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Summary

Foraging strategies are widely studied and are of great help in finding solutions for all kinds of
problems. These strategies are interpreted by for instance biologists, economists and
mathematicians to explain certain behaviour. Why do animals act in a certain manner? What can
explain their optimal foraging behaviour? How can these strategies be used to solve the traffic
congestion problem?

Two strategies based on foraging behaviour are e-Sampling Strategy and Failures strategy. These
strategies are based on the foraging behaviour of bumblebees. Bees tend to do the right thing in
an environment of many bees, but seem to do the wrong thing when they are alone. The right
thing is adopting the Ideal Free Distribution and the wrong is stick to the Matching Law. Both of
the strategies explain that in a multi-bee environment, the will distribute themselves over the
flowers (nectar sources) according to the Ideal Free Distribution. But in a single-bee situation a
bee will match, by its number of visits, the nectar supply of the available flowers (nectar sources),
according to the Matching Law.

Since they are so simple, can these basic strategies be extended or merged into new strategies
with possible better performance and results? For this question some extensions to the basic
strategies and a new strategy were developed and these extensions and strategies were simulated.
Furthermore, in the paper introducing the basic e-Sampling strategy, this strategy was only
explained by situations with 2 different sources / types of flowers. When raising this number of
sources, will the same results be found and what has to be adjusted to the basic strategy to
perform these situations?

In the case of the e-Sampling strategy, the extensions include an dynamic ¢ and the addition of
more types of flowers. For the Failures strategy an extension is proposed, that relates the number
of failures to a time window. Additionally a new strategy, named e-Failures strategy, which
combines the key elements of the basic strategies is introduced.

After defining the extensions and new strategies, they are tested by simulations and the results are
compared to the basic strategies. It can be concluded that all of the extensions and also the new
combined strategy won’t perform as good as the basics strategies and although some results may
show that they perform as well, this is due to the fact that in this cases the effect of the
extensions can be neglected and thus the extended strategies will perform as if they are the basic
strategies.

It can be said that the strength of these basic strategies is just their robustness and simplicity, by
disturbing these basic principles the results and performance will drop.
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1. Preliminaries

Introduction

This chapter is intended to initiate the thesis written in the context of the graduation of the
master program in Operations Research at the University of Maastricht. The research concerns
the development of 'mew' foraging strategies, which are based on the observed foraging
behaviour of bumblebees. First, a study should be done to the background of the problem and
existing foraging strategies used by bees, which the 'new' strategies are based on. In order to test
the strategies and to view and analyze the results, a program is developed that simulates a bee-
flower environment. From the results, obtained by the program and analysis on the basis of other
existing strategies, conclusions and recommendations for further research will follow.

Motivation

Foraging theory studies the foraging behaviour of animals in response to the environment in
which the animal lives. It considers the foraging behaviour of animals in reference to the payoff
that an animal obtains from different foraging options. Foraging theory predicts that the foraging
options that deliver the highest payoff should be favored by foraging animals, because it will have
the highest fitness payoff (Stephens, D.W. & J.R. Krebs, 1986). One animal (or insect in this
case) whose foraging behaviour has been studied is the bee. There are many articles published on
the way that bees search for food in order to comply in their life requirements (e.g. Heinrich,
1976; Cartar & Dill, 1990). These ways can be characterized by strategies, and most of them are
different in intent. We can distinguish between strategies that are deterministic or stochastic,
discrete or continuous in nature, whether or not use fill-rate or fill-time, and for example look at
the behaviour of bees at individual level (energy intake and consumption for its own life) or the
effect within a group.

For all these strategies to be categorized and compared, it is important to have a (simulation)
program which can be used to experiment. On the basis of the performances of different
strategies, they can be compared to one another. These benefits are to be classified and
categorized. It may take into account individual or group behaviour, maximizing nectar intake or
minimization of flight time or energy.

The behaviour of bees can also be projected on, for example, the behaviour of people. Strategies
used by bees, are also used by people in daily living in a certain way. Where do we obtain our
groceries, which car we do have buy, on which party is to be voted? These choices are made by
means of assumptions, expectations, feeling and more. To be able to understand these choices,
models can be made of the reality. These models give (in a limited way) a view of reality, by the
way of restricting possibilities and the surroundings. This simplification of reality can improve the
ability to examine behaviour and making it easier to take conclusions.

Two strategies which have been examined and described already in literature, are "e-Sampling
strategy' and “Failures strategy'. These strategies will be further explained in the next chapter.
These strategies assume behaviour of bees, but as said, can also be applied in our daily lives, for
example in choosing a restaurant. The variables get another meaning, but the outcome is the
same; an optimization of the reward given at a certain choice. The reward can be indicated in the
case of the restaurant choice with the appreciation for price/quality proportion.



Some other problem: When commuting to work, the quickest route is pursued. When people
have to travel from A to B and the roads are crowded, then they tend to distribute themselves
over all possible tracks in such a way (without communicating to each other directly), that traffic
will be equally distributed over all possible routes from A to B. As a result the average travel time
of all commuters from A to B is minimized.

The subject of this thesis is the possible improvement of 2 existing strategies, “¢-Sampling' and
“Failures'. The strategies are adapted and combined with each other to develop new strategies,
with possibly better results, where better should be interpreted as more realistic. Results concern
amongst other things, how the bees distribute themselves over flower types (Ideal Free
Distribution), how rapidly this distribution is reached and what this means for the behaviour of
individual bees.

Background

Bees were already studied by former philosophers such as Aristoteles and Virgil, where the
emphasis lay especially on their history and product. A lot of others have studied bees, in all
kinds of manners, by the centuries, however most of the knowledge has been gathered since the
sixteenth century.

Even Albert Einstein is supposed to have said: “If the bee disappeared off the surface of the
globe then man would only have four years of life left. No more bees, no more pollination, no
more plants, no more animals, no more man.”

Scientists from the twentieth century have discovered how the sense organs of bees work, how
bees communicate, the effect of the poison which is released when a bees stings and they have
determined and analyzed the behaviour of bees by means of more and more sophisticated
measuring systems. We now know for example that bees see several colours and flickering
patterns (which they observe when they fly on short distance above flowers) and that they use
certain strategies to optimize their nectar consumption.

Meanwhile bees are subject to a lot of research areas from several fields of biology, such as
evolutionary biology, to (among other things in this case) mathematics. In mathematics, research
concerning bees is done often in association with other research areas, for example biologists.
Many models, concerning the choices which bees make during foraging, have been made, to get
more insight on how and why bees forage and approach flowers in a certain manner (Kadmon,
R, et al, 1991).

More recently it has been shown, that bees develop a long-term expectation of the nectar income
and by means of the size of a bee, we can make an estimation of the size of the foraging area is
(Greenleaf et al, 2007).

An Ideal Free Distribution (IFD) is an ecological term, which describes the manner which
animals distribute themselves over different areas with food. The theory explains that the
individual animals will distribute themselves proportionally to the available quantities of resources
in each area. For example, if area A contains twice as much food as area B, then there will be
twice as many animals in area A than in area B. The IFD theory predicts the partitioning of
animals which forage in certain areas. This term and theory have been introduced by Fretwell and
Lucas in 1970 (Fretwell & Lucas, 1970).

Ecologists frequently use this theory to test for violations. If a population of animals isn’t
distributed according to the ideal free distribution, it is interesting to find out why.
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The Matching Law was first formulated by R.J. Hernstein in 1961 (Hernstein, 1961) following an
experiment with pigeons. Pigeons had to choose between two buttons, each of which would lead
to varying rates of food reward. It was observed that pigeons would choose the button with the
higher food reward more often than the button with the lower payoff. Remarkable was, they did
so at a rate that was similar to the rate of reward. Stated simply, the Matching Law suggests that
an animal's response rate to a scenario will be proportionate to the amount or duration of
positive reinforcement delivered.

Goal of the thesis

The aim of this thesis is a research on foraging strategies used by bees. This means examining and
analyzing existing strategies and developing new strategies, which are based on the observed
foraging behaviour of bumblebees. Furthermore the implementation of a program/tool, by
which the strategies can be compared on their performances. The main goal is to get an answer
to the problem statement and research questions.

Problem statement:

® Do the results from the basic paper hold for situations with more than 2 types of flowers
and if the basic strategies are extended to meet more complex situations, how will this
perform compared to the basic strategies?

This leads to the following research questions:

= Wil the results in the basic paper also hold in more complex situations, i.e. more than 2
types of flowers?

® In what way have the basic strategies be adjusted or extended to meet the more complex
conditions?

* How do the extended, new strategies perform in comparison to the basic strategies?

Outline of the thesis

The outline of the remaining part of this thesis is as follows: In chapter 2, several existing
strategies are discussed and some new strategies will be introduced. Then in chapter 3, the
existing and new strategies will be simulated and compared to each other. Chapter 4 describes the
results, which are obtained during the research. Finally in chapter 5, the conclusions will be
described and recommendations for further research are given.



2. Strategies

Introduction

In this chapter the strategies examined are explained. To start it is motivated why these particular
strategies are chosen. Next these basic strategies are discussed to give a good explanation of these
basic strategies, e-Sampling Strategy and Failures Strategy. Hereafter the extension of the number
of colours is discussed, since the results of the basic strategies only take 2 different colours into
account. At the end of the chapter we introduce some extensions to this basic strategies (dynamic
e-Sampling Strategy and Failures Windows Strategy) and formulate a new strategy, e-Failures
Strategy, which uses the basic principles of the e-Sampling Strategy and Failures Strategy.

Motivation

The basis for my research is an article (Thuijsman et al, 1995), which attempts to explain
observed behaviour of animals (bumblebees, in this particular research). These bees do the wrong
thing when they are alone, namely stick to the Matching Law. But in an environment of many
foragers they act in the right way, that is adopting the Ideal Free Distribution.

The strategies have to meet the bees’ distinctive characteristics to give a good representation of
the reality. Bumblebees do not exchange foraging information and they try to maximize its
average nectar intake per time unit. Nectar will be considered as the only reward for the bee in
the model. A given flower type has a typical colour and gives a certain reward. In the basic paper
(Thuijsman et al, 1995) only 2 types of flowers are used.

Furthermore, the strategies are very simple in design and therefore easy to understand. They are
described by finite automata (Ben-Porath & Beleg, 1987; Kalai, 1990), by which the bees only
respond to their own payoffs and remember only the payoffs of the last few visits. The decision
rules, used to decide whether to stay in or to leave a patch, take only the last one or two flowers
into account. This is in line with the small brains and bounded memory of the bees.

In the article, 2 simple foraging strategies are introduced; (i) the e-Sampling Strategy and (if) the
Failures Strategy.

To meet the observed behaviour, both strategies have the characteristics that (i) in a single-bee
setting, a bee will match it’s number of visits to the nectar supply from the available sources,
according to the Matching Law (Hernstein, 1961) and (i) in a multi-bee community, the bees will
distribute themselves over the available nectar sources according to the Ideal Free Distribution
(Fretwell & Lucas, 1970).



e-Sampling Strategy

Basices

In common words; a bee visits flowers of a certain (initial) colour repeatedly, but sometimes the
bee samples a flower of a different colour by mistake. If the reward at the accidentally visited
flower is higher, then the bee will stay at this new type of flower. If not, it will return
immediately to the patch with the original colour.

More formal:

Definition e-Sampling strategy

Leta & € (0,1), let a(t) € {Y,B} represent the action selected and let r(t) € R be the payoff at time t €
{1,2,3,...}.

Define c(1)=0 and cl(t+1)=acl(?)+(1-a)r(t) for t=1.

Then cl(t) is called the critical level at time t. Let Y, denote the mixed action: choose Y with probability 1-¢ and B
otherwise and let B, be defined similarly. The e-sampling strategy is defined by playing:

at 1=1 use Y, 5,
at t=2 use a(1),
at t>2 use a(t-1), in case a(t-1)Fa(t-2) and r(t-1)2cl(t-1), use a(t-2) otherwise.

In this definition a and ¢ are the individual bee’s factors.

In the multi-bee situation, we need some assumptions for the population to stabilize in the Ideal
Free Distribution, namely:

(i) The total quantity of nectar at Y is equally distributed over the visiting bees at Y at each stage;
that is, if at some stage # € N there are 7, bees at Y, then we assume that at this stage each of
these bees is receiving 7(t)=y/#y units of nectar. Likewise for B.

(i) There is no accumulation of nectar at a patch. All nectar is taken by the bees at each stage and
if at some stage there are no bees at a patch then at the next stage the total quantity is still the
same.

(iii) The bees’ sampling factors ¢ are sufficiently close to 0 to have a negligible probability of two
or more bees moving at the same time. Thus the distribution of bees over flower types changes
by one bee moving either from Y to B or from B to Y. (Here ‘moving from Y to B’ means:
previously the bee was at Y, now it has gone to B for a sample and since the payoff received at B
is larger than the critical level it decides to stay at B.)

(iv) We assume that, when going out sampling, the bee has been in Y sufficiently long to have its
critical level close to y/ ny.



The population will stabilize in the Ideal Free Distribution under the above assumptions. Firstly,
due to its e, each bee will sample the other colour infinitely often. Hence, if the process stabilizes
in some distribution of bees over Y and B, then it must be such that no single bee strictly
improve its payoff by moving to the other colour. Secondly, whenever a bee moves from Y to B
we must have that y/ny, < b/ (n,+1), where ny,-and 7y, are the numbers of bees before the move at
Y and B respectively. If a potential function (Monderer & Shapley, 1988) is defined as

ny ng
P(ny,ng) = yz 1/m + b Z 1/m
m=1 m=1

where 3.9 _; 1/m is understood to be equal to 0. With each bee movement the potential strictly
increases and since there are only finitely many distributions of the # bees and the bees will keep
moving as long as possible, the potential function will eventually reach its maximum. This leads
to the situation (at this maximum) that y/n, = b/(ny+1) and b/ny = y/(n,+1), hence y/ny = b/ ny,
Furthermore, if y/ny = b/ny, then ny /n; = y/b and thus the bees will be distributed over the
colours according to the Ideal Free Distribution.

In a single-bee situation we use an artificial type of flowers, namely Bernoulli flowers Y (yellow)
and B (blue). The yellow flowers give a reward of 1 unit of nectar with probability p and 0 units
otherwise. For the blue flower we have probability ¢ for a full flower. In a natural situation, this
can be described as a constant fraction p of the patch of yellow flowers is full (and fraction (1-p)
is empty) and a constant fraction g of the blue flowers is full (and fraction (1-¢) is empty).

The strategy can be described by the following Markov chain.

Figure 1: Markov chain for the e~Sampling strategy

In this situation, we have 2 types of flowers (Y and B). Each time a bee visits a flower of type Y,
the bee will get 1 unit of nectar with probability p and O units otherwise. This is the same for
colour B, except in this case the bee will get a reward of 1 unit with probability 4.

Y, and B, are the sample stages (the bee gets there with probability ¢) and Y, and B, are the stages

where a bee has chosen to stay in that patch (if the bee finds a full flower with probability p or ¢
respectively).

10



As seen in the multi-bee situation, ¢ is the bee’s sampling factor. Because of the rewards, the bee’s
critical level will always be between 0 and 1, and a bee will only stay in a sampled patch if it gets a
full flower.

This Markov chain corresponds with the following transition matrix T given by:

B, Llg 0 0 1-—¢&

The stationary distribution 7 = (Y, Y, B,, B,) of T gives us the frequency of visits at Y (Y, + Y)
and B (B, + B,). The vector 7 is nonnegative, adding its components gives 1 and 7T= 7.

Computing this vector shows that the number of visits of colour Y'is p + ge and the number of
visits of flowers of colour Bis g+ pe. Hence ny i ny = p + ge: g+ pe = p: g.

This leads to the theorem that: If ¢ is small, then a bee applying the sampling strategy in a single-bee
experiment will exhibit matching the payoff probabilities by the frequency of its visits (the Matching Law).

There has to be emphasized that the results presented in the paper do not really depend on ¢. The
only obligation which must obeyed is that ¢ has to be close to 0, in order to have the bee staying
long enough in a patch to get a good estimation of the patch’s payoff.

After examining this strategy some questions can be asked. The paper only focuses on 2 different
colours, it is said that the results will hold in situations with mote than 2 different colours. This is
something we want to examine and analyze, for both the single-bee and multi-bee setting.

In the paper it is also said that ¢ can be payoff dependent, thus getting larger if the bee gets low
payoffs and will decrease if the bee receives high payoffs. But what if this dynamic ¢ becomes too
large and close to 1? It is also stated that ¢ has to be sufficiently small for the bee to stay in a
patch long enough and get a good estimate of the payoff in the patch. In the case of an ¢ close to
1, the bee has a great probability of leaving the patch and thus no opportunity to get an
estimation of the patch’s payoff. Another question is how ¢ has to be defined if it becomes
dynamic.

These questions will be discussed in the following sections, which will be about the ‘extensions’
of the e-Sampling strategy.

11



From 2 to n colours
The experiments in the paper only took 2 different colours into account. But will the results also
stand for instances of the strategies with more than 2 different colours?

Probably they will. But when there are more than 2 colours, the model has to be extended with
some rules. For instance, when a bee samples, it has to sample a different colour. For the choice
of the sampling colour we assume that:

= A bee chooses a different colour at random.

It is possible that a bee doesn’t know all the flowers and colours in the foraging area. Following
to this, if a bee doesn’t know all the flowers and colours in a patch, it surely doesn’t know the
highest estimated payoff of those flowers and colours and the last 2 assumption don’t hold.
Therefore a colour is chosen at random.

Furthermore, after (or more exact during) the sampling, what is the bee’s action when it receives
a payoff with a value below the critical level (or in the case of Bernoulli flowers gets a empty
flower)? For this matter we made the following assumption:

= A bee will return to a flower of its previous visited colour if the bee doesn’t get a positive
payoff at the sampled flower (and colour).

In a multi-bee situation, the population reaches the Ideal free Distribution if

fh/nl ~ ‘h/nz e A Qi/ni

where q; > 0 for all i

Where g, is the total amount of nectar at patch 7 7, is the number of bees at colour 7 and 7 is the
number of colours. With the help of the simulations we can computed these ratios and see if the
population is distributed according to the Ideal Free Distribution.

For the case of a single-bee situation and #>2, the Markov chain and transition matrix T have to
be extended. For the Markov chain we introduce a new system of states and variables. The states
and transitions can be characterized by

= p,1s the probability, for flowers with colour 7, giving a reward of 1 unit of nectar and thus
for the bee obtaining a success.

= o, corresponds to a state of the bee, where the bee is sampling colour 7 while coming

from colour 7.

= ¢, the sampling factor, with this probability the bee will sample another colour.

For an organized view the states have been grouped by colour, all states with ¢, to ¢, have to be
grouped, such as c,, to c,, and ¢, to ¢, have to be grouped. With numbers, a state c,,
corresponds to a bee which is currently visiting a flower of colour 1, but is sampling a flower of
colour 4.

12



As an example a Markov chain for 4 colours is presented:

Figure 2: The Markov chain for 4 colours

A colour node in the Markov chain above can be subdivided by the inner colour states:

Figure 3: Inner colour states of the Markov chain

For the example the ‘inner-colout’ chain of colour 1 is chosen, the other colours can be
represented similar.

13



The corresponding transition matrix T, is given by:

,fori,j €[1,n]

Ay - Ay
T,=|: -
Aji Ajj

The elements of matrix T, (each have 7 rows and # columns) have to be defined as:

column j
0 - 0 0 O
L = 0 - 0 0 0
Y rowj [0 - 0 p;; O
0 0 0 O
0 0 0 O
column i
0 0 1-p,
o 0 1-pi
U™ rowi ¢ « & 1—-(n—-1)=x¢
I R
0 0 1-p,

For a situation with 3 types of flowers, the following

By finding the stationary distribution 7 = (¢,,, ¢, ...

1-(n—1)x*e € € 0 0
1-p 0 00 P2
1—p; 0 0 O 0
P1 0 00 1-p,
T; = 0 0 0 ¢6 1—-(n—1)x*¢
0 0 0 O 1—ps
D1 0 0 O 0
0 0 0 O D2
0 0 0 O 0

o o

LD #
07
of .. _ .
c > 1 l_]
0
0l

Transition matrix T; is defined:

S OO O M OO OO

s Cp Cop oy -

m OO OO OO OO

m OO OO OO OO
o

1-(n—1)*¢&l

o € weer Gy iy ene {/]) we can

compute the frequency of visits of each colour. For colour 1 the frequency is ¢, + ¢, + ... + ¢,

for colour 2 is ¢,,+ ¢,, + ... + ¢;;and so one.
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Thus for the situation where #=3 (3 colours), p,=0.2, p,=0.3, p,=0.5 and ¢ = 0.05, we'll get the
following Markov chain and Transition matrix:

Figure 4: Markov chain for n=3

Replacing the variables with the corresponding probabilities gives:
r0.9 0.05 0.05 0 0 0 0 0 0 1
0.7 0 0 0 0.3 0 0 0 0
0.4 0 0 0 0 0 0 0 0.6
0.2 0 0 0 0.8 0 0 0 0
T=]0 0 0 0.05 0.9 0.05 0 0 0
0 0 0 0 0.4 0 0 0 0.6
0.2 0 0 0 0 0 0 0 0.8
0 0 0 0 0.3 0 0 0 0.7
L 0 0 0 0 0 0 0.05 0.05 0.9

For computing the frequencies of visits to the different colours, we have to find stationary
distribution 7 =(¢,;, ¢;5 €13 €1y Com Cop €315 €30 €35) Of T. This can be done by solving 71= 7 and
Z?=0 ;. We get 7 = (0.1653, 0.0083, 0.0083, 0.0124, 0.2479, 0.0124, 0.0248, 0.0248, 0.4959).
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Hence the frequency of visits per colour is;

=  Colour 1 =0.1653 + 0.0083 + 0.0083 = 0.1819
= Colour 2 = 0.0124 + 0.2479 + 0.0124 = 0.2727
= Colour 3 = 0.0248 + 0.0248 + 0.4959 = 0.5455

The frequency may not be matching the probabilities of getting a positive reward (and even is
1.0001 due to rounding error), but this occurs since p,+p,+p, = 0.2 + 0.3 + 0.6 = 1.1. In this case
we have to take a look at the normalized probabilities, so we get a clear view of the allocation of
the frequency of the visits per colour.

Since p,+p,+p; = 1.1, the probabilities have to be divided by 1.1 to get the normalized
probabilities. For the colours, the normalized probabilities for visiting a flower with reward 1 are:

» Colour1=p,/ (b, +p, +p)=02/1.1=01818
» Colour2=p,/ (b, +p,+p) =03 /1.1 = 0.2727
» Colour3=p,/ (b, +p, +p) = 0.6/ 1.1 = 0.5455

These values match with the computed values for the stationary distribution of 7.

With the help of the simulations we can compute and analyze these rates for all of the desired
situations. These will be discussed in de next chapters, where we start with how the simulations
have been done and after that we discuss the results.
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Dynamic e-Sampling Strategy

The e~Sampling Strategy is based on the fact that a bee accidentally visits the ‘wrong’ patch with
flowers of a different colour. This mistake, or sample, is indicated by the probability ¢, with ¢ €
(0,1). This probability does not differ during the foraging of the bee and is considered to be ‘close
to 0’ (it’s a mistake and happens very rare).

But what if the frequency of the sampling depends on the current payoff? We want to see what
happens, when the bee will sample more often when the rewards at the current patch are below
it’s critical level. On the other hand, the bee will feel less need to explore (sample) the patches
with flowers of other colours when the bee only gets payoffs above its critical level.

The model has to be extended with a function, which describes this dynamic . We chose to let
the dynamic ¢ function to be quadratic. It could also be linear, but the changes of epsilon would
not be noticeable when ¢ is near 0 and thus would not have enough impact on the behaviour.
The dynamic ¢ function is defined as
€(0) =&y, & € (0,1)
e(1) = €(0)
1/

e(t+1) = g(0) "&®OD) for 7> 1
For this function a variable £ is introduced. This variable is a perspective of the number of
failures and successes. This number can be defined in 2 ways, (i) from the beginning of the
simulation and (ii) from the last success. The initial value of £ is 0.
The first manner can be defined as just counting the difference between total number of failures

and total number of successes witnessed until then. The definition of the e~Sampling Strategy has
to be extended with the following lines to satisfy this condition.

Let £(2), s(2), fiz) €N, 5(?) is the total number of successes and let f{#) be the number of failures.
Furthermore 7(2) is the current reward and ¢/(?) is the current critical level.

Define £(0)=0, s(0)=0 and f{0)=0,
ifr(t) =cl(t),s(t) =s(t—1)+1and f(t) = f(t—1),
otherwises(t) =s(t—1)and f(t) =f(t—-1)+1
then k(t) = max{f(t) — s(t), 0}
As can be stated from the above, this function is colour independent. We assume that a bee’s
memory does not keep track of the ratio in successes and failures per colour. A bee only

remember the ratio of successes and failures of the current visiting colour. When a bee moves to
another colour, the memory will be cleared and both numbers of successes and failures are set to

0.
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The second method is the most straightforward of both. The bee will start counting after
attaining an empty flower, thus failure. With every consecutive failure, £ will be added with 1.
Whenever the bee visits a full flower, a success, the value of £ will be reset to 0. By this means,
the definition of the e—Sampling Strategy has to be extended with the following.

Let 4(2) €N and define £(0)=0, r(?) is the cutrent reward and ¢/(2) is the current critical level, then

if r(t) = cl(t), k(t) = 0,otherwise k(t) = k(t—1)+1

Notice that, when in both methods artificial Bernoulli flowers are used, ¢/(#) doesn’t have to be
used. Because 72)€{0,1}, we can speak of noticing a failure (7(#)=0) or a success (r(2)=1), and
since ¢/(2)€(0,1), a success has always (7 )> ¢/(?) and for a failures the reverse r(2) < c/(?).

Thus the latter definition extension can be rewritten as:
if r(t) =1,k(t) = 0,otherwise k(t) =k(t—1)+ 1

Another way of taking failures into account when deciding to stay or leave a patch is considered,
but this fits more in an adaptation or extension of the Failures strategy and will be discussed in
the next section. This method puts focus on a certain window of the last visits and the number of
failures in that window. For instance, raise ¢ if 3 of the last 5 visited flowers are empty. This
method could also be colour dependent, a bee could leave colour Y after 2 (consecutive) failures
and leave colour B after 3 (consecutive) failures.

Both methods will be simulated and analyzed after the simulations and discussed in the following
chapters.

18



Failures Strategy

Basics
In common words; A bee will move to another foraging patch after visiting a certain number of
consecutive empty flowers, empty should be interpreted as ‘below critical level’.

In a formal way;

Definition Failures strategy

Let y, b be positive integers. The finite antomaton A(y,b) is given by:
(1) Leave Y after y consecutive failures and move to B,
(iz) Leave B after b consecutive failures and move to Y.

In this experiment, there are two artificial flowers Y and B, that give 1 unit of nectar with
probability p and ¢ respectively (and 0 units otherwise). The event of receiving 1 unit shall be
called a success, and receiving 0 is a failure.

As an example, the automaton A4(3,2) and the corresponding Markov chain can be displayed as
seen in figure 5.

— p=1-p
. e £ — o A o g=1-g
Y~ \ b N
\-—': Yo \ N = ¥y \
K
N\ B \h\\ B
0 Ill 5 \ \".
| { /P | f
) ! u—
vi | |1 i o nolo|p 9 |3
.'l I'\ f \
0 ;" \-q }—J f-"l ']
By |= ,\I / By é"\l
y / A1 ; 49
2 - 2 / -
e — e R
0 P

Figure 5: Automaton A(3,2) and corresponding Markov chain (right)

Y, indicates the state of being at Y, while the last £ visits were failures (the B, states should be
interpreted similarly). This automaton leads to a transition matrix T, which is given by:

Yo ©h Y2 B B
Y. (p 7 0O 0 0]
Yolp 0 p 0 0O
r=Y.|p 0 0 pg 0
B, o 0 0 g g
Blg 0 0 g 0]

The stationary distribution 7 = (yy, ¥, ¥, b, b,) of T gives us the frequency of visits at Y (y, + y, +
,) and B (b, + b,). The vector x is nonnegative, adding its components gives 1 and 7T= .
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Using .A4(3,2) the bee would confirm the Matching Law if and only if

Jo o Y, =p/(ptq)
by + b, =q/(p+q)

For generality we use A(y,b) instead of .4(3,2), one can show the following theorem (Thuijsman
et al, 1995).

Theorem: The finite automaton A(y,b) matches the payoff probabilities p and q respectively if and only if

p’p™ _ ¢’q”°
1-p> 1—-q?

For any p,g-situation of yellow and blue flowers with p, ¢ € [3, 1- 8], with 6 € (0, 0.5) this
theorem provides the existence of real number y, b € [1, M], where MEN. When we take the
bounded recall of the bee into account, we have to notice that with M=2, § cannot be smaller
than 0.22, while with M=3, ¢ can be handled as small as 0.18. This leads to the fact that all p, ¢
[0.22, 0.78], matching can be obtained with an automata A(y,b), with 5, & € [1, 2].

In natural situations, it is frequently observed that p and ¢ are small if there are many visits
(Schreiber, 1993). In this case ( p<¢g=1-p or g=p=1-¢g ) the bee can use a special automaton A(x,x)
(Thuijsman et al, 1995).

If p<g=1-p or g=p=1-¢, then there exists x=1 such that

2

p°p™™* q
1—p™ 1—q*

With a population of finitely many bees using A(xx), the Ideal Free Distribution can be
observed. By the strong law of large numbers it can be said that the fraction of number of bees
visiting patch Y converges to p/(p+¢), and the other part g/ (p+¢) will be at B for large numbers
bees and a large time #

Consider a population of infinitely may bees, using A(rs) to forage patches Y and B, with
respectively total nectar supply of y and 4. Then p and ¢ are determined by the proportions of
bees currently present in each of the patches and this population can be distributed according to
the Ideal Free Distribution.

Then with certain p and ¢ a static result for the existence of the Ideal Free Distribution can be
calculated, but there is no dynamic process for reaching the Ideal Free Distribution. We have to
assume an infinite number of bees in order to have p and ¢ not affected by a single bee moving
from one state of the automaton to another state. With a finite number of bees these
probabilities would depend on the precise number of bees in those states.
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Failures Time Window Strategy

In the strategy only consecutive failures are taken into account, but what happens if the failures
window is extended? With extending the failures time window, we mean that not only
consecutive failures are measured, but the number 7 of failures in the last visits 7 is kept track of,
where 7 < n. By acting this way, a bee will stay longer at a patch, but we expect that at the end
the distribution of the population is the same as for the original strategy.

For instance, instead of changing colour after 2 consecutive failures, a bee will move to another
colour if 2 of the last 5 visits at the current colour are failures.

We extend the Failures strategy model A(y,4) to A, (y,6), where 7 stands for the size of the window
of last visited flowers, then this strategy can be defined as:

The finite automaton A, (y, b) is given by

(i) Leave Y if y of the last n visits where failures and move to B
(ii)Leave B if b of the last n visits where failures and move toY

Letn,y,b EeNNn=>yandn=>b>b
Note that in the case of A, (x,x) the model can be thought as if it’s equal to A(x,x). Because it
takes the last x failures of the last x visits into account and this can be seen as x consecutive
failures. This will only hold for an automaton A4, (x,x), because with automaton .4, (x,3) where

x>z, the bee doesn’t have to approach x consecutive failures on colour Z to move to colour X.

We consider that there has to be a model A4,(2,2) which gives the same results as .4(2,2). By
simulating and testing we try to find a suiting 7.

Two of these automata in the single-bee situation are displayed in figure 6 and figure 7:

A(2,2)

Figure 6: Automaton for A(2,2)
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A4(212) i .
Colour 1 , \

Colour 2

Figure 7: Automaton for A,(2,2)

A state ¢; is characterized by 2 elements, 7 represents the colour and ; represents the ‘failure
sequence’. A failure is indicated by a 0-arrow and a success by a 1-arrow. These can be replaced
with the probabilities p; in case of a success and (1-p) in case of a failure.

Again, by finding the stationary distributions of the transition matrices of the Markov chains
above the frequencies of visits per colour can be computed.

For a single-bee situation we expect to be able obtain matching, but the variables and settings
have to be chosen carefully. This is also a belief for a multi-bee situation, where an Ideal Free
Distribution can be obtained if the variables are chosen carefully, but just in a couple of cases.

By simulating we try to resolve the matching and an Ideal Free Distribution by testing with a

number of cases and variables. These simulations will be discussed in chapter 4 and the results
accompanying these simulations will be discussed in chapter 5.
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Combination of e~Sampling Strategy and Failures Strategy

Introduction

After reading and discussing the paper, we thought it may be interesting to combine both of the
strategies and see what the results of this combined strategy are. Take some of the characteristics
of both strategies and merge them into a new strategy. These features are:

= The sampling factor ¢ of the e~Sampling Strategy
= Change colour after a certain number of consecutive failures

The e-Failures Strategy

This strategy can be described in common words as: A bee will use the e-Sampling Strategy, but
after a certain number of failures (this can be consecutive of a number 7 failures in the last »
visits), the bee will move to another colour.

This can be viewed as a special case of the dynamic e-Sampling Strategy, where ¢ becomes 1 after
a number of failures, otherwise it will remain the same. The dynamic e function can be defined as
a step function, for instance:

€(0) =€y, & € (0,1)

e(1) =¢€(0)

€(0),if k(t) <K
e(t+1) = ,fort>1
1, otherwise

where K stands for the maximum number of failures which may be perceived before leaving the
patch and visit another colour.

The variable £ is a perspective of the number of failures and successes and some of them already
have been discussed in a section ‘Dynamic e-Sampling Strategy’. This number can be defined in 3
ways, (i) from the beginning of the simulation, (if) from the last success and (iii) using a window
of last visited flowers. The last method is already introduced in the section ‘Extending the Failures
time window’ .

After simulating the dynamic e-Sampling Strategy (and before creating this strategy) we
concluded that using the first method for £(t), ¢ became too much of a disruptive factor in the
results. The frequency of visits was matching the probability of a successful visit (with reward of
1 unit of nectar) and matching would occur, but the way it worked was not according to the -
Sampling Strategy. We chose to use the second manner, because this is more of a combination of
both basic strategies. The last method is already an extension of the Failures Strategy and we
would like to combine only the basics of both strategies and see and analyze if this ‘new’ strategy
will produce good and interesting results.
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3. Simulation

Introduction
The previous chapter discussed the strategies and their adjustments and extensions. In this
chapter the simulations, carried out in order to obtain the results, are described.

The need for the simulations is quite clear, because the strategies (and their results) can be
compared to each other. We chose for experimenting and simulating instead of a theoretical
comparison, because in this way results can be compared in an orderly overview with simulated
data.

From a given baseline, a simulation shows how the situation is changing and evolving in the
course of time. With the results of the simulations, the strategies can be compared. These results
are given in different ways, as numbers and graphs. With the help of these numbers and graphs,
we can try to explain the behaviour of bees according to the different characteristics of the
strategy.

With a simulation every single action of a bee can be watched and examined. In this way the
behaviour of bees, using a certain strategy, can be explained and understood in a better way. This
holds also for understanding the effect of a strategy.

Simulations
All of the strategies are modeled and implemented using Matlab. The choice for Matlab is simple,
because it’s a very extended mathematical program and easy to work with.

At first we started by implementing the e-Sampling Strategy and Failures strategy and creating a
user interface to represent the results. The initial idea was to create a tool, which could simulate
and compare both of the basic strategies and their extensions. By the hand of this tool also
individual flowers and bees could be viewed separately. But instead of focusing on particular data,
we wanted to visualize and compare almost every little detail. This was not working very well,
also because of the lack in knowledge in creating a usable user interface in Matlab. Creating
different graphs and charts, which were quite nice looking and gave a lot of information, took a
enormous amount of time and slowed the total simulation down. Furthermore the program
became too complex, because there were a lot of variables which had to be set before starting a
simulation. Also all of the different kinds of representations of the data were little confusing,
because almost everything could be viewed apart.

After experiencing the slow speed of the simulations, mostly because of creating the plots, we
decided to skip a nice looking interface and to focus on the data of the results of the simulations
(and thus strategies). The raw data could always be transformed and represented by graphs and
charts afterwards. This worked out right and we got the results quicker and were able to do more
simulations in period of time.
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Matching Test for e-Sampling Strategy

Thus for e-Sampling Strategy we started simulating with 1 bee, 2 flowers of different colours with
probabilities of giving a reward of 1 unit of nectar of respectively p, = 0.3 and p, = 0.7, ¢ = 0.05
and 7= 1.000.000.

We introduce 7 as the number of steps we simulate. Each step can be interpreted as a moment in
time. In the case of the e-Sampling Strategy a bee does some actions per step #

= First the makes a decision to stay (with probability 1- ¢) in the current patch or sample a
patch of a different colour (with probability ¢).

= After the decision to stay or sample, the bee will visit a flower of the current or sampling
colour and remember the pay-off.

®= In case of sampling, the bee will decide to stay in the new patch or return to the original
colour, according to the payoff it received.

®= In both cases the critical level is updated (which is not necessary, because we used
Bernoulli flowers with reward O or 1, thus always above or below every critical level

cde(,1)).

We started simulating the e-Sampling Strategy for a single-bee situation (test for Matching Law).
At the end of the simulation, the results showed the total number of visits per colour. By dividing
the number of visits by the total number of steps the average number of visits per colour are
computed and this can be compared to the probabilities of giving a reward of 1 unit of nectar of
the colours.

We noticed that the sampling visits cause some disturbance in the expected results. This
disturbance is greater on the side of the colour with the smallest ‘success’ probability, which can
be explained by the ‘error’-part of the quotation p, + p,*e. The error-part p,*s has more influence
on the total p, + p,*¢, because p,< p,.

Furthermore we noticed that ¢ and the number of steps in the simulation had to be chosen
wisely. Since we couldn’t set the number of steps to ©, ¢ had to be not too close to 0, so
(enough) sampling visits were noticed.

Therefore we have to exclude the sampling visits from counting the number of visits per colour,
to get a pure proportion of the frequencies of visits per colour. When a bee samples, this will not
affect the number of visits of the sampled colour nor the number of visits of the original colour.
Not just this, but also the whole step has to be neglected, because otherwise the values of the
number of visits divided by the total number of steps will never reach to the flower’s probabilities
of giving a successful reward(which have to be found, according to the Matching Law). For
instance:

After simulating with the following settings (p, = 0.3, p, = 0.7, ¢ = 0.05 and # = 1.000.000) we got
the following results:

= 2806.218 steps on colour 1

" 6063.697 steps on colour 2
= 50.113 steps sampled
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Then 286.218/1.000.000 = 0.286 and 663.697/1.000.000 = 0.664. These ratios are almost
according to the success probabilities, but since we make an error by counting the steps a bee
samples, these cannot reach the probabilities.

But after correcting the number of steps, we get 286.218/(1.000.000-50.113) = 0.301 and
063.697/(1.000.000-50.113) = 0.699. These value are almost exact the probabilities of the flowers
giving a successfully reward and we can conclude that the bee will match the ‘success’
probabilities of the colours by the frequency of visits per colour.

After we got this right we started simulating with more colours and the results were as expected.
We expected that the e-Sampling Strategy would give the same results for more than 2 colours,
thus that the frequency of visits of a colour matches the payoff probability of that colour. The
results of the simulations showed that for 3 or more different colours matching could be
observed as well.

Matching Test for Dynamic e-Sampling Strategy

For simulating with the dynamic &, we had to look at the 2 different ways of computing £.

We started with the first method (counting from the beginning) and noticed that the results were
almost equal to the results of the basic strategy. The frequency of the visits per colour matched
the probability of getting a positive payoff per colour, but after taking a closer look of the results,
we noticed that the final value of e (at the end of the simulation) is very dependant of the payoff’s
probability. If the sum P of the chosen probabilities (p, + p, + ... + p,) is smaller than 1, then ¢
becomes close to 1. Otherwise ¢ will stay 0.05 until the end of the simulation. We can explain this
by the fact that if P < 1, a bee will encounter more empty flowers then full flowers during the
simulation, thus £ is expected to become larger instead of staying 0 (according to the function for
k). When P = 1, the bee is expected to visit more full flowers then empty flowers and this leads
to the value for £ staying 0.

When simulating long enough (#>25.000) matching will occur, but this is due to the fact that:

" In the case of P < 1, since £& will, ¢ will increase close to 1. In the case of ¢ close to 1, the
bee will sample almost every step. The sampling steps have no effect on the matching,
because these steps are disregarded. From the time until e becomes too great, the bee will
behave according to the basic e-Sampling Strategy (since ¢ is small enough). So only the
‘eood’ steps are counted and this will match.

® In the case of P = 1, the dynamic epsilon ¢ isn’t really dynamic. Since £ will be 0, ¢ will
stay €(0) and the bee will behave as if it uses the basic e-Sampling Strategy and this is
proven to match.

Because of this effect, the first method isn’t very usable. We want to have a robust function,
which will perform well under all kinds of situations and not only under well formed situations.
Although it may look that this strategy show a good matching behaviour, it doesn’t meet our
requirements.

After this we decided to try method 2 (set the number of failures back to 0 after getting a positive
payoff) for the simulations. After simulating and analyzing the results, we could conclude that
this method was more appropriate. Since £ is set back to 0 after visiting a full flowers, £ won’t be
growing (in the case of P < 1) steadily or stay 0 (otherwise). Hence ¢ will not remain the same
(¢(0)) or be near to 1.
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There are some comments on the second method. First it doesn’t perform as well as the basic
strategy. Matching can be perceived, but not as exact as the matching in the basic e-Sampling
strategy. If the successful payoff probabilities of the different colours are (almost) the same the
extent of matching will be better and more according to the basic strategy. When the successful
payoff probabilities differ more, the error noticed in the extent of matching will be greater at the
colour with the smallest probability.

This could be explained by the ‘error’-part in the number of visits per colour. For 2 colours the
number of visits on colour 1 is p,+p,*e, the ‘error’-part is p,*e. When p,<p, and ¢ close to 0, then
pripre < p,rpfe and p,*e has more influence on p,+p,*e then p*¢ influences p,+p*e. If p,=p,,
then the error will be the same on both sides.

But since we exclude these sample steps from the computation of the frequency of the visits,
there has to be some reason. This happens to be an effect of the dynamic ¢ function. A bee will
sample more often when it visits a colour with small payoff, because the sample factor ¢ increases
faster. Furthermore, the probability of staying at the sampled colour is bigger, because the
probability of receiving a better payoff at the sampled colour is bigger, and hence the matching
will be disturbed.

IFD Test for e-Sampling Strategy

This simulation was more difficult because of the assumptions, for instance all of the nectar in a
patch should be distributed over the bees visiting that patch. Not all assumptions were taken into
account for the implementation. We implemented this strategy very simple. There are F, flowers
in patch 7 and they all are full. A bee will choose to stay in the current patch or sample (with
probability ¢) another. When a bee visits a patch it will go to a flower. If no flowers are free (thus
all the flowers are taken by another bee), it will remain in the patch, but accidently do nothing,
there is no payoff for the bee. At the end of each stage the number of bees per patch B; is
counted and then the ratio I, / B;is computed.

Originally we showed all these ratios of the different colours in one graph, but this turned out to
be confusing. The lines in the graph looked very shaky and it looked like the strategy wasn’t
behaving as expected. But this was because of the fact that we computed the wrong results. After
adjusting the simulation and the scale of the graph, the results were better. But our expectations,
the population would need some time to come to a stable Ideal Free Distribution and stay
distributed in that way, weren’t met. Instead we saw the distribution of the population vary a lot
and after getting an Ideal Free Distribution the population wouldn’t stay distributed in that way.
This can be justified by the numbers we used for the variables. Because the speed of the
simulation we chose not as much steps, bees and flowers as desired, since the simulation would
crash or take too much time. If the number of steps would be much more, the influence of ¢
would be smaller and a particular distribution would hold longer.

For comparing the results we used the number of bees (1) per colour and the number of flowers
per colour (f). Bees, which are sampling during a specific time step aren’t taken into account for
this numbers, because they haven’t decided to stay at or leave a patch. For each colour a line is
plotted with the number of bees at that colour, divided by the number of flowers of that colour
per time step (7, / /). In that way we can how the bees distribute themselves over the available
flowers. If these fractions are equal, an Ideal Free Distribution is observed. In our simulations
this wasn’t observed very often, but the fraction were close to each other, so we can say that the
population of the bees is almost distributed according to the Ideal Free Distribution.
Furthermore we computed the average number of these fractions, to see if, over all the steps
simulated, the ‘average’ distribution will be according to the Ideal Free Distribution. During the
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Matching test the sampling stages of the single bee weren’t counted to neglect the sampling
stages of the bee and get no disturbed results. This wasn’t possible for the IFD test, because this
test consists of more bees. If we would neglect the stages where one (or more) bee(s) would
sample, too much steps would have to be neglected. When the number of flowers per colour is
(almost) equal to each other, the disturbing effect hasn’t much influence on the results, but if they
differ (a lot), the disturbing effect is noticeable, especially on the side of the smallest patch.

IFD Test for Dynamic e-Sampling Strategy

This simulation is the same as the simulation for the basic e-Sampling Strategy. The only part we
had to adjust was the value for ¢. Both of the methods for adjusting ¢ were implemented during
the test for matching. Because we already simulated the IFD test for the basic strategy, we could
use the observations and settings for this simulations.

Matching Test for Failures Strategy

This strategy was implemented on the basics of the e-Sampling Strategy. But instead of sampling
a colour with probability ¢, the bee counts the number of failures (empty flowers) and moves to
another colour if this number becomes high enough.

To take a look of the actions of a single bee during one stage:

® The bee visits a flower of certain colour and examines the payoff.
O If the payoff is 0, the bee will add 1 to the number of failures.
® The bee checks if the total number of failures has become high enough.
0 If the total number of failures has reached a certain number, the bee will move to
another colour at the next stage and the number of failures will be set back to 0.
O Otherwise the bee will stay at the current patch

For the matching test we’ll use a single bee and one single flower per colour with a certain
probability of giving a reward of 1 unit of nectar (a success). During the testing of the
simulations, we saw that when the total number of failures before moving to another patch are
equal for each colour, the bee will match its frequency of visits per colour to the probability of
getting a success on that colour.

This was also noticed if more than 2 colours were used in the simulation. We didn’t do a lot of
research on the Failures strategy with more than 2 colours, ie. A(¢, ¢, ..., ¢), because the
computing of the values for matching and an Ideal Free Distribution is more difficult and finding
the correct values for all the variables is hard. But the implementation was able to use more than
2 colours, therefore we tested a little with this simulations to see how the strategy would behave.

But when the probabilities of getting a success on a colours were chosen different, it became
difficult to find the correct value for the number of failures per colour, after which a bee will
move to another colour and obtain matching. This was, as expected, very difficult when the
number of colours would be more than 2.

The results of the simulations will be discussed in the next chapter.
Matching Test for Failures Time Windows Strategy
The implementation of this strategy is almost the same as the basic strategy. The only thing a bee

would have to check is the number of failures in the last couple of steps, different to only
counting consecutive failures.
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Therefore we added a certain memory for the bee, so the bee remembers the last 7 visits. Then if
the number # (number of failures) becomes too high in the last 7 visits, a bee will leave and move
to another colour.

From the results of the simulations with equal probabilities of receiving a successful payoff at the
colours, we perceived the same results as seen by the basic Failures strategy. But a mistake was
found in the implementation. The ‘empty’ history of a bee wasn’t updated in the right way after a
change of colour. By this mistake it was possible that failures, a bee encountered in the previous
colour, would be counted by the failures at the current colour.

After adjusting implementation of the simulation, the simulation was a good representation of
the extended Failures strategy. These results will be explained in the next chapter.

Testing the e—Failures Strategy

We implemented this strategy by taking the implementation of the e-Sampling Strategy and the
Failures strategy and combine these into a new simulation. The basic of this strategy consists
more out of the e-Sampling Strategy and a counter for the number of failures. After some
number of consecutive failures, the bee is forced to move to another colour, instead of staying at
the patch or sampling.

As said the main part for this simulation is copied from the implementation of the e-Sampling
Strategy and added a part for switching colours after some number of failures.

Because the tests for Matching and IFD are already explained before for both basic strategies,
these won’t be discussed here and we’ll move on the next chapter with the results.
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4. Results

Introduction

In this chapter the results, derived from the experiments, are described. First we give an outline
of the configuration of the experiment, thereafter the obtained results will be explained. The
experiments and results are categorized by strategy and particular instance of a strategy. The first
simulations will be explained more extended, since they are the first to be described.

e-Sampling Strategy

At first we start with the results of the simulations of the basic e~Sampling Strategy, as described
in the paper which serves as the basic assumption for this thesis. The simulation will be divided
in 2 instances, (i) a single-bee setting and (if) a multi-bee setting. The single-bee setting will be
used to check if a solitary bee, using the e~Sampling Strategy, behaves according to the Matching
Law. The multi-bee setting is simulated to check if the population will stabilize in the Ideal Free
Distribution.

Basic single-bee setting [test for Matching Law]
For this simulation we used the following setup [the probability of a flower giving a reward of 1
unit nectar is mentioned by the term ful/ chance]:

= 1 bee

= 1 flower of colour Y, full chance y = 0.3

= 1 flower of colour B, full chance 4 = 0.7

= 10.000.000 time steps

= £=0.05
1.4 T T
1.21 E
1 _________________________
average number of visits flower ¥
nar
fill rate flower ¥ {y =0.3)
06} .
average number visits ¥ [ fill rate Y
0.4r average number of visits flower B
ozl ||||||||||||| fill rate flower B (b = 0.7)
average number visits B / fill rate B
1]

Figure 8

As we can see from the figure above, the bee will actually behave according to the Matching Law.
The bars on the right represent the average number of visits divided by the full chance per colour
(we call this the Matching Factor), and when this number is 1 (see the dotted line in the figure), the
bee matches exactly it’s visits to the full chances.
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The average number of visits per colour is almost equal to the full chance of the particular
colour, as can be noticed from the following table.

Colour Full chance Average number of visits Matching Factor
Y 0.3 0.3009 1.0029
B 0.7 0.6991 0.9988

Table 1

From 2 to n flowers in a single-bee setting [test for Matching Law]
We wanted to test if the assumptions from the basic paper, can be also applied to more than 2
colours. So we extended the number types of flowers in the simulation to 3 and ran the
simulation again, and the setup is as following.

= 1 bee

= ] flower of colour Y/, full chance y = 0.1
= 1 flower of colour B, full chance 4= 0.3
= 1 flower of colour R, full chance »= 0.6
= 10.000.000 time steps

= £=0.05
1.4 . T T
average number of visits flower ¥
1.2} . fill rate flower ¥ (p = 0.1)
1 average number visits ¥ / fill rate ¥
- average number of visits flower B
0.8} R
""""""l fill rate flower B (g = 0.3}
0.6 R
average number visits B / fill rate B
0.4 :
- average number of visits flower R
02t g """"""l fill rate flower R (g = 0.6)
0 average number visits R / fill rate R
Y B R
Figure 9
Colour Full chance Average number of visits Matching Factor
Y 0.1 0.0995 0.9992
B 0.3 0.3003 1.0009
R 0.6 0.6002 1.0004
Table 2
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The outcome of the simulation is as expected. The bee will visit the flowers in those proportions
given by the full chances. Because the sum of the full chances is equal to 1 (0.1 + 0.3 + 0.6 = 1),
the average number of visits is (almost) equal to the full chance.

If the sum of the full chances is greater than 1, a wormalized full chance is used to see if the bee
behaves in terms with the Matching Law. The normalized full chance can be interpreted as a
weighted full chance and is described as:

Ci

normalized full chance nfc; = = .
i=1¢i

where ¢, = full chance of colour 7
nec = number of colours

This situation is demonstrated by the simulation with the following setup:

= 1 bee

= 1 flower of colour C,, full chance ¢, = 0.1, normalized full chance #f;, = 0.06
= 1 flower of colour C,, full chance ¢, = 0.2, normalized full chance #f;, = 0.11
= 1 flower of colour Cj, full chance ¢; = 0.2, normalized full chance #fe; = 0.11
= 1 flower of colour C,, full chance ¢, = 0.5, normalized full chance #f;, = 0.28
= 1 flower of colour C;, full chance ¢; = 0.8, normalized full chance #fe; = 0.44
= 10.000.000 time steps

= £=0.05
14 T T T T
1.2} E

11 e
0.8
0.6+

- average number of visits flower Ci
04 ill rate flower Ci
02t """"""l normalized fill rate flower Ci
’—ﬂ~ i average number visits Ci / fill rate Ci
1]
C, C, C, C. Cs

Figure 10
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Colour Full chance Normalized Full Average.n.u mber Matching Factor

chance of visits

C 0.1 0.0556 0.0551 0.9926

C2 0.2 0.1111 0.1113 1.0014

GCs 0.2 0.1111 0.1111 1.0000

Cy 0.5 0.2778 0.2780 1.0009

Cs 0.8 0.4444 0.4445 1.0000
Table 3

From the results above, it can be noticed that if the bee uses the e-Sampling strategy, the
frequency of the visits of the different colours matches the normalized full chance (the Matching
Law) and this also holds for situations of more than 2 different colours.

Basic multi-bee setting [test for Ideal Free Distribution]

Because of the assumptions made in the basic paper, this simulation was more difficult to
implement. The number of bees and the total number of flowers had to be chosen wisely to
accomplish an Ideal Free Distribution.

For good and understandable results, the number of simulation steps has to be large and the
number of bees has to be approximately the same as the total number of flowers. We’ll explain

this by the simulations. The results will be shown in tables, since the graphs are less informative.

If we show a graph of the ratios #b,/q, = nb,/q, = ... = nb,/q; per step, this will look like:

i mon B0 A0 SO S0 0 WND BN D D D 00 W00 AND SN0 SOE U0 GDCO GeE SO0

Figure 11: Example of 2 graphs with the ratios for colour 1 (red line) and colour 2 (blue line)

These graphs are not very useful. Sure we can see that the ration are almost equal, but we cannot
see the stages with an Ideal Free Distribution.

For comparing the results of the simulations we count the average fractions #b,/q,, nb,/q,, ...,
nb,/q; for each colout, this value will be called average IFD rate A, This can be defined as the
average fraction of bees per colour (the number of bees per colour divided by the number of
flowers of that colour). The closer these numbers are to 1, the more the population will be
distributed according to the Ideal Free Distribution.

We will start with the simulations of 2 different colours and 10 bees and increase the number of
steps. For each number of A4, we took the average value of a 10 simulations.
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Steps Bees Colour 1 Colour 2 e A, A,

1.000 10 5 5 0.05 0.9987 1.002

10.000 10 5 5 0.05 0.9998 0.9997

100.000 10 5 5 0.05 0.9997 1.0003

1.000.000 10 5 5 0.05 0.9998 1.0001
Table 4

We noticed that in the average fraction of bees per colour is (almost) equally distributed over the
available colours and flowers, hence on average the bees will be distributed according to the Ideal
Free Distribution. The fractions aren’t equal to 1, because of the disturbing effect of the sampling
bees.

When simulating, the simulation of 100.000 and 1.000.000 steps took quite a long time to
perform and for the other simulations this big simulation will be skipped, because the results look
the same for smaller simulations.

We wanted to see the influence of ¢, the results of the simulations with different values for ¢ are
given in the following table:

Steps Bees Colour 1 Colour 2 e A, A,

10.000 10 5 5 0.01 0.9982 1.0125
10.000 10 5 5 0.05 0.9998 0.9997
10.000 10 5 5 0.10 0.9984 1.0024
10.000 10 10 10 0.01 0.5029 0.4972
10.000 10 10 10 0.05 0.5007 0.4988
10.000 10 10 10 0.10 0.5042 0.4978
10.000 10 8 12 0.01 0.6104 0.4276
10.000 10 8 12 0.05 0.6220 0.4265
10.000 10 8 12 0.10 0.6299 0.4258

Table 5

The results of the simulation show that the influence of ¢ on A, is noticeable. But this is due to
the fact that the number of steps is too little. When the number of steps will increase, the effect
of the samples can be neglected and this will hold for any e close to 0. On 10.000 steps, with ¢ =
0.01, a bee will sample 10 times on average, but when ¢ = 0.1, a bee will sample 100 times on the
average. So, with such little steps, the influence of ¢ is noticeable.

We also see that if the total number of flowers is greater than the number of bees, the average
number of bees per colour won’t be 1. This can easily be explained by the fact that there are too
much flowers and some flowers won’t be visited during one step, since there are not enough bee
to visit all the flowers in one step. But for an IFD, they have to be (almost) equal, as can be seen
in the simulations with 10 bees and 10 flowers on both colours. The ratios .4, and A, are almost
equal. But when the total number of flowers is greater than the number of bees, but the number
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of flowers at a patch will be less than the number of bees, the bees won’t be distributed according
to the Ideal Free Distribution. This can be described to the fact the bees will visit the smallest
patch too often compared to the patch with the most flowers. We will try to explain this with the
next simulations.

Next we look at the value of 4, when the number of flowers per colour is changed:

Steps Bees Colour 1 Colour 2 e A, A,

10.000 10 5 5 0.05 0.9998 0.9997
10.000 10 2 4 0.05 1.8598 1.5707
10.000 10 3 7 0.05 1.1645 0.9286
10.000 10 2 2 0.05 2.5371 2.4607
10.000 10 1 7 0.05 1.7302 1.1825
10.000 10 3 6 0.05 1.2423 1.0446
10.000 10 10 10 0.05 0.5007 0.4988
10.000 10 5 15 0.05 0.9251 0.3580
10.000 10 8 12 0.05 0.6220 0.4265
10.000 10 7 13 0.05 0.7031 0.3908
10.000 10 10 20 0.05 0.4907 0.2550
10.000 10 50 50 0.05 0.1022 0.0987
10.000 10 100 100 0.05 0.0492 0.0507

Table 6

From table 6, we notice that if the total number of flowers is equal to the number of bees the
average distribution of the bees will be (almost) as if it’s in an Ideal Free Distribution. This is also
observed if the number of flowers per colour is the same.

If the number of bees is greater than the total number of bees, the results show that the bees will
be almost distributed as in an Ideal Free Distribution. If food sources (flowers) are scarce, the
results show that bees using the e-Sampling Strategy will divide themselves (on average) over the
available sources, following the Ideal Free Distribution.

But when the total number of flowers greater than the number of bees and the number of
flowers per colour differ, the average distribution won’t be according to the Ideal Free
Distribution. If we compute Colour 1 * 4, and Colour 2 * 4,, we note that these values will both
be close to 5 (7*0.7031 = 4.92 and 13*0.3908 = 5.08). So the bees will distribute themselves
equally over the patches (as in 50% on patch 1 and 50% on patch 2), whatever the number
flowers in the patches are, if the total number of flowers is greater than the number of bees.

It doesn’t matter what flower a bee chooses, since there is always a full flower available. Hence
the bees will be distributed equally over the patches.

If we simulate with more bees and more flowers, the results will be the same as the previous

results as we can see in table 6. Only the numbers will be closer to the expected values since we
use the average value of more bees and more flowers (this will also hold for more steps).
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From 2 to n flowers in a multi-bee setting [test for IFD]

Next we will expand the number of colours and test if the results are the same for this

simulations.. The results of the simulations with 3 colours are shown hereaftet:

Steps Bees Colour 1 Colour 2 e A, A,

10.000 100 50 50 0.05 1.0029 0.9973

10.000 100 100 100 0.05 0.5009 0.4983

10.000 100 20 50 0.05 1.5751 1.3688

10.000 1000 500 500 0.05 1.0009 1.0007

10.000 1000 1000 1500 0.05 0.4995 0.3341
Table 7

Steps Bees Colour1 | Colour2 | Colour3 |e A, A, A,

10.000 15 2 4 6 0.05 | 1.4453 1.2753 1.1694
10.000 15 5 5 5 0.05 | 1.0045 0.9913 1.0062
10.000 15 2 5 8 0.05 | 1.3348 1.0801 0.8616
10.000 15 3 6 6 0.05 | 1.1906 0.9499 0.9529
10.000 15 5 10 15 0.05 | 0.9041 0.5377 0.3343
10.000 15 10 10 10 0.05 | 0.5021 0.4988 0.5014
10.000 15 10 20 30 0.05 | 0.5002 0.2502 0.1677
10.000 15 100 100 100 0.05 | 0.0497 0.0502 0.0499
10.000 150 35 50 65 0.05 | 1.1058 1.0283 0.9225

Table 8

It can be seen if the total number of flowers is equal to the number of bees or the number of
flowers per patch is equal an average Ideal Free Distribution is observed, just as we saw in the
situation with 2 types of flowers.

But the more the numbers of flowers per patch differ, the more disturbance in the ratios .4,
Since we don’t simulate an infinite amount of time, there is a disturbance, caused by ¢ and this
disturbance is the greatest at the patch with the smallest number of flowers. This disturbance will
be less if the number of bees, number of flowers and number of steps will be greater.

In the case of food scarcity (more bees than flowers), the results match with the results found for
the less complex situations with only 2 types of flowers.

If the number of bees is smaller than the total number of flowers, also the same distribution as in
the less complex situation with 2 types of flowers is noticed. Thus the bees will distribute
themselves equally over the patches, such that at each patch there are an equal number of bees. If
we have 15 bees and 3 different flower types, then there will be an average of 5 bees per colour
per step.
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Dynamic e-Sampling Strategy
For this strategy we will discuss both of the methods as stated in comparison to the basic
strategy, firstly focusing on the matching test. The results for an Ideal Free Distribution will be

discussed at the end of this section.

Basic single-bee setting [test for Matching Law]

For this simulation we used the following setup:

= 1 bee

= 1 flower of colour Y, full chance y = 0.3
= 1 flower of colour B, full chance 4 = 0.7
= 1.000.000 time steps

= £=0.05

First we show the results for the first method (counting from the beginning of the simulation)
illustrating it’s behaviour.

14 T
1.2+ E
1+ ]
average number of visits flower ¥
08t E
fill rate flower ¥ {y = 0.3)
0.8 1 average number visits ¥ / fill rate ¥
0.4 . - average number of visits flower B
0.2l ) ||||||||||||| fill rate flower B (b = 0.7}
average number visits B / fill rate B
0
Y
Figure 12
Colour Full chance Average number of visits Matching Factor
Y 0.3 0.3064 1.0212
B 0.7 0.6936 0.9909
Table 9
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The results of the second method (set number of failures back to 0 after a success) are shown

below:
14 T T
12} R
1l
] average number of visits flower ¥
08 g
fill rate flower Y [y =0.3)
0.8 ] average number visits ¥ / fill rate ¥
0.4 . - average number of visits flower B
0.2l ) ||||||||||||| fill rate flower B (b = 0.7}
average number visits B / fill rate B
0
Y B
Figure 13
Colour Full chance Average number of visits Matching Factor
Y 0.3 0.2795 0. 9316
B 0.7 0.7205 1.0293
Table 10

As we can see from the figures and tables above, the bee will almost behave according to the
Matching Law and the performance of the first method looks better. But as stated in chapter 3,
this method acts a little more complicated as can be perceived from the results. Note that in this
case the bee encountered 549934 successes and 399931 failures, thus before the value of ¢ is
changing there have to be at least 150003 more consecutive failures. For the rest of this section
we will use method 2.

From 2 to n flowers in a single-bee setting [test for Matching Law]
We extend the number types of flowers in the simulation to 5 and ran the simulation again, and
the setup is as following.

1 bee

1 flower of colour C,, full chance ¢, = 0.1, normalized full chance #fc, = 0.06
1 flower of colour C,, full chance ¢, = 0.2, normalized full chance #7f;, = 0.11
1 flower of colour C;, full chance ¢; = 0.2, normalized full chance #f;; = 0.11
1 flower of colour C,, full chance ¢, = 0.5, normalized full chance #»fz, = 0.28
1 flower of colour C;, full chance ¢; = 0.8, normalized full chance #fe; = 0.44
10.000.000 time steps

e=0.05
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12+ -
1k
0.8 5]
0.6
- average number of visits flower Ci
04 fill rate flower Ci
0.2 """"" normalized fill rate flower Ci
8 ’_I_’— average number visits Ci / fill rate Ci
Figure 14
Colour Full chance Normalized Full Average.n.u mber Matching Factor
chance of visits
C 0.1 0.0556 0.0446 0.8032
C2 0.2 0.1111 0.0958 0.8618
GCs 0.2 0.1111 0.0945 0.8509
Cy 0.5 0.2778 0.2780 1.0010
Cs 0.8 0.4444 0.4870 1.0958
Table 1

The simulations show that there will be less matching when using the dynamic e-Sampling
strategy. This can be explained by the fact that ¢ has to be close to 0 for acquiring the Matching
Law. If ¢ will increase and will become close to 1, the basic principle of the strategy is
undermined. This will cause the bee to sample more often when it visits flowers with low full
chances then when the bee visits flowers with high full chance, because the probability of
encountering a failure will be less and ¢ won’t increase.
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Dynamic e-Sampling Strategy in a multi-bee setting [test for IFD]

We want to compare the results of this extension to the basic strategy, therefore we have to
choose the same settings of the simulations of the basic strategy and apply these settings to the
extended strategy.

Steps Bees Colour1 | Colour2 |e A, A, dynamic | A, A, dynamic
10.000 10 5 5 0.05 0.9982 1.0350 1.0125 | 1.0703
10.000 10 3 7 0.05 1.1645 | 1.2894 0.9286 | 09512
10.000 10 8 12 0.05 0.6220 | 0.6648 04265 | 0.4340
10.000 10 10 10 0.05 0.5007 | 0.5161 04988 | 0.5365
10.000 10 50 50 0.05 0.1022 0.1069 0.0987 | 0.1037
10.000 100 50 50 0.05 1.0029 1.0511 0.9973 | 1.0541
10.000 100 100 100 0.05 0.5009 0.5261 0.4983 | 0.5265
10.000 100 100 200 0.05 04925 0.5286 0.2518 | 0.2620
10.000 100 20 50 0.05 1.5751 1.6780 1.3688 | 1.4341
Table 12

From the results in table 12 can be observed that the extension the basic strategy with a dynamic
¢ gives the same results as the basic e~Sampling strategy. This can be explained by the fact that
the results not really depend on e. We only have to keep in mind that ¢ has to be close to 0, so a
bee stays long enough in a patch.

In table 13 we show the results for the simulations with more than 2 colours (10.000 steps and ¢
= 0.05). These results are also in line with the results we observed during the simulations of the
basic e-Sampling Strategy for more than 2 colours. The disturbance by ¢ is a little bit more, but
this happens because the ¢ is dynamic and will increase (and thus the influence and disturbance
increases).

Colourl | Colour2 | Colour3 | A, Agyna A, Aziya A; Asina

5 5 5 1.0045 1.0711 0.9913 1.0470 1.0062 1.0397

2 5 8 1.3348 1.4842 1.0801 1.1644 0.8616 0.8749

3 6 6 1.1906 1.2845 0.9499 1.0154 0.9529 1.0067

5 10 15 0.9041 0.9422 0.5377 0.5448 0.3343 0.3754

2 4 6 1.4453 1.5877 1.2753 1.3536 1.1694 1.1807
Table 7
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Failures Strategy

For this strategy we used an approach of trial and error, not only for implementing the strategy,
but also for getting the results. It is stated in the paper introducing the basic strategies ,that for all
full chances p,g € [0.22, 0.78] one can obtain matching with automata A(y,b) with 5,6 € {1,2} and
y and b denote the number of (consecutive) failures after which a bee will move to another
colour.

Thus by the trial and error approach, we try to find sets of p, g and A(y,h) for which matching
occurs. Hereafter we simulate automata A4,(x,)) and try to find values for n which give the same
result as A(x,)).

For this simulations we only consider a single-bee situation and try to find those instances where
matching occurs, since it is stated only a static result for the existence of an Ideal Free
Distribution and no dynamic process on how to reach an Ideal Free Distribution.

Basic single-bee setting A(x,y) [test for Matching Law]

The simulations will be divided in 2 main parts, for automata A(x,)) with x = y and x # . In both
cases, there were situations which could occur when adding the full chances p and ¢. But the first
case was more understandable and easy to find the right settings.

During the simulations we found out that these situations had their own characteristic results.
We will explain this results without the graphs, because they all look like the ones that could be
seen before.

X =y
" ptg=lorp=gq

In this situations matching was seen in every simulation. The fact that instances of p = ¢
show matching is quite understandable, because every colour has the same full chance
and is visited the same by the bee. In the other situations p + ¢ = 1 the matching can be
described to the fact that (since x = j) we can forget of the number of failures. It doesn’t
matter if x = y = 2 or x = y = 20. Thus we can state that these cases can be seen as x =y
= 1. Since a bee will leave after encountering 1 failure with probability 1-p (or 1-q
otherwise) and we have the requirement of p + ¢ = 1, from where we get 1 - p = ¢ (and ¢
=1 - p otherwise). Thus a bee will leave a patch with a probability which is equal to the
full chance of the other colour and therefore matching occurs.

=) + g < 1

No matching occurred in these instances, but it was noticeable that in every simulation
the Matching Factor (the average number of visits divided by the full chance per colour)
was above 1 for the colour with the smallest full chance. This can be seen as a bee visiting
the flower with the lowest payoff too often. Because the sum of the full chances is smaller
than 1, the bee will encounter more failures and will move to anothetr colour more often,
but this effect is less on the colour with the lowest full chance. If p and ¢ are close to each
other and p + ¢ is close to 1, this effect will be of less influence and the Matching Factors
of both colours will be closer to 1.

= ptg>1
For this instances also no matching could be noticed and the opposite effect as noticed
before could be seen. In every simulation the Matching Factor (the average number of
visits divided by the full chance per colour) was above 1 for the colour with the highest
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full chance. Thus a bee will visit the flower with the highest payoff to often. The
explanation follows from above, because the sum of the full chances is greater than 1, the
bee will receive more successes and stay in the current patch. This effect is of more
influence on the colour with the highest full chance. If p and ¢ are close to each other and
p + gis close to 1, this effect will be of less influence and the Matching Factors of both
colours will be closer to 1.

This situations are more difficult to classify, because the influence of the combinations x, y and p,
g were very hard to understand. In one kind of simulation (p = ¢) the results were easy to
understand.

p=q

Since p and ¢ are equal only the number of failures is has influence on how long a bee will
stay in a patch. If x is twice as much as y, a bee will stay twice as long in the patch
described by x, as can be seen below.

Average number Leave after Full Normalized Matching
of visits failures chance Full chance Factor
0.2500 3 (%) 0.4 () 0.5000 0.5000
0.7500 6 () 0.4 (9) 0.5000 1.5000
Table 8

This holds for the instances whete p+ ¢ # land p + g = 1.

PFq
The simulations showed out that in matching occurs, some setting where matching can
been seen are:

x (patch 1) y (patch 2) P q MF,; MF;

3 2 0.4 0.8 1.0053 0.9974

6 5 0.5 0.7 1.0006 0.9996

15 20 0.2 0.5 1.0030 0.9991

260 261 0.4 0.6 0.9939 1.0041
Table 15

After setting p and ¢, we adjusted x and y and examined the effect of this adjustment to
the Matching Factors. We noticed that if MF, <1 (and thus MF, > 1) we had to increase
x. By this adjustment a bee will stay longer in patch 1 (with x and MF,) and therefore the
value of MF, will increase. If the ratios are chosen wisely (by trial and error), it can be
possible to receive matching in every instance.
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Exctended Falinres Time Window Strategy single-bee setting A, (x,y) [test for Matching Law]

For this simulations we used the results and settings of the simulations performed in the previous
section. In this way, we can see if the results of this extension are the same compared to the basic
strategy.

X =17

xFy

=9

If p and q are equal, the simulations show that there is matching, » doesn’t have any
effect on the results. This can be noticed since in this situation the extension can be
neglected and thus the explanation given in the previous section can be applied also in
this situation.

ptg=1

If » = x = y = 1, we notice matching, since this instance of 4, (x,y) can be interpreted as
the basic Failures Strategy. In this case it can be stated that A,(xy) = Aly)
But if » > 1, the matching will be disturbed, because the bee will stay too long at a patch.
This behaviour wasn’t expected, we expected that for every # matching would occur, but
since the bee will stay minimally as long as the failures window 7, this situation cannot be
interpreted as A, (x,x) = A(xx).

ptg<landp+g>1

In both of the cases, the extended Failures strategy will act as if the basic Failures
strategy. Again, if » = 1, the behaviour will exactly match the basic strategy, but when » >
1, this effect will be stronger. Since a bee will stay too long in a patch because of 2
reasons, (i) the sum of the full chances isn’t 1 and thus a bee will stay too long in a patch
(see previous section for explanation) and (i) a bee will stay at least as long as the failures
window.

prq=1

For this instance, it was far more difficult to see matching. We tried a lot of instances, but
in none of them was matching noticed. This can be explained to the fact that the
influence of the failures window is stronger on one side. In the case x # y and 7 = x ot »
=y, a bee will only leave the patch where » = x (or # = y otherwise) after » consecutive
failures, but on the other side a bee can visit at least 1 failure less before it will move to
another colour. Since this probability isn’t equal for both colours, no matching will occur.

43



PFq

n X (patch 1) y (patch 2) p q MF; MF,
3 3 2 0.4 0.8 0.0669 1.4666
3 2 0.4 0.8 0.2241 1.3880
10 3 2 0.4 0.8 0.4353 1.2824
20 3 2 0.4 0.8 0.5247 1.2376
200 3 2 0.4 0.8 0.5307 1.2347
2000 3 2 0.4 0.8 0.4892 1.7662
6 6 5 0.5 0.7 1.0874 0.9375
10 6 5 0.5 0.7 0.7884 1.1511
20 6 5 0.5 0.7 0.9974 1.0018
100 6 5 0.5 0.7 1.0150 0.9893
1000 6 5 0.5 0.7 1.1304 0.9069
Table 16

As we can see in the table above there cannot be a simple answer to the results. It some
cases almost no matching is to be found (x=3 and y=2), but with the other instance in
some cases (almost) matching can be seen. It looked like with well chosen values for all
the variables matching occurs and the extended Failures strategy will perform as well as
the basic strategy.

For now we don’t have a fitting answer or explanation to this results, mostly because

these simulations and results are obtained by trial and error, instead of computing the
results in advance and simulating afterwards to check the computed results.
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e-Failures Strategy
We will simulate this strategy with the same setting as the basic e-Sampling Strategy, because in
that way we can measure it’s performance correctly.

Basic single-bee setting [test for Matching Law]

For this simulation we used the following setup:
= 1bee
= 1 flower of colour Y, full chance y = 0.3
= 1 flower of colour B, full chance /= 0.7
= 1.000.000 time steps

= £=0.05
1-‘ T T
1.2+ i
1}
average number of visits flower ¥
0.8+ E
fill rate flower ¥ {y = 0.3)
0.8 1 average number visits ¥ / fill rate ¥
0.4 - - average number of visits flower B
0.2l ) ||||||||||||| fill rate flower B (b = 0.7}
0 average number visits B / fill rate B
Y B
Figure 15
Colour Full chance Average number of visits Matching Factor
Y 0.3 0.1516 0.5055
B 0.7 0.8484 1.2119
Table 9

As shown in the figure and table above, no matching is observed. We can explain this by
something we noticed before. When simulating the dynamic e-Sampling Strategy we noticed that
when the full chances of the colours aren’t equal the matching will be disturbed. Because a bee
will encounter more failures on the colour with the lower full chance, it will change more quickly
to the other colour. A bee visiting the most rewarding colour will act more likely as if it uses the
basic e-Sampling Strategy because the probability of visiting an empty flower is smaller.

By saying this we expect that this strategy will perform better when the full chances of the

colours are equal, thus we will simulate this strategy again, but now with equal full chances for
both of the colours.
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For this simulation we used the following setup:

1 bee

1 flower of colour Y, full chance y = 0.5
1 flower of colour B, full chance 4 = 0.5
1.000.000 time steps

= £=0.05
1_" T T
1.2} R
1}
average number of visits flower ¥
0.8 E
fill rate flower ¥ [y = 0.3)
0.8 1 average number visits ¥ [ fill rate ¥
0.4 - - average number of visits flower B
02| h ||||||||||||| fill rate flower B (b = 0.7}
0 average number visits B [ fill rate B
Y B
Figure 16
Colour Full chance Average number of visits Matching Factor
Y 0.5 0.4995 0.9991
B 0.5 0.5005 1.0009
Table 108

This results show exactly what we expected. In case of equal full chances, matching will occur.
This can be ascribed to the fact that the effect of the failures can be neglected. This happens with
same probabilities per colour and won’t have any influence on the average number of visits per

colout.

Thinking of this, we don’t have to simulate for testing if an Ideal Free Distribution will occur,
this will be in line with the above. If the full chances are equal, at some stages an Ideal Free
Distribution will exist. But in situations where the full chances (more exactly, the number of
flowers per colour in case of the Ideal Free Distribution) will differ, an Ideal Free Distribution
can occur, but not as often as with equal nectar supply per patch (we can say this because in the
simulation every flower would produce 1 unit of nectar per step).
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5. Conclusions and recommendations

Introduction

In the last chapter we give the conclusions of the research which has been done In order to write
this thesis. These conclusions come from the development of the extensions of the basic
strategies, the introduced e-Failures strategy and the results, computed by the simulations. After
that we will address some directions for further research.

Conclusions
With respect to the research questions and problem statement we may conclude the following:

Will the results in the basic paper also hold in more complex: situations, i.e. more than 2 types of flowers?

As we observed in the results, the e-Sampling Strategy will hold for situations with more than 2
types of flowers. When simulating, we had to choose the numbers of bees and flowers wisely to
meet the assumptions made in the basic paper. If the total number of flowers is greater than the
number of bees, an Ideal Free Distribution isn’t likely to be seen, because it doesn’t matter for
the bees where to go, they will always receive a positive reward. When the number of bees is
equal to the total number of flowers, an Ideal Free Distribution is observed, because the
assumptions made in the paper are met. This can also be seen if the number of bees is greater
than the number of flowers (scarcity of food), but the ratios of average number of bees per
flower (per colour) would differ more.

In what way have the basic strategies be adjusted or extended to meet the more complex conditions?

After choosing and analyzing the basic strategies, a lot of extensions were taken into
consideration. Some of them are part of this thesis, but most of them are not. The extensions had
to be in line with the basics of these strategy. The strength of both of the strategies is their
robustness and simplicity. We chose to make minor changes in some of the key features of a
strategy. Furthermore we looked at the behaviour of the e-Sampling Strategy in case of more
colours. In the paper which served as the fundament for this thesis only situations with 2 colours
were discussed. And since the paper only gave theoretical results for these strategies, we create a
simulation to get a better view of the strategies.

For the e-Sampling Strategy we introduced a dynamic e-Sampling Strategy. This was considered
to be more in line with the natural thought of leaving a patch faster if the rewards were bad. If a
bee would observe more empty flowers in a patch of a certain colour, then the possibility of
leaving that patch and move to another colour would increase.

For the Failures Strategy we introduced a ‘Failure Time Window Strategy’. Instead of counting
the consecutive failures and move to another colour if this number of failures reaches a certain
number, this extension looks at the number of failures in the last couple of flower visits. By this
manner, a bee will stay in a patch for a longer time and thus get the chance of gaining a better
perception of the patch.

At last we introduced a ‘new’ strategy, the ‘e-Failures Strategy’. This strategy uses the basic
principles of both e-Sampling Strategy and Failures Strategy. A bee will forage a patch and with a
small probability ¢, the bee will sample a different patch. It will only stay at the other patch if
there is a better (or higher) reward, otherwise it will return to the original patch. But if the bee
visits a number of consecutive failures, it will also leave the patch and try to find a better patch.
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How do the extended, new strategies perform in comparison to the basic strategies?

After implementing the strategies and simulating, the results show, that neither the extensions,
like ‘failure window strategy’, nor the new dynamic e-Sampling Strategy performed better than the
basic strategies. In some cases (chosen wisely) the extensions and new strategy will perform
almost as good as the basic strategies, but in no circumstances they lead to better results. This can
be explained by the fact that the extensions of the strategies disturb the basic principles of the
strategies and just these basic principles (especially a value for &, which has to be close to 0) lead
to optimal results.

Can the basic strategies be extended and will this improve their performance?

As we concluded, the basic strategies can be extended, in a lot of ways. We chose for 2
extensions (dynamic e-Sampling Strategy and the Failure Time Window Strategy) and defining a
new strategy (e-Failures Strategy). These extensions and adjustments didn’t lead to better results
or a better performance, in most cases performance dropped and the results declined. However,
during the research a lot was learned about the strategies and it was very interesting to examine
the extension of the number of colours. In the cases where the results of the extensions are
(almost) as good as the results of the basic strategies, this happens because the influence of the
extensions is reduced and the strategy will behave as the basic one.

When simulating, we noticed that the assumptions for finding an Ideal Free Distribution stated in
the paper for the basic e-Sampling Strategy weren’t met in the implementation of the strategy.
But the results showed us that an Ideal Free Distribution could noticed. By this we can say that
the strategy is even more robust than is stated, because it will hold under less strict assumptions.

As some people might say: “Never change a winning team...”. However one can only try to
improve it.
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Recommendations for future research

If there was just more time... From the beginning of the research, one of the main tasks of my
supervisor was keeping me focused and in the right direction. In one of our first meetings we
discussed possible adjustments and extensions to the basic strategies. I optioned a couple of them
and after one of those meetings I got the idea to create a tool where every strategy (and possible
extensions) could be simulated, analyzed and compared. This was a little too much and I had to
be hold back. Do one thing first and if that’s done right, move forward. So I decided to focus on
more colours, the dynamic ¢ and A, (x,x). I received a lot of answers to the questions I had
starting this research and after finishing the research some questions still are open.

Some of the ideas and questions I had in mind for extending the basic strategies and aren’t taken
into consideration for this thesis were:

= Travel time: What happens if the travel time between flowers is taken into account? Will
it be better to visit a flower which is nearer but has less nectar reward or to look for a
richer flower more far away?

* Energy level: What happens if a bee has to visit the first flower it encounters, because
otherwise it would starve?

= Addiction: What happens if bee develop an addiction for one particular colour? How
does this affect the distribution of the population?

®=  Memory: By remembering more visits (and per colour) can the critical level be estimated
in a better way? And in the case of more than 2 colours, when leaving a patch, which new
colour has to be chosen? Is it better to visit a random patch or visit the patch with the
highest estimated reward?

= Fly time: In the case of the basic strategies, a bee is always on a flower (unless no flower
is free). But what if a bee decides to fly around instead of gaining nectar?

= Multiple strategies: How will a population of bees will be distributed if not all the bees
use the same strategy?

Some of these questions and remarks have been examined in the past years, but it would be
interesting to see how these robust and simple strategies would hold under these extensions.

The Matlab scripts took a long time to simulate, this was due to the fact of having not a
supercomputer and a lack of great programming skills in Matlab. Maybe the simulations could be
implemented in a different way to improve speed and performance.

Furthermore it would be nice to have a tool or program which can be used to simulate and
compare the strategies at once. For now, we programmed and implemented the tool without a
user interface. In fact for every simulation (strategy) a single script was created and adjustments
of the variables would have to be done in the script. Therefore it would be nice to have all the
different strategies and simulations together in one program. When this program could save all
the performed simulations, they could be collected in a database and be available for further
research. If the tool could be web-based, people all over the world (with an internet connection)
could simulate the strategies and compare their results to the simulations from the database.

As stated in the first chapter, foraging strategies are used to solve congestion problems. The most
well-known research is done by the School of Computer Science at the University of Dortmund
(BeeJamA). It would be nice to see if the strategies stated in this thesis could also be used to solve
this kind of problems.
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Matlab code for simulations

e-Sampling strategy
Matching Test (basics)

% number of steps
nr_steps = 10000000,
samples = 0;

% epsilon
epsilon = 0.05;
% number of colours
nr_colours = 2;

% full chances
fillrate(1,1) = 0.3;
fillrate(1,2) = 0.7;

% set bee

bee = repmat(struct('colour’, 0,'epsilon’, 0), 1, nr_steps);
r = randperm(nr_colours);

bee(1).colour = £(1,1);

bee(1).epsilon = epsilon;

% data to collect

on_colour(1,1) = 0;

on_colour(1,2) = 0;

% start simulation

t=1;
for t = T:nr_steps
ep = rand;

if(ep < bee(1).epsilon)
% bee is sampling, so move to another colour
samples = samples + 1;

old_colour = bee(1).colour;
co=1;

ct=1;

cos = zeros(1,nr_colours-1);
for co = 1:nr_colours

if(co ~= old_colour)
cos(1l,ct) = co;
ct=ct+1;
end
end

cd = size(cos,2);
cost = randperm(cd);
new_colour_id = cost(1,1);
new_colour = cos(1, new_colour_id);
% check reward
epl = rand;
if(ep1 < fillrate(1,new_colour))
% full, so stay in new patch
bee(1).colour = new_colout;
clse
% empty, return to previous colour
bee(1).colour = old_colour;
end
else
% no sampling, so stay in patch
on_colour(1,bee(1).colour) = on_colour(1,bee(l).colour) + 1;
end
end
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Dynamic e-Sampling strategy

Matching Test Dynamic Epsilon (basics)

% number of steps
nr_steps = 10000000,
samples = 0;

% epsilon
epsilon = 0.05;

% number of colours
nr_colours = 2;

% full chances
fillrate(1,1) = 0.3;
fillrate(1,2) = 0.7;

% set bee

bee = repmat(struct('colour’, 0,'epsilon’, 0), 1, nr_steps);
r = randperm(nr_colours);

bee(1).colour = r(1,1);

bee(1).epsilon = epsilon;

% data to collect

on_colour(1,1) = 0;

on_colour(1,2) = 0;

% start simulation

t=1;
for t = l:nr_steps
ep = rand;

if(ep < bee(1).epsilon)
% bee is sampling, so move to another colour
samples = samples + 1;

old_colour = bee(1).colour;
co=1;

ct=1;

cos = zeros(1,nr_colours-1);
for co = 1:nr_colours

if(co ~= old_colour)
cos(1,ct) = co;
ct=ct+1;
end
end

cd = size(cos,2);

cost = randperm(cd);

new_colour_id = cost(1,1);
new_coloutr = cos(1, new_colour_id);

% check reward

epl = rand;

if(ep1 < fillrate(1,new_colour))
% full, so stay in new patch
bee(1).colour = new_colour;

else
% empty, return to previous colour
bee(1).colour = old_colour;

end

else
% no sampling, so stay in patch
on_colour(1,bee(1).colour) = on_colour(1,bee(l).colour) + 1;

% check reward and update epsilon

ep2 = rand;

if(ep2 < fillrate(1,bee(1).colour))
% success
bee(1).failures = 0;

else

% failure, so adjust number failures and epsilon
bee(1).failures = bee(l).failures + 1;
bee(1).epsilon = epsilon™(1/((bee(1).failures)+1));
end
end
end



Failures strategy

% number of steps
nr_steps = 10000000,

% number of colours
nr_colours = 2;

% full chances
fillrate(1,1) = 0.2;
fillrate(1,2) = 0.2;

% change after number of consecutive per colour
change_after(1,1) = 2;
change_after(1,2) = 3;

% set bee

bee = repmat(struct('colour’, 0,'lastempty’, 0), 1, nr_steps);
r = randperm(nr_colours);

bee(1).colour = £(1,1);

bee(1).Jastempty = 0;

% data to collect
on_colour(1,1) = 0;
on_colour(1,2) = 0;

% start simulation
t=1;
for t = T:nr_steps
on_colour(1,bee(1).colour) = on_colout(1,bee(1).colour) + 1;

ep = rand;
if(ep > fillrate(1,bee(1).colour))

% failure

bee(1).Jastempty = bee(1).lastempty+1;
end

% Do we have to change colour or stay in the patch
if(bee(1).Jastempty == change_after(1,bee(1).colour))

% change colour

old_colour = bee(1).colour;

co=1;

ct=1;

cos = zeros(1,nr_colours-1);

for co = 1:nr_colours

if(co ~= old_colour)
cos(l,ct) = co;
ct=ct+ 1
end
end

cd = size(cos,2);
cost = randperm(cd);
new_colour_id = cosr(1,1);
colout = cos(1, new_colour_id);
bee(1).Jastempty = 0;

clse
% Stay in patch
coloutr = bee(1).colout;

end

bee(1).colour = colout;

end
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Failures (failures window)

% number of steps

nr_steps = 10000000,

% number of colours
nr_colours = 2;

% full chances
fillrate(1,1) = 0.2;
fillrate(1,2) = 0.2;

% change after number of consecutive per colour
change_after(1,1) = 2;
change_after(1,2) = 3;

% size of failures window
lastof = 2;

% set bee

bee = repmat(struct('colour’, 0, 'emptyhistory, []), 1, nr_steps);
r = randperm(nr_colours);

bee(1).colour = 1£(1,1);

bee(1).emptyhistory = zeros(1,nr_steps);

% data to collect
on_colout(1,1) = 0;
on_colour(1,2) = 0;

% start simulation
t=1;
for t = l:nr_steps
on_colour(1,bee(1).colour) = on_colour(1,bee(1).colour) + 1;
ep = rand;
if(ep > fillrate(1,bee(1).colour))
% failure
bee(1).emptyhistory(1,t) = 1;
clse
Y% success
bee(1).emptyhistory(1,t) = 0;
end
% Do we stay or move to another colour?
if(t < lastof)
colour = bee(1).colour;
else
B = bee(1).emptyhistory(end,(t - (lastof - 1)):end);
Ib = sum(B);
if(Ilb >= change_after(1,bee(1).colour))
% change of colour, too many failures
old_colour = bee(1).colour;
co=1;
ct=1;
cos = zeros(1,nr_colours-1);
for co = 1:nr_colours
if(co ~= old_colour)
cos(1,ct) = co;
ct=ct+ 1
end
end
cd = size(cos,2);
cost = randperm(cd);
new_colour_id = cost(1,1);
colour = cos(1, new_colour_id);
for ii=0:(lastof-1)
bee(1).emptyhistory(1,t-ii) = 0;
end
clse
% Stay in patch
colour = bee(1).colout;
end
end
bee(1).colour = colout;
end



e-Failures

% number of steps
nr_steps = 10000000,
samples = 0;

% epsilon
epsilon = 0.05;

% number of colours
nr_colours = 2;

% leave after this number of consecutive failures
nr_failures = 3;

% full chances
fillrate(1,1) = 0.3;
fillrate(1,2) = 0.7;

% set bee

bee = repmat(struct(‘'colout’, 0, 'epsilon’, 0, failures, 0), 1, nr_steps);
r = randperm(nr_colours);

bee(1).colour = 1£(1,1);

bee(1).epsilon = epsilon;

bee(1).failures = 0;

% data to collect

on_colour(1,1) = 0;

on_colout(1,2) = 0;

% start simulation

t=1;
for t = L:nr_steps
ep = rand;

if(ep < bee(1).epsilon)
% bee is sampling, so move to another colour
samples = samples + 1;

old_colour = bee(1).colour;
co=1;
ct=1;
cos = zeros(1,nr_colours-1);
for co = L:nr_colours
if(co ~= old_colour)
cos(l,ct) = co;
ct=ct+1;
end
end
cd = size(cos,2);
cosr = randperm(cd);
new_colour_id = cosr(1,1);
new_colour = cos(1, new_colour_id);

% check reward

epl = rand;

if(ep1 < fillrate(1,new_colour))
% full, so stay in new patch
bee(1).colour = new_colour;

clse
Y% empty, return to previous colour
bee(1).colour = old_colour;

end

clse
% no sampling, so stay in patch
on_colour(1,bee(1).colour) = on_colour(1,bee(1).colour) + 1;

% check reward and update epsilon

ep2 = rand;

if(ep2 < fillrate(1,bee(1).colour))
% success
bee(1).failures = 0;

clse

% failure, so adjust number failures
bee(1).failures = bee(l).failures + 1;
% check if we have to move to new colour
if(bee(1).failures == nr_failures)
% leave and choose new colour



end
end
end

old_colour = bee(1).colour;
co=1;

ct=1;

cos = zetros(1,nr_colours-1);
for co = 1:nr_colours

if(co ~= old_colour)
cos(l,ct) = co;
ct=ct+ 1
end
end

cd = size(cos,2);

cost = randperm(cd);

new_colour_id = cost(1,1);
new_colour = cos(1, new_colour_id);
bee(1).colour = new_colour;

% set number of failures back to 0

bee(1).failures = 0;
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