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1. Introduction

In this paper we shall present a proof for the existence of limiting average
ε-equilibria in non-zero-sum repeated games with absorbing states, i.e.,
stochastic games in which all states but one are absorbing. We assume
that the action spaces shall be finite; hence there are only finitely many
absorbing states. A limiting average ε-equilibrium is a pair of strategies
(σε, τε), with ε > 0, such that for all σ and τ we have γ1(σ, τε) ≤ γ1(σε, τε)+
ε and γ2(σε, τ) ≤ γ2(σε, τε)+ε. The proof presented in this chapter is based
on the publications by Vrieze and Thuijsman [7] and by Thuijsman [5].
Several examples will illustrate the proof.

Vrieze and Thuijsman [7] derived existence of limiting average ε-equilibria
in non-zero-sum repeated games with absorbing states after an inspiring
study on the Paris Match examined by Sorin [4]. Despite Sorin’s correct
observation of a gap between the set of limiting average equilibrium re-
wards and the set of the λ-discounted equilibrium rewards, Vrieze and
Thuijsman showed that a limiting average ε-equilibrium can be derived
from any arbitrary sequence of stationary λ-discounted equilibria, converg-
ing for λ going to 0. The limiting average equilibrium strategies involved
are history-dependent “Big Match strategies,” where a player has to adjust
his mixed actions at all stages in response to the behavior of his opponent.
In Thuijsman [5] a simpler class of strategies is used for the limiting average
equilibria, the so-called “almost stationary strategies.” An almost station-
ary strategy essentially consists of a stationary strategy that is played as
long as no deviation by the opponent has been observed, and a (possibly
history-dependent) retaliation strategy to punish the opponent in case a
deviation is detected. The strategies are called almost stationary to stress
the fact that if the players refrain from deviations, then, with probability
close to 1, stationary strategies are used throughout the whole play. The
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retaliation strategies are typically taken to be ε-optimal strategies that
minimize (up to ε) the limiting average reward of the opponent. For the
existence of these retaliation strategies the proof relies on the existence
of the limiting average value for zero-sum repeated games with absorbing
states established by Kohlberg [3].

The observations for non-zero-sum repeated games with absorbing states
by Vrieze and Thuijsman [7] were generalized in [6] and [5], and have led to
proofs for existence of limiting average ε-equilibria in several special classes
of stochastic games.

In this paper we shall examine a few particular examples of repeated
games in Section 1, which will clarify how to derive ε-equilibria in the
general case. The latter will be done in Section 2.

2. Examples

In the theory of repeated games the Folk theorem states that any feasible
and individually rational reward can be obtained as an equilibrium reward
(see, e.g., [1]). In our first example we show how this is usually achieved by
means of threats.

2.1. EXAMPLE 1

We examine the repeated game:

1

2

1 2
1,0 0,1

0,2 1,0

In this game player 1 can be sure to get a (limiting average) reward of
at least 1

2 by playing the stationary strategy (1
2 , 1

2) while player 2 can make
sure by playing (1

2 , 1
2) that player 1’s reward will not exceed 1

2 . Similarly,
player 2 can guarantee himself at least 2

3 by playing (1
3 , 2

3) while player 1
can make sure by playing (2

3 , 1
3) that player 2’s reward will not exceed 2

3 .
Hence (1

2 , 2
3) is the pair of values (v1, v2) of the zero-sum games for players

1 and 2 respectively. Clearly, for any equilibrium, each player should receive
at least the value of “his” zero-sum game, i.e., the zero-sum game where
he is maximizing his reward while his opponent is trying to minimize it.
Therefore (v1, v2) is the vector of individually rational levels for the players.
The set of feasible individually rational rewards is the small triangle in the
following picture, i.e., it is the convex hull of { (1

2 , 2
3), (1

2 , 1), (2
3 , 2

3) }.
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Figure 1.

The Folk theorem says that any reward (a, b) in this small triangle can be
achieved as an equilibrium reward, i.e., for all ε > 0 there is an ε-equilibrium
(σε, τε) such that || (a, b) − γ(σε, τε) ||∞ < ε. To see why this is true we
consider the reward ( 7

12 , 10
12) which can be achieved by playing the action se-

quence (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (2, 1), (2, 1), (2, 1), (2, 1), (2, 1),(1, 2),
(1, 2) repeatedly. So, if we define f to be the Markov strategy consisting of
repeatedly playing 1, 1, 1, 1, 1, 2, 2, 2, 2, 2,1, 1 and if we define g as consisting
of repeated play of 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, then γ(f, g) = ( 7

12 , 10
12). Now

(f, g) is no equilibrium since player 1 could obtain a reward of 10
12 by playing

action 1 all the time, instead of f . However, player 2 can prevent player 1
from doing so by adding a threat to g to obtain g∗ defined by: play g as
long as player 1 has acted according to f , otherwise play (1

2 , 1
2). Similarly,

player 1 can prevent player 2 from deviating from g by playing f∗: play f
as long as player 2 has acted according to g, otherwise play (2

3 , 1
3). Clearly,

(f∗, g∗) is an equilibrium and γ(f∗, g∗) = ( 7
12 , 10

12).
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2.2. EXAMPLE 2

We examine the following repeated game with absorbing states.

1

2

1 2
1,0

∗
0,1

∗
0,2 1,0

Notice that the zero-sum game determined by the payoffs for player 1
alone is precisely the Big Match. Obviously, the zero-sum game determined
by the payoffs for player 2 is very similar to the Big Match. It can be
verified that for this game we still have (v1, v2) = (1

2 , 2
3) and the set of fea-

sible individually rational rewards is still represented by the small triangle
depicted in Figure 1. Again we have that ( 7

12 , 10
12) is in this set, but now

it cannot be achieved by (f, g) because of the absorbing entries (the ones
with ∗). However, we could still achieve this reward by repeatedly playing
(2, 1), (2, 1), (2, 1), (2, 1), (2, 1), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2).
Unfortunately, this sequence cannot be used to “cook up” an equilibrium as
in the previous example because player 1 could deviate to get 1 by playing
1 at the very first stage and play would be over due to absorption. There-
fore we have to approach the matter in a more subtle way, so that player
1 does not have any profitable absorbing deviations. Yet if player 1 plays
some non-absorbing strategy then player 2 prefers to play action 1 all the
time, thereby creating a possibility for player 1 to deviate in an absorbing
way. Although this seems to be a dilemma, we can create an ε-equilibrium
by observing that if players 1 and 2 are playing the stationary strategies
α = (0, 1)∞ and β = (β1, β2)∞ respectively, then player 2’s action fre-
quencies should converge to (β1, β2). To put it more precisely: if Yn is the
random variable denoting the action frequencies of player 2 playing (β1, β2)
up to stage n, then

∀ δ > 0 ∃ Nδ : Pr
β
{ || Yn − (β1, β2) ||∞ > δ for any n > Nδ} < δ.

We shall use this observation to create an ε-equilibrium that yields the
reward ( 5

12 , 10
12). Consider the stationary strategy β = ( 5

12 , 7
12)∞ for player

2 and note that against β player 1 would prefer to play his non-absorbing
action 2 at all stages. Define for player 1 a strategy α∗δ by: play action 2
unless for some n > Nδ it has turned out that || yn−(β1, β2) ||∞ > δ, where
yn is the realization of Yn, then play, from that first moment onwards as a
minimizing player 1, a δ-optimal strategy in the stochastic game:
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1

2

1 2

0
∗

1
∗

2 0

By doing so in case a deviation by player 2 is detected, player 1 can
make sure that player 2’s limiting average reward will be at most 2

3 + δ,
and thus player 1 has an effective threat to counter possible deviations by
player 1. By choice of strategy the probability of an unjustified punishment
by player 1 is less than δ. It can now be verified that (α∗δ , β) is a limiting
average ε-equilibrium for δ sufficiently small.

2.3. EXAMPLE 3

Finally, for this section we examine what happens if the second row is ab-
sorbing instead of the first one.

1

2

1 2
1,0 0,1

0,2
∗

1,0
∗

As in the previous cases we have that (v1, v2) = (1
2 , 2

3) and the set of
feasible individually rational rewards is still represented by the small tri-
angle depicted in Figure 1. This time, however, we cannot apply the same
approach as in the previous example because the non-absorbing rewards are
not individually rational for at least one of the players. Although ( 7

12 , 10
12)

is still feasible and individually rational, we cannot use ((0, 1)∞, ( 5
12 , 7

12)∞)
to achieve this point as an equilibrium reward, because player 2 would
deviate at the very first stage. However, for any µ ∈ (0, 1) we have that
γ((1 − µ, µ)∞, ( 5

12 , 7
12)∞) = ( 7

12 , 10
12). Let the action frequencies Yn, yn, as

well as the number Nδ, be as defined in the previous example. Define now
for player 1 the strategy α∗µδ by: play according to (1−µ, µ)∞ as long as for
all n > Nδ you have found || yn − ( 5

12 , 7
12) ||∞ < δ, otherwise punish player

2 by playing, from that first moment onwards as a minimizing player 1, a
δ-optimal strategy in the stochastic game.
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1

2

1 2

0 1

2
∗

0
∗

Then, for µ and δ sufficiently small, (α∗µδ, (
5
12 , 7

12)∞) is an ε-equilibrium
with || γ(α∗µδ, (

5
12 , 7

12)∞)− ( 7
12 , 10

12) ||∞ < ε.

3. General Solution

In this section we generalize the approach developed in the examples of the
previous section. We shall use the following notations. For actions a and
b for players 1 and 2 respectively, we shall write uab and wab for the non-
absorbing payoffs for the respective players, while u∗ab and w∗ab will denote
the absorbing payoffs, i.e., the rewards in case absorption occurs in entry
(a, b). If entry (a, b) is selected by the players, then absorption will occur
with probability pab. We shall call a pair of stationary strategies (α, β)
absorbing in case these strategies yield absorption with probability 1, i.e.,∑

a

∑
b αapabβb > 0.

Using these notations we can derive the following.

Lemma 1 For stationary strategies α and β we have:

γ1
λ(α, β) =

λ
∑

a

∑
b αauabβb + (1− λ)

∑
a

∑
b αapabu

∗
abβb

λ + (1− λ)
∑

a

∑
b αapabβb

∀ λ ∈ (0, 1);

γ1(α, β) =
∑

a

∑

b

αauabβb if (α, β) is non-absorbing;

γ1(α, β) =
∑

a

∑
b αapabu

∗
abβb∑

a

∑
b αapabβb

if (α, β) is absorbing.

Here the discounted reward follows straightforwardly from the Shapley
equation, while the average rewards are immediate.

It is well known from Fink [2] that stationary λ-discounted equilibria
exist in any (n-person) stochastic game. We shall now examine proper-
ties of a sequence of stationary λn-discounted equilibria (αλn , βλn), where
we assume, without loss of generality since one can always take a subse-
quence, that for all n the strategies αλn all have the same carrier, while
the same holds for the strategies βλn ; moreover, the sequences are as-
sumed to converge and limn→∞ λn = 0, limn→∞ (αλn , βλn) ≡ (α0, β0)
and limn→∞ γλn(αλn , βλn) ≡ (V 1, V 2). In order to keep notations simple
we shall drop the subscripts n and write, e.g., limλ↓0 γλ(αλ, βλ) instead of
limn→∞ γλn(αλn , βλn).
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Now note that the following observations apply:

a. If (α0, β0) is absorbing, then (αλ, βλ) is absorbing;
b. γ1

λ(α0, βλ) = γ1
λ(αλ, βλ) for λ near 0, because each action in the carrier

of α0 is in the carrier of αλ and therefore a λ-discounted best reply to
βλ;

c. If either (α0, β0) is absorbing or (αλ, βλ) is non-absorbing, then γ(α0, β0)
=limλ↓0 γλ(αλ, βλ). This follows straightforwardly from Lemma 1;

d. If β is such that (α0, β) is absorbing, then γ2(α0, β) 6 V 2, because
γ2(α0, β) = lim

λ↓0
γ2

λ(αλ, β) 6 lim
λ↓0

γ2
λ(αλ, βλ) = V 2;

where the first equality again follows from Lemma 1 and the inequality
follows from the fact that the strategies βλ are λ-discounted best replies
to αλ (since (αλ, βλ) is a λ-discounted equilibrium);

e. v = limλ↓0 vλ 6 limλ↓0 γλ(αλ, βλ) = V .

Theorem 2 Limiting average ε-equilibria can be derived from the sequence
{ (αλ, βλ) : λ ∈ (0, 1) }.

Proof. We distinguish two cases: (A) with γi(α0, β0) > V i for i = 1, 2,
and (B) with γi(α0, β0) < V i for i = 1 or for i = 2.

A. If γi(α0, β0) > V i for i = 1, 2, then neither player can improve his
reward by an absorbing deviation because of observation (d). Thus,
the only deviations that could be profitable for a player are necessarily
non-absorbing. However, non-absorbing deviations can be observed.
To see this, suppose that player 2 deviates in a non-absorbing way.
Then either player 2 chooses some action outside the carrier of β0,
which will be observed by player 1 immediately, or player 2’s action
frequencies do not converge to β0, which will eventually be observed by
player 1. If player 1 observes a deviation by player 1, then he can make
sure that player 2’s limiting average reward will be at most v2 + δ, by
playing some δ-optimal strategy that minimizes player 2’s reward. By
observation (e) we have that v2+δ 6 V 2+δ 6 γ2(α0, β0); hence player
1 can effectively threaten to retaliate player 2 in case of a deviation,
to prevent non-absorbing deviations. Of course player 2 can threaten
player 1 in a similar way. Therefore, we can modify α0 and β0 with
such δ-threats to establish ε-equilibria (α0

δ , β
0
δ ) for δ sufficiently small,

just as we did in Examples 1 and 2.
B. If, without loss of generality, we have γ2(α0, β0) < V 2, then we must

necessarily have, by observation (c), that (α0, β0) is absorbing while
(αλ, β0) is non-absorbing for all λ. Hence C ≡ {a ∈ A :

∑
b pabβb =

0} 6= ∅ and also D ≡ {a ∈ A :
∑

b pabβb > 0} 6= ∅. Now define
αλ′

a = αλ
aP

e∈C αλ
e

and define αλ∗
a = αλ

aP
e∈D αλ

e
. Then limλ↓0 αλ′ = α0 and



212 FRANK THUIJSMAN

we can assume that limλ↓0 αλ∗ also exists and equals, say, α∗.

Using Lemma 1 it can be shown that
V 2 = ω · γ2(α0, β0) + (1− ω) · γ2(α∗, β0)

where ω = limλ↓0 λ
λ+(1−λ)

P
a

P
b αλ

apabβ
0
b
∈ [0, 1]. Since γ2(α0, β0) < V 2,

we must have ω < 1 and γ2(α∗, β0) > V 2.

Because (α∗, β0) is absorbing and because the carrier of α∗ is a subset
of the carrier of αλ we also have γ1(α∗, β0) = limλ↓0 γ1

λ(α∗, βλ) =
limλ↓0 γ1

λ(αλ, βλ) = V 1.

Now for µ ∈ (0, 1) define αµ = (1− µ) · α0 + µ · α∗. Then for all µ we
have that γ(αµ, β0) = γ(α∗, β0). For δ > 0 sufficiently small there is
Nδ such that

Pr
(α0,β0)

{ ||Yn(β0)− (β0)||∞ > δ for any n > Nδ } < δ

and also
Pr

(α0,β0)
{ ||Xn(α0)− (α0)||∞ > δ for any n > Nδ } < δ.

Next take µ > 0 sufficiently small to have that the probability of ab-
sorption before Nδ with (αµ, β0) is less than δ and modify the strategies
αµ and β0 by adding threats for punishment, as we did in Example
3, to get strategies α∗µδ and β0∗

δ that yield an ε-equilibrium for δ suf-
ficiently small. The threat player 2 can use to prevent player 1 from
not playing α∗ with positive probability can be based on a number
Mµδ > Nδ with the property that for (αµ, β0) play will absorb before
stage Mµδ with probability at least 1− δ; if absorption does not occur
before stage Mµδ, then player 2 will punish player 1. Besides player 2
should also check whether or not player 1 always takes actions from
within the carrier of αµ.

3.1. EXAMPLE 3 REVISITED

For Example 3 we have that (αλ, βλ) = (( 2
2+λ , λ

2+λ)∞, (1
2 , 1

2)∞) and γ(αλ, βλ)
= vλ = v = V = (1

2 , 2
3) for all λ ∈ (0, 1). We find that (α0, β0) =

((1, 0)∞, (1
2 , 1

2)∞) and γ(α0, β0) = (1
2 , 1

2), so γ2(α0, β0) = 1
2 < 2

3 = V 2.
Following the proof in case (B) of the previous theorem we find that α∗ =
(0, 1)∞. Notice that γ1(α∗, β0) = 1

2 = V 1 and γ2(α∗, β0) = 1 > 2
3 = V 2.

Thus the equilibrium constructed in part (B) is very similar to the one
presented in the discussion of Example 3. The only difference is that in the
example we do not need to check whether player 1 is really playing action
2 with positive probability, since it would not be profitable for player 1 not
to do so.
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