 399931 failures, thus before the value of ε is 
changing there have to be at least 150003 more consecutive failures. For the rest of this section 
we will use method 2. 

From 2 to n flowers in a single-bee setting [test for Matching Law] 
We extend the number types of flowers in the simulation to 5 and ran the simulation again, and 

e setup is as following.  
 1 bee 

 flower of c chance c ance
 1 flower of colour C2, full chance c  normalized full chance .11 
 1 flower of colour C3, full chance c  normalized full chance .11 
 1 flower of colour C4, full chance c4 = 0.5, normalized full chance nfc4 = 0.28 
 1 flower of colour C5, full chance c5 = 0.8, normalized full chance nfc5 = 0.44 
 10.000.000 time steps 
 ε = 0.05 

 

th

 1 olour C1, full 1 = 0.1, normalized full ch  nfc1 = 0.06 
2

3 = 0.2,
 = 0.2,  nfc  = 02

 nfc3 = 0
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Figure 14 

 

Colour Full chance 
Normalized Full Average number 

of visits 
Matching Factor

chance 

C1 0.1 0.0556 0.0446 0.8032 
C2 0.2 0.1111 0.0958 0.8618 
C3 0.2 0.1111 0.0945 0.8509 
C4 0.5 0.2778 0.2780 1.0010 
C  0.8 0.4444 0.4870 1.0958 5

 
Table 1 

The simulations show that there will be less matching when using the dynamic ε-Sampling 
strategy. This can be explained by the fact that ε has to be close to 0 for acquiring the Matching 
Law. If ε will increase and will become close to 1, the basic principle of the strategy is 
undermined. This will cause the bee to sample more often when it visits flowers with low full 

ll chance, because the probability of chances then when the bee visits flowers with high fu
encountering a failure will be less and ε won’t increase. 
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Dynamic ε-Sampling Strategy in a multi-bee setting [test for IFD] 
We want to compare the results of this extension to the basic strategy, therefore we have to 
choose the same settings of the  simulations of the basic strategy and apply these settings to the 
extended strategy.  
 
Steps Bees Colour 1 Colour 2 ε A1 A1 dynamic A2 A2 dynamic 

10.000 10 5 5 0.05 0.9982 1.0350 1.0125 1.0703 
10.000 10 3 7 0.05 1.1645 1.2894 0.9286 0.9512 
10.000 10 8 12 0.05 0.6220 0.6648 0.4265 0.4340 
10.000 10 10 10 0.05 0.5007 0.5161 0.4988 0.5365 
10.000 10 50 50 0.05 0.1022 0.1069 0.0987 0.1037 

10.000 100 50 50 0.05 1.0029 1.0511 0.9973 1.0541 
10.000 100 100 100 0.05 0.5009 0.5261 0.4983 0.5265 
10.000 100 100 200 0.05 0.4925 0.5286 0.2518 0.2620 
10.000 100 20 50 0.05 1.5751 1.6780 1.3688 1.4341 

 
Table 12 

ults in table 12 can be observed that th a dynamic 
ε gives the same results as the basic ε–Sampling strategy. This can be explained by the fact that 
the results not really depend on ε. We only have to keep in mind that as to be close to 0, so a 
bee stays long enough in a patch.  
 
In table 13 we show the results for the simulations with more than 2 colours (10.000 steps and ε 
= 0.05). These results are also in line with the results we o  during the ions of the 
basic ε-Sampling Strategy for more than 2 colours. The disturbance by ε is a little bit more, but 
this happens because the ε is dynamic and will increase (and thus the influence and disturbance 
increases).  
 

From the res  the extension the basic strategy wi

ε h

bserved  simulat

Colour1 Colour2 Colour3 A1 A1dyna A2 A2dyna A3 A3dyna 
5 5 5 1.0045 1.0711 0.9913 1.0470 1.0062 1.0397 
2 5 8 1.3348 1.4842 1.0801 1.1644 0.8616 0.8749 
3 6 6 1.1906 1.2845 0.9499 1.0154 0.9529 1.0067 
5 10 15 0.9041 0.9422 0.5377 0.5448 0.3343 0.3754 
2 4 6 1.4453 1.5877 1.2753 1.3536 1.1694 1.1807 

 
Table 7 
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Failures Strategy 
not only for implementing the strategy, 

 number of (consecutive) failures after which a bee will move to another 
olour.  

 
Thus by the trial and error approach, we try d s , q (y,b) for which matching 
occurs. Hereafter we simulate auto ata An(x,  try  v r n iv me 
result as A(x
 
F sim tions w ly consi a single- itua d nd th ta ere 
m  o rs, sinc t is stat only a  result for the existenc  ree 
Distribution and no dynamic process on how t ch  F ribu
 
B le-b ing A( est for M ing Law
T lat will be ded in in parts, for automata A(x  x =  ≠ oth 
c ere were situat s which ld occur  ad e full chances . B irst 
case was more understandable and easy to find the right settings.  
 

er if x = y = 2 or x = y = 20. Thus we can state that these cases can be seen as  x = y 
= 1. Since a bee will leave after encountering 1 failure with probability 1-p (or 1-q 

e d th quirem p + p = d q 
= 1  otherw ). Thus ill patc a p ty w  eq he 
full ance of t  other co d t  m occ

 
 p +  

No matching o rred in nst ut ot tha ry on 
the Matching Factor (the average number of visits divided by the full chance per colour) 
was above 1 for the colour with the smallest full chance. This can be seen as a bee visiting 
the flower with the lowest payoff too ecause the sum of the full chances is smaller 
than 1, the bee will encounter more failures and will move to another colour more often, 
but this effect is less on the colour with the lowest full chance. If p and q are close to each 
other and p + q is close to 1, this effect will be of less influence and the Matching Factors 
of both colours will be closer to 1. 
 
 

 p + q > 1 
For this instances also no matching could be noticed and the opposite effect as noticed 
before could be seen. In every simulation the Matching Factor (the average number of 
visits divided by the full chance per colour) was above 1 for the colour with the highest 

For this strategy we used an approach of trial and error, 
but also for getting the results. It is stated in the paper introducing the basic strategies ,that for all 
full chances p,q ∈ [0.22, 0.78] one can obtain matching with automata A(y,b) with y,b ∈ {1,2} and 
y and b denote the
c

to fin ets of p  and A
m y) and  to find alues fo which g e the sa

,y).  

or this ula e on der bee s tion an try to fi ose ins nces wh
atching ccu e i ed static e of an Ideal F

o rea an Ideal ree Dist tion.  

asic sing ee sett x,y) [t atch ] 
he simu ions  divi 2 ma ,y) with  y and x  y. In b
ases, th ion cou  when ding th p and q ut the f

During the simulations we found out that these situations had their own characteristic results.  
We will explain this results without the graphs, because they all look like the ones that could be 
seen before.  
 
 = y x

 p + q = 1 or p = q 
In this situations matching was seen in every simulation. The fact that instances of p = q 
show matching is quite understandable, because every colour has the same full chance 
and is visited the same by the bee. In the other situations p + q = 1 the matching can be 
described to the fact that (since x = y) we can forget of the number of failures. It doesn’t 
matt

oth rwise) an  we have e re ent of q = 1, from where we get 1 -  q (an
 - p ise a bee w leave a h with robabili hich is ual to t
ch he lour an herefore atching urs. 

q < 1
ccu  these i ances, b it was n iceable t in eve simulati

often. B
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full chance. Thus a bee will visit the flower with the highest payoff to often. The 
explanation follows from above, because the sum of the full chances is greater than 1, the 

eive more successes and stay in the current patch. This effect is of more 

 ≠ y 

 in the patch 
described by x, as can be seen below. 

bee will rec
influence on the colour with the highest full chance. If p and q are close to each other and 
p + q is close to 1, this effect will be of less influence and the Matching Factors of both 
colours will be closer to 1. 

 
 
x
This situations are more difficult to classify, because the influence of the combinations x, y and p, 
q were very hard to understand. In one kind of simulation (p = q) the results were easy to 
understand. 
 

 p = q 
Since p and q are equal only the number of failures is has influence on how long a bee will 
stay in a patch. If x is twice as much as y, a bee will stay twice as long

 
Average number 

of visits 
Leave after 

failures 
Full 

chance 
Normalized 
Full chance 

Matching 
Factor 

0.2500 3 (x) 0.4 (p) 0.5000 0.5000 
0.7500 6 (y) 0.4 (q) 0.5000 1.5000 

 
Table 8 

This h olds for the instances where p + q ≠ 1 and p + q = 1. 

 

 
 p ≠ q 

The simulations showed out that in matching occurs, some setting where matching can 
been seen are: 
 
x  (patch 1) y  (patch 2) p q MF1 MF2 

3 2 0.4 0.8 1.0053 0.9974 
6 5 0.5 0.7 1.0006 0.9996 
15 20 0.2 0.5 1.0030 0.9991 
260 261 0.4 0.6 0.9939 1.0041 

 
Table 15 

 
  

After setting p and q, we adjusted x and y and examined the effect of this adjustment to 
the Matching Factors. We noticed that if MF1 < 1 (and thus MF2 > 1) we had to increase 
x. By this adjustment a bee will stay longer in patch 1 (with x and MF1) and therefore the 
value of MF1 will increase. If the ratios are chosen wisely (by trial and error), it can be 
possible to receive matching in every instance. 
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Extende
For thi
section
strategy
 
x = y 

 

 can be noticed since in this situation the extension can be 
neglected and thus the explanation given in the previous section can be applied also in 
this situation.     
p + q = 1 

 n > 1, the matching will be disturbed, because the bee will stay too long at a patch. 
This behaviour wasn’t expected, we expected that for every n matching would occur, but 

he bee will stay minimally as long as the failures window n, this situation cannot be 

 
Failures strategy will act as if the basic Failures 

trategy. Again, if n = 1, the behaviour will exactly match the basic strategy, but when n > 
1, this effect will be stronger. Since a bee will stay too long in a patch because of 2 
reasons,  (i) the sum of the full chances isn’t 1 and thus a bee will stay too long in a patch 
(see previous section for exp ion) and (ii will sta t as long as the failures 
window.  
 

 
≠ y 

 
is instance, it was far more difficult to see matching. We tried a lot of instances, but 

only leave the patch where n = x (or n = y otherwise) after n consecutive 
but on the other side a bee can visit at least 1 failure less before it will move to 

another colour. Since this probability isn’t equal for both colours, no matching will occur. 

d Faliures Time Window Strategy single-bee setting An(x,y) [test for Matching Law] 
s simulations we used the results and settings of the simulations performed in the previous 
. In this way, we can see if the results of this extension are the same compared to the basic 
. 

p = q 
If p and q are equal, the simulations show that there is matching, n doesn’t have any 
effect on the results. This

 
If n = x = y = 1, we notice matching, since this instance of An(x,y) can be interpreted as 
the basic Failures Strategy. In this case it can be stated that A1(x,y) = A(x,y).  
But if

since t
interpreted as An(x,x) = A(x,x). 
p + q < 1 and p + q > 1 
In both of the cases, the extended 
s

lanat ) a bee y at leas

x 
p + q = 1 
For th
in none of them was matching noticed. This can be explained to the fact that the 
influence of the failures window is stronger on one side. In the case x ≠ y and n = x or n 
= y, a bee will 
failures, 
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 p ≠ q  
 
n x  (patch 1) y  (patch 2) p q MF1 MF2 

3 3 2 0.4 0.8 0.0669 1.4666 
5 3 2 0.4 0.8 0.2241 1.3880 
10 3 2 0.4 0.8 0.4353 1.2824 
20 3 2 0.4 0.8 0.5247 1.2376 
200 3 2 0.4 0.8 0.5307 1.2347 
2000 3 2 0.4 0.8 0.4892 1.7662 

6 6 5 0.5 0.7 1.0874 0.9375 
10 6 5 0.5 0.7 0.7884 1.1511 
20 6 5 0.5 0.7 0.9974 1.0018 
100 6 5 0.5 0.7 1.0150 0.9893 
1000 6 5 0.5 0.7 1.1304 0.9069 

 
Table 16 

As we can see in the table above there cannot be a simple answer to the results. It some 
cases almost no matching is to be found (x=3 and y=2), but with the other instance in 
some cases (almost) matching can be seen. It looked like with well chosen values for all 
the variables  matching occurs and the extended Failures strategy will perform as well as 
the basic strategy. 
 
For now w
th

e don’t have a fitting answer or explanation to this results, mostly because 
ese simulations and results are obtained by trial and error, instead of computing the 

results in advance and simulating afterwards to check the computed results. 
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ε-Failures Strategy 
te this strategy with the same setting as the basic ε-Sampling Strategy, because in 

that wa we can measure it’s performance correctly. 
 
Basic single-bee setting [test for Matching Law] 
For this simulation we used the fo wing setup

 1 bee 
 1 flower of colour Y, full chance y = 0.3
 1 flower of colour B, full chance b = 0.7  
 1.000.000 time steps 
 ε

 

 
Figure 15 

 

Colour Full chance Average number of visits Matching Factor  

We will simula
y 

llo : 

 
 

 = 0.05 

Y 0.3 0.1516 0.5055 
B 0.7 0.8484 1.2119 

 
Table 9 

As shown in the figure and table above, no matching is observed. We can explain this by 
something we noticed before. When simulating the dynamic ε-Sampling Strategy we noticed that 
when the full chances of the colours aren’t equal the matching will be disturbed. Because a bee 
will encounter more failures on the colour with the lower full chance, it will change more quickly 
to the other colour. A bee visiting the most rewarding colour will act more likely as if it uses the 
basic ε-Sampling Strategy  because the probability of visiting an empty flower is smaller. 
 
By saying this we expect that this strategy will perform better when the full chances of the 
colours are equal, thus we will simulate this strategy again, but now with equal full chances for 
both of the colours.  
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For this simulation we used the following setup: 
 1 bee 

 
Figure 16 

 

Colour Full chance Average number of visits Matching Factor  

 1 flower of colour Y, full chance y = 0.5 
 1 flower of colour B, full chance b = 0.5  
 1.000.000 time steps 
 ε = 0.05 

 

Y 0.5 0.4995 0.9991 
B 0.5 0.5005 1.0009 

 
Table 108 

This results show exactly what we expected. In
This can be ascribed to the fact that the effect of the failures can be neglected. This happens with 
s babilities p  won’t h aver ts per 
colour. 
 
Thinking of this, we don’t have to simulate ing if an Ideal Free Distribution will occur, 

 case of equal full chances, matching will occur. 

ame pro er colour and ave any influence on the age number of visi

for test
this will be in line with the above. If the full chances are equal, at some stages an Ideal Free 
Distribution will exist. But in situations where the full chances (more exactly, the number of 
flowers per colour in case of the Ideal Free Distribution) will differ, an Ideal Free Distribution 
can occur, but not as often as with equal nectar supply per patch (we can say this because in the 
simulation every flower would produce 1 unit of nectar per step).  
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. Conclusions and recommendations 5
 

Introduction 
e conclusions of the reseaIn the last chapter we give th

se conclusio
rch which has been done In order to write 

ns come from the development of the extensions of the basic 
roduced ε-Failures strategy and the results, computed by the simulations. After 

at we will address some directions for further research. 
 

Conclusions 
With respect to the research questions and problem statement we may conclude the following: 

Will the results in the basic paper also hold in more complex situations, i.e. more than 2 types of flowers? 
As we observed in the results, the ε-Sampling Strategy will hold for situations with more than 2 
types of flowers. When simulating, we had to choose the numbers of bees and flowers wisely to 
meet the assumptions made in the basic paper. If the total number of flowers is greater than the 
number of bees, an Ideal Free Distribution isn’t likely to be seen, because it doesn’t matter for 
the bees where to go, they will always receive a positive reward. When the number of bees is 
equal to the total number of flowers, an Ideal Free Distribution is observed, because the 
assumptions made in the paper are met. This can also be seen if the number of bees is greater 
than the number of flowers (scarcity of food), but the ratios of average number of bees per 
flower (per colour) would differ more. 
 
In what way have the basic strategies be adjusted or extended to meet the more complex conditions? 
After choosing and analyzing the basic strategies, a lot of extensions were taken into 
consideration. Some of them are part of this thes s, but most of them are not. The extensions had 
t line with t these st oth  their 
robustness and simplicity. We chose to make minor changes in  some of the key features of a 
strategy. Furthermore we looked at the behaviour of the ε-Sampling Strategy in case of more 
colours. In the paper which served as the fundament for this thesis only situations with 2 colours 
were discussed. And since the paper only ga

ld observe more empty flowers in a patch of a certain colour, then the possibility of 

 
At last we introduced a ‘new’ strategy, the ‘ε-Failures Strategy’. This strategy uses the basic 
principles of both ε-Sampling Strategy and Failures Strategy. A bee will forage a patch and with a 
small probability ε, the bee will sample a different patch. It will only stay at the other patch if 
there is a better (or higher) reward, otherwise it will return to the original patch. But if the bee 
visits a number of consecutive failures, it will also leave the patch and try to find a better patch.  
 

this thesis. The
trategies, the ints

th

i
o be in he basics of rategy. The strength of b of the strategies is

ve theoretical results for these strategies, we create a 
simulation to get a better view of the strategies. 
 
For the ε-Sampling Strategy we introduced a dynamic ε-Sampling Strategy. This was considered 
to be more in line with the natural thought of leaving a patch faster if the rewards were bad. If a 

ee woub
leaving that patch and move to another colour would increase. 
 
For the Failures Strategy we introduced a ‘Failure Time Window Strategy’. Instead of counting 
the consecutive failures and move to another colour if this number of failures reaches a certain 
number, this extension looks at the number of failures in the last couple of flower visits. By this 
manner, a bee will stay in a patch for a longer time and thus get the chance of gaining a better 
perception of the patch. 
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How do the extended, new strategies perform in comparison to the basic strategies? 
After implementing the strategies and simulating, the results show, that neither the extensions, 

ampling Strategy performed better than the 

lmost as good as the basic strategies, but in no circumstances they lead to better results. This can 
e fact that the extensions of the strategies disturb the basic principles of the 

, in a lot of ways. We chose for 2 
xtensions (dynamic ε-Sampling Strategy and the Failure Time Window Strategy) and defining a 

-Failures Strategy). These extensions and adjustments didn’t lead to better results 
r, 

ns are 

ange a winning team…”. However one can only try to 
prove it. 

like ‘failure window strategy’, nor the new dynamic ε-S
basic strategies. In some cases (chosen wisely) the extensions and new strategy will perform 
a
be explained by th
strategies and just these basic principles (especially a value for ε, which has to be close to 0) lead 
to optimal results. 
 
Can the basic strategies be extended and will this improve their performance? 

s we concluded, the basic strategies can be extendedA
e
new strategy (ε
or a better performance, in most cases performance dropped and the results declined. Howeve
during the research a lot was learned about the strategies and it was very interesting to examine 
the extension of the number of colours.  In the cases where the results of the extensio
(almost) as good as the results of the basic strategies, this happens because the influence of the 
extensions is reduced and the strategy will behave as the basic one. 
 
When simulating, we noticed that the assumptions for finding an Ideal Free Distribution stated in 
the paper for the basic ε-Sampling Strategy weren’t met in the implementation of the strategy. 
But the results showed us that an Ideal Free Distribution could noticed. By this we can say that 
the strategy is even more robust than is stated, because it will hold under less strict assumptions. 
 
As some people might say: “Never ch
im
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Recommendations for future research 
If there was just more time… From the beginning of the research, one of the main tasks of my 
upervisor was keeping me focused and in the right direction. In one of our first meetings we 

optioned a couple of them 

nd questions I had in mind for extending the basic strategies and aren’t taken 
to consideration for this thesis were: 

 the critical level be estimated 
in a better way? And in the case of more than 2 colours, when leaving a patch, which new 

 Multiple strategies: How will a population of bees will be distributed if not all the bees 

ome of these questions and remarks have been examined in the past years, but it would be 
interesting to see how these robust and simple strategies would hold under these extensions. 
 
The Matlab scripts took a long time to simulate, this was due to the fact of having not a 
supercomputer and a lack of great programming skills in Matlab. Maybe the simulations could be 
implemented in a different way to improve speed and performance.  
 
Furthermore it would be nice to have a tool or program which can be used to simulate and 
compare the strategies at once. For now, we programmed and implemented the tool without a 
user interface. In fact for every simulation (strategy) a single script was created and adjustments 
of the variables would have to be done in the script. Therefore it would be nice to have all the 
different strategies and simulations together in one program. When this program could save all 
the performed simulations, they could be collected in a database and be available for further 
research. If the tool could be web-based, people all over the world (with an internet connection) 
could simulate  the strategies and compare their results to the simulations from the database. 
 
As stated in the first chapter, foraging strategies are used to solve congestion problems. The most 
well-known research is done by the School of Computer Science at the University of Dortmund 
(BeeJamA). It would be nice to see if the strategies stated in this thesis could also be used to solve 
this kind of problems.  

s
discussed possible adjustments and extensions to the basic strategies. I 
and after one of those meetings I got the idea to create a tool where every strategy (and possible 
extensions) could be simulated, analyzed and compared. This was a little too much and I had to 
be hold back. Do one thing first and if that’s done right, move forward. So I decided to focus on 
more colours, the dynamic ε and An(x,x). I received a lot of answers to the questions I had 
starting this research and after finishing the research some questions still are open. 
 
Some of the ideas a
in
 

 Travel time: What happens if the travel time between flowers is taken into account? Will 
it be better to visit a flower which is nearer but has less nectar reward or to look for a 
richer flower more far away?   

 Energy level: What happens if a bee has to visit the first flower it encounters, because 
otherwise it would starve?  

 Addiction: What happens if bee develop an addiction for one particular colour? How 
does this affect the distribution of the population? 

 Memory: By remembering more visits (and per colour) can

colour has to be chosen? Is it better to visit a random patch or visit the patch with the 
highest estimated reward?  

 Fly time: In the case of the basic strategies, a bee is always on a flower (unless no flower 
is free). But what if a bee decides to fly around instead of gaining nectar? 

use the same strategy?  
 
S
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Matlab code for simulations 
 

 

Matching Test (basics) 
 
% number of steps 
nr_steps = 10000000; 
samples = 0; 
  
% epsilon 
epsilon = 0.05;  
  
% number of colours 
nr_colours = 2;  
  
% full chances  
fillrate(1,1) = 0.3; 
fillrate(1,2) = 0.7; 
 
% set bee 
bee = repmat(struct('colour', 0,'epsilon', 0), 1, nr_steps); 
r = randperm(nr_colours); 
bee(1).colour = r(1,1); 
bee(1).epsilon = epsilon; 
  
% data to collect 
on_colour(1,1) = 0; 
on_colour(1,2) = 0; 
 
% start simulation 
t = 1; 
for t = 1:nr_steps 
    ep = rand;     
    if(ep < bee(1).epsilon) 

  % bee is sampling, so move to another colour  
  samples = samples + 1; 

         
        old_colour = bee(1).colour; 
        co = 1; 
        ct = 1; 
        cos = zeros(1,nr_colours-1); 
        for co = 1:nr_colours 
            if(co ~= old_colour) 
                cos(1,ct) = co;     
                ct = ct + 1;      
            end 
        end 
        cd = size(cos,2); 
        cosr = randperm(cd); 
        new_colour_id = cosr(1,1);  
        new_colour = cos(1, new_colour_id); 
                 
        % check reward 
        ep1 = rand;  
        if(ep1 < fillrate(1,new_colour)) 
            % full, so stay in new patch 
            bee(1).colour = new_colour; 
        else 
            % empty, return to previous colour 
            bee(1).colour = old_colour; 
        end 
    else 
        % no sampling, so stay in patch 
        on_colour(1,bee(1).colour) = on_colour(1,bee(1).colour) + 1; 
    end 
end 
 
  

ε-Sampling strategy
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Dynamic ε-Sampling strategy 
 
Matching Test Dynamic Epsilon (basics) 

;  

lours 

 

t('colour', 0,'epsilon', 0), 1, nr_steps); 
(nr_colours); 

0; 

silon) 
s sampling, so move to another colour  

s + 1; 

        old_c
 = 

r_colours 

andperm(cd); 
r(1,1);  

ew_colour_id); 

,new_colour)) 
n new patch 

olour 

olour(1,bee(1).colour) = on_colour(1,bee(1).colour) + 1; 

p2 < fillrate(1,bee(1).colour)) 
  % success 

         bee(1).failures = 0; 
    else 

            % failure, so adjust number failures and epsilon 
            bee(1).failures = bee(1).failures + 1; 
            bee(1).epsilon = epsilon^(1/((bee(1).failures)+1)); 
        end 
    end 
end 

 
% number of steps 
nr_steps = 10000000; 
samples = 0; 
  
% epsilon 
epsilon = 0.05
  
% number of co
nr_colours = 2;  
  
% full chances  
fillrate(1,1) = 0.3; 
fillrate(1,2) = 0.7;
 
% set bee 
bee = repmat(struc
r = randperm
bee(1).colour = r(1,1); 
bee(1).epsilon = epsilon; 
  
% data to collect 
on_colour(1,1) = 0; 
on_colour(1,2) = 
 
% start simulation 
t = 1; 
for t = 1:nr_steps 
    ep = rand;     
    if(ep < bee(1).ep

 % bee i
 samples = sample

         
olour = bee(1).colour; 

        co
        c

1; 
t = 1; 

        cos = zeros(1,nr_colours-1); 
        for co = 1:n
            if(co ~= old_colour) 
                cos(1,ct) = co;     
                ct = ct + 1;      
            end 
        end 
        cd = size(cos,2); 
        cosr = r
        new_colour_id = cos
        new_colour = cos(1, n
                 
        % check reward 
        ep1 = rand;  
        if(ep1 < fillrate(1
            % full, so stay i
            bee(1).colour = new_colour; 
        else 
            % empty, return to previous c
            bee(1).colour = old_colour; 
        end 
    else 
        % no sampling, so stay in patch 
        on_c
 
  % check reward and update epsilon 
        ep2 = rand;  
        if(e
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Failures strategy 

_steps = 10000000; 

 number of colours 

  
rate(1,1) = 0.2; 

0.2; 

 change after number of consecutive per colour 

 3; 

t('colour', 0,'lastempty', 0), 1, nr_steps); 
olours); 

ee(1).colour = r(1,1); 
mpty = 0; 

 

 on_colour(1,bee(1).colour) = on_colour(1,bee(1).colour) + 1; 

 rand;     
bee(1).colour)) 

e(1).lastempty+1; 
    end 
     

o we have to change colour or stay in the patch 
after(1,bee(1).colour)) 

e colour 
bee(1).colour; 

-1); 

r) 
s(1,ct) = co;     

ct = ct + 1;      

lour_id = cosr(1,1);  
ew_colour_id); 

ty = 0; 

 
 number of steps %

nr
  
%
nr_colours = 2;  
  
% full chances
fill
fillrate(1,2) = 
 
%
change_after(1,1) = 2; 
change_after(1,2) =
 
% set bee 
bee = repmat(struc
r = randperm(nr_c
b
bee(1).laste
  
% data to collect 
on_colour(1,1) = 0; 
on_colour(1,2) = 0; 
 
% start simulation
t = 1; 
for t = 1:nr_steps 
   
     
    ep =
    if(ep > fillrate(1,
        % failure 
        bee(1).lastempty = be

    % D
    if(bee(1).lastempty == change_
        % chang
        old_colour = 
        co = 1; 
        ct = 1; 
        cos = zeros(1,nr_colours
        for co = 1:nr_colours 
            if(co ~= old_colou
                co
                
            end 
        end 
        cd = size(cos,2); 
        cosr = randperm(cd); 
        new_co
        colour = cos(1, n
        bee(1).lastemp
    else     
        % Stay in patch 
        colour = bee(1).colour; 
    end  
    bee(1).colour = colour; 
end 
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Failures (failures window) 

_steps = 10000000; 

; 

 consecutive per colour 
 2; 

w 

s); 

zeros(1,nr_steps); 

uccess 

(t - (lastof - 1)):end); 

ee(1).colour)) 
o many failures 

olour; 

; 
r_colours-1); 

 

sr(1,1);  
_colour_id);             

  for ii=0:(lastof-1) 
             bee(1).emptyhistory(1,t-ii) = 0; 
         end 
     else     
         % Stay in patch 

            colour = bee(1).colour; 
        end  
    end 
    bee(1).colour = colour; 
end 
  

 
% number of steps 
nr
  
% number of colours 

r_colours = 2;  n
  
% full chances  

llrate(1,1) = 0.2; fi
fillrate(1,2) = 0.2
 
% change after number of
hange_after(1,1) =c

change_after(1,2) = 3; 
 
% size of failures windo
astof = 2; l
  
% set bee 

, 0, 'emptyhistory', []), 1, nr_stepbee = repmat(struct('colour'
rs); r = randperm(nr_colou

 bee(1).colour = r(1,1);
ee(1).emptyhistory = b

 
% data to collect 
on_colour(1,1) = 0; 

n_colour(1,2) = 0; o
 

t simulation % star
t = 1; 
for t = 1:nr_steps 

n_colour(1,bee(1).colour) = on_colour(1,bee(1).colour) + 1;     o
    ep = rand;     
    if(ep > fillrate(1,bee(1).colour)) 
        % failure 
        bee(1).emptyhistory(1,t) = 1; 
    else 

  % s      
        bee(1).emptyhistory(1,t) = 0; 
    end 

ve to another colour?     % Do we stay or mo
    if(t < lastof) 

 bee(1).colour;         colour =
     else          

        B = bee(1).emptyhistory(end,
        lb = sum(B); 
        if(lb >= change_after(1,b

to            % change of colour, 
1).c            old_colour = bee(

 1;             co =
= 1            ct 

            cos = zeros(1,n
            for co = 1:nr_colours
                if(co ~= old_colour) 
                    cos(1,ct) = co;     

                     ct = ct + 1;     
end                 

            end 
            cd = size(cos,2); 

cosr = randperm(cd);             
            new_colour_id = co

     colour = cos(1, new       
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ε-Failures  

; 

lours 

umber of consecutive failures 

at(struct('colour', 0, 'epsilon', 0, failures, 0), 1, nr_steps); 

ove to another colour  
 

r_id); 

ur)) 
ch 

lour; 

y, return to previous colour 
d_colour; 

ee(1).colour) + 1; 

silon 
;  

e(1).colour)) 

ber failures 
e(1).failures + 1; 

  % check if we have to move to new colour 
     if(bee(1).failures == nr_failures) 

             % leave and choose new colour 

 
 number of steps %

nr_steps = 10000000
samples = 0; 
  
% epsilon 
epsilon = 0.05;  
  
% number of co
nr_colours = 2;  
 

 leave after this n%
nr_failures = 3; 
  
% full chances  
illrate(1,1) = 0.3; f

fillrate(1,2) = 0.7; 
 

 set bee %
bee = repm
r = randperm(nr_colours); 
bee(1).colour = r(1,1); 

n; bee(1).epsilon = epsilo
bee(1).failures = 0; 
  
% data to collect 
on_colour(1,1) = 0; 
on_colour(1,2) = 0; 
 
% start simulation 
t = 1; 
for t = 1:nr_steps 
    ep = rand;     

epsilon)     if(ep < bee(1).
 % bee is sampling, so m

ples = samples + 1; sam
         

d_colour = bee(1).colour;         ol
        co = 1; 
        ct = 1; 

s = zeros(1,nr_colours-1);         co
        for co = 1:nr_colours 

 old_colour)             if(co ~=
                cos(1,ct) = co;     

 ct + 1;                      ct =
            end 
        end 
        cd = size(cos,2); 
        cosr = randperm(cd); 
        new_colour_id = cosr(1,1);  

r = cos(1, new_colou        new_colou
                 
        % check reward 
        ep1 = rand;  
        if(ep1 < fillrate(1,new_colo

at            % full, so stay in new p
co            bee(1).colour = new_

        else 
pt            % em

            bee(1).colour = ol
        end 
    else 
        % no sampling, so stay in patch 

olour) = on_colour(1,b        on_colour(1,bee(1).c
  

 check reward and update ep %
        ep2 = rand
        if(ep2 < fillrate(1,be
            % success 

e(1).failures = 0;             be
         else

            % failure, so adjust num
     bee(1).failures = be       

          

56 
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old_colour = bee(1).colour; 
co = 1; 
ct = 1; 

        cos = zeros(1,nr_colours-1); 
for co = 1:nr_colours 
 ~= old_colour) 

            cos(1,ct) = co;     
                ct = ct + 1;      
            end 

end 
        cd = size(cos,2); 

cosr = randperm(cd); 
new_colour_id = cosr(1,1);  

        new_colour = cos(1, new_colour_id); 
r;         

% set number of failures back to 0 
bee(1).failures = 0; 

nd 

       
        

        
            if(co
    

        

        
        

 bee(1).colour = new_colou
 

        
        end  
    end 
e
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