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1. Introduction

In this paper we discuss the most typical and illustrative examples in
stochastic game theory: the Big Match and a non-zero-sum extension thereof.
These Big Match examples have played key roles in the development of
stochastic game theory and we shall therefore examine them in some de-
tail.

The Big Match is a zero-sum stochastic game that was introduced in
1957 by Gillette [3], who made some observations from which it was un-
clear whether or not the limiting average value would exist for this specific
game. The matter was finally settled in 1968 by Blackwell and Ferguson
[1], who presented limiting average ε-optimal strategies, which were history-
dependent for one of the players. Their results were generalized by Kohlberg
[4] for arbitrary repeated games with absorbing states, i.e., stochastic games
in which all states but one are absorbing, and finally, in 1981, led to the
breakthrough by Mertens and Neyman [5] with their general existence result
for the limiting average value. It turned out that for zero-sum stochastic
games the limiting average model could be solved by an asymptotic ap-
proach, from either the λ-discounted model or the N -stage model, through
the observation that v = limλ↓0 vλ = limN→∞ vN .

For non-zero-sum stochastic games such an approach turned out to be
impossible, as was illustrated by Sorin [6]. He analyzed a non-zero-sum ex-
tension of the Big Match, which we call the “Paris Match” due to its French
origin. For this Paris Match he showed that the set of limiting average equi-
librium rewards can neither be approached asymptotically from the set of
λ-discounted equilibrium rewards nor from the set of N -stage equilibrium
rewards. Vrieze and Thuijsman [7] derived the existence of limiting average
ε-equilibria in non-zero-sum repeated games with absorbing states (with
finite state and action spaces) after an inspiring study on the Paris Match.



196 FRANK THUIJSMAN

2. The Big Match

Blackwell and Ferguson [1] present the Big Match as follows:

“Every day player 2 chooses a number, 1 or 2, and player 1 tries to
predict 2’s choice, winning a point if he is correct. This continues as
long as player 1 predicts 1. But if he ever predicts 2, all future choices
for both players are required to be the same as that day’s choices: if
player 1 is correct on that day, he wins a point every day thereafter; if
he is wrong on that day, he wins zero every day thereafter. The payoff
to 1 is lim infn→∞(a1 + · · ·+ an)/n.”1

This game can be represented in the following way, where the payoffs
presented are those by player 2 to player 1 and where the asterisks denote
transitions to trivial absorbing states with the corresponding payoffs.

1

2

1 2

1 0

0
∗

1
∗

The Big Match was introduced by Gillette [3], who made the following
observations. First of all, if we consider only stationary strategies α for
player 1 and stationary strategies β for player 2, then we have:

Lemma 1 maxα minβ γ(α, β) = 0 < 1
2 = minβ maxα γ(α, β).

In other words: the Big Match does not have a limiting average value when
only stationary strategies are considered.

Proof. To show correctness of the equality on the left-hand side we
distinguish two cases for an arbitrary stationary strategy α = (α1, α2)∞ by
player 1: if α2 > 0, then γ(α, (1, 0)∞) = 0; if α2 = 0, then γ(α, (0, 1)∞) = 0.

As for the equality on the right-hand side: if β = (1
2 , 1

2)∞, then γ(α, β) =
1
2 for all α; if β 6= (1

2 , 1
2)∞, then either γ((1, 0)∞, β) > 1

2 or γ((0, 1)∞, β) >
1
2 .

More generally, considering Markov strategies f for player 1 and Markov
strategies g for player 2, one also has:

Lemma 2 supf infg γ(f, g) = 0 < 1
2 = infg supf γ(f, g).

In other words: the Big Match does not have a limiting average value when
only Markov strategies are considered.

1In the original paper Blackwell and Ferguson number the actions 0 and 1 and use
lim sup instead of lim inf. The results are not affected by these choices, however.
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Proof. Let f = (x1, x2, x3, . . .) be a Markov strategy for player 1, where
xn = (xn

1 , xn
2 ) is the mixed action to be played by player 1 at stage n, when

play is still in the initial state. Similarly, let g = (y1, y2, y3, . . .) be a Markov
strategy for player 2. If Prf [Player 1 will ever choose action 2] = 1, then
γ(f, (1, 0)∞) = 0. Otherwise we have that for each ε > 0 we can take some
Nε sufficiently large to have Prf [Player 1 will ever choose action 2 after
stage Nε] < ε. Then define gε = ((1, 0), (1, 0), . . . , (1, 0)︸ ︷︷ ︸

Nε

, (0, 1), (0, 1), . . .)

and notice that γ(f, gε) < ε.
As for the other side, first observe that γ(f, (1

2 , 1
2)∞) = 1

2 for all f .
If g = (y1, y2, y3, . . .) and yn

2 ≤ 1
2 for all n, then we clearly have that

γ((1, 0)∞, g) ≥ 1
2 . If at some stage n we would have that yn

2 > 1
2 for the

first time, then the strategy fn = ((1, 0), (1, 0), . . . , (1, 0)︸ ︷︷ ︸
n

, (0, 1)) would give

γ(fn, g) > 1
2 .

So, neither in terms of stationary strategies, nor in terms of Markov
strategies, does the limiting average value exist for the Big Match. The
question about the existence of the value in terms of general strategies,
raised in 1957, was finally answered affirmatively in 1968 by Blackwell and
Ferguson [1]. Their paper was a real breakthrough in the theory of stochas-
tic games for it was shown that behavioral strategies are indispensable in
achieving limiting average ε-optimality in stochastic games. To emphasize
this point: they showed that player 1 can guarantee in the Big Match a
limiting average reward as close to 1

2 as he likes, by carefully taking into
account the opponent’s behavior, i.e., his past actions, in the process of
choosing his own actions. Here we write “can guarantee as close to 1

2 as he
likes,” because there is no way that player 1 can guarantee 1

2 , as was also
pointed out in their paper:

Lemma 3 For each strategy σ for player 1 there exists a Markov strategy
g for player 2 such that γ(σ, g) < 1

2 .

Proof. Let σ be a strategy for player 1. If against player 2’s strategy
(0, 1)∞ player 1 using σ never plays action 2 with positive probability, then
clearly γ(σ, (0, 1)∞) = 0. Otherwise, suppose that n is the first stage at
which player 1 is going to play action 2 with positive probability, say ε,
against (0, 1)∞. Then player 2 can counter σ by playing action 2 for the
first n − 1 stages, playing action 1 at stage n, and playing (1

2 , 1
2) at every

stage thereafter, giving player 1 an expected reward of 1
2 − 1

2ε.

We finally get to the main result on the Big Match and we shall sketch its
original proof, in which history-dependent ε-optimal strategies are provided
for player 1.
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Theorem 4 (Blackwell and Ferguson [1]) The limiting average value of the
Big Match equals 1

2 .

Sketch of Proof. Let bm ∈ {1, 2} be the action chosen by player 2 at
stage m ∈ N. Then we shall call hn = (b1, b2, . . . , bn) the history up to stage
n + 1. Define k0 = 0 and for n > 0, define kn = #1’s −#2’s in hn, i.e., kn

is the difference between the number of times player 2 chooses 1 (Left) and
the number of times he chooses 2 (Right). Then we define σN for player 1
as the strategy where he chooses action 2 at stage n + 1 with probability

1
(kn+N+1)2

. Note that when, eventually at some stage n, we would have
kn = −N , then player 1 would play action 2 with probability 1 at stage
n + 1.

Let T denote the number of stages after which player 1 plays action 2
(at stage T + 1 and play is essentially over).

Let T (m) denote the event [T > m, or T < m and bT+1 = 2].
Now we shall consider only pure (Markov) strategies by player 2: pure

strategies because if σN works fine for those, then it works fine for others as
well; Markov strategies because there is no history for player 2 to relate to,
since he has observed only player 1 choosing 1 as long as the play is in the
initial state. We distinguish two types of pure strategies: one for which kn

would eventually equal −N , and one for which it would not. (To distinguish
these types it is assumed that player 1 would choose action 1 all the time.)

Case A. Let τ be a pure strategy for which we eventually have kn = −N
for some n. By induction on m one can show that PrσN τ [T (m)] ≥

N
2(N+1) for all m. Since for (σN , τ) we have that T < ∞ with probability
1, we get

Pr
σN τ

[bT+1 = 2] = lim
m→∞ Pr

σN τ
[T (m)] ≥ N

2(N + 1)
.

Case B. Let τ ′ be a pure strategy for which kn > −N for all n. For a = 1, 2
let µa(m) = PrσN τ [T < m and bT+1 = a] and let µa = limm→∞ µa(m).
Also define τ ′m = (τ1, τ2, . . . , τm,(1

2 , 1
2), (1

2 , 1
2), . . .). Then, for each m,

we have that τ ′m is a strategy of the type that is considered in Case A.
Now observe that

γ(σN , τ ′) ≥ µ2 +
1
2
(1− µ1 − µ2)

= lim
m→∞[µ2(m) +

1
2
(1− µ1(m)− µ2(m))]

= lim
m→∞ γ(σN , τ ′m) ≥ N

2(N + 1)
,

where the first inequality follows from the fact that kn > −N for all
n, which implies that player 1 should get at least 1

2 if play does not
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absorb, where the equality signs are straightforward, and where we
have used the result of Case A for the last inequality.

Cases A and B together imply that by playing σN player 1 can guarantee
himself at least N

2(N+1) . So, for every ε > 0, by taking N sufficiently large
player 1 can guarantee himself a limiting average reward of at least 1

2 − ε.
By playing (1

2 , 1
2)∞ it is clear that player 2 can guarantee himself a limiting

average reward of (at most) 1
2 to player 1. Hence the result.

In this proof we have seen that player 1 can guarantee himself the value
v up to some ε, i.e., for all ε > 0 there is a strategy σε such that for all
strategies τ we have γ(σε, τ) ≥ v − ε. Such a strategy σε is called an ε-
optimal strategy. Lemma 3 shows that, generally, ε cannot be taken to be
equal to 0.

This work of Blackwell and Ferguson [1] was generalized by Kohlberg
[4] to the class of zero-sum repeated games with absorbing states.

Theorem 5 (Kohlberg [4]) The limiting average value v exists for every
zero-sum repeated game with absorbing states. Moreover, v = limn→∞ vn,
the limit of the average values of the n-stage games.

In his paper Kohlberg employs a slightly different type of ε-optimal
strategy, which for the case of the Big Match would tell player 1 at stage
n + 1 to play action 2 with probability ε2 if kn < 0; and with probability
ε2(1− ε)kn otherwise, where, as above, kn denotes the excess of 1’s over 2’s
among the first n choices of player 2.

Yet another approach to solve the Big Match can be found in Coulomb
[2].

Finally Mertens and Neyman [5] further generalized Kohlberg’s [4] result
to cover all zero-sum stochastic games with finitely many states and actions.

Theorem 6 (Mertens and Neyman [5]) The limiting average value v exists
for every zero-sum stochastic game. Moreover, v = limn→∞ vn = limλ↓0 vλ,
so the limiting average value, the limit of the average values of the n-stage
games and the limit of the λ-discounted games are all equal.

To illustrate this for the Big Match: there we have that vn = vλ = 1
2

for all n and for all λ. The unique optimal strategy for player 2 is (1
2 , 1

2)∞
for all n-stage games and for all λ-discounted games as well. For player
1 the stationary λ-discounted optimal strategy is ( 1

1+λ , λ
1+λ)∞, while an

optimal Markov strategy for player 1 in the n-stage game is given by playing
(1+m
2+m , 1

2+m) at stage n−m, for m = 1, 2, . . . , n− 1.

Further generalizations of this result by weakening the finiteness as-
sumptions can be found in other chapters of this volume. In the next sec-
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tion, however, we shall focus on an extension of the zero-sum Big Match to
a non-zero-sum situation.

3. The Paris Match

The non-zero-sum extension that we shall discuss here was introduced, and
examined in detail, by Sorin [6]. Because of the French origin of the author
we shall call it the Paris Match. The structure is essentially the same as in
the Big Match, but now players are no longer paying each other and do not
have completely opposite interests. The Paris Match is again a repeated
game with absorbing states and we can represent it in the following matrix
notation, where the asterisks again denote transitions to absorbing states.

1

2

1 2
1,0 0,1

0,2
∗

1,0
∗

As we have seen in the previous section the limiting average value v
turns out to be equal to the limits of both the finite horizon average values
vn and the λ-discounted values vλ; we have v = limn→∞ vn = limλ↓0 vλ.
The Paris Match showed that such asymptotic properties are not valid for
non-zero-sum stochastic games. Actually, Sorin [6] shows that for the Paris
Match there is a gap between the set of limiting average equilibrium rewards
E∞ on the one side and the set of finite horizon equilibrium rewards En

and the set of λ-discounted equilibrium rewards Eλ on the other side. So
E∞ 6= limn→∞En and E∞ 6= limλ↓0 Eλ. Even worse, as we shall see below,
En and Eλ do not even get close to E∞. More precisely, for the Paris Match
we have:

Theorem 7 (Sorin [6])
a) Eλ = {(1

2 , 2
3)} for all λ.

b) En = {(1
2 , 2

3)} for all n.
c) E∞ = conv{(1

2 , 1), (2
3 , 2

3)}, where conv stands for convex hull.

This is illustrated in Figure 1 by a graph of the reward space for this
game.

We shall sketch the proof for part (a) and part (c) of this theorem. Since
the proof for part (b) goes along lines that are roughly similar to those for
part (a), we skip this part.

Sketch of proof for part (a). We start our observation by noting that
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0 1
0

1

2

(1/2,1)

(2/3,2/3)

Figure 1.

any equilibrium reward should give the players at least (1
2 , 2

3), because the
players can guarantee themselves those rewards by their own effort. To
put it more precisely: player 2 can guarantee himself at least 2

3 by playing
(1
3 , 2

3)∞, and therefore we should also have that any equilibrium reward to
player 2 yields at least 2

3 ; similarly, player 1 should get at least 1
2 , because his

zero-sum situation is exactly the same as it was in the Big Match examined
in Section 1.

Let w be the maximal λ-discounted equilibrium reward for player 2 and
suppose that (σ, τ) is a λ-discounted equilibrium with γ2

λ(σ, τ) = w. Let
furthermore w1 and w2 be the normalized λ-discounted rewards for (σ, τ)
on condition that at stage 1 the action pair (1, 1), respectively (1, 2), was
played. Then w1 and w2 should also be λ-discounted equilibrium rewards,
for otherwise players could deviate at stage 2 or later. Hence we must have

w1 ≤ w and w2 ≤ w.
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Now let p be the probability by which player 1 plays action 2 at stage 1
using σ, and also let q be the probability by which player 2 plays action
2 at stage 1 using τ . One can check straightforwardly that for (σ, τ) to be
an equilibrium we must have that 0 < p < 1 and also 0 < q < 1. Next we
observe by examining the equilibrium conditions at stage 1 that player 2
should be indifferent between action 1 and action 2 at stage 1, and therefore
we must have that both actions yield player 2 the same λ-discounted reward,
that is:

w = 2p + (1− p)(1− λ)w1︸ ︷︷ ︸
reward for action 1

= 0p + (1− p)(λ + (1− λ)w2)︸ ︷︷ ︸
reward for action 2

.

Since w1 ≤ w and w2 ≤ w, we derive

w ≤ (1− p)(λ + (1− λ)w) and w ≤ 2p + (1− p)(1− λ)w.

The last inequality can be rewritten as

2− w ≥ (1− p)(2− (1− λ)w),

which together with the first one gives

(2− w)(1− p)(λ + (1− λ)w) ≥ (1− p)(2− (1− λ)w)w.

By removing the brackets and cancelling terms against one another straight-
forward calculation leads to w ≤ 2

3 . So, by our initial observation in this
proof, we find that w = 2

3 .
Now for the first player: assume that u is player 1’s maximal λ-discounted

reward and that u1 and u2 are defined similarly to the above as normalized
rewards to player 1 conditioned on 2 choosing action 1 or action 2 respec-
tively at stage 1. Again, we must have that u1 and u2 are equilibrium
rewards for player 1 as well, so

u1 ≤ u and u2 ≤ u

and, since player 1 is playing both actions with positive probability at stage
1, we should also have:

u = (1− q)(λ + (1− λ)u1 + q(1− λ)u2)︸ ︷︷ ︸
reward for action 1

= q︸︷︷︸
reward for action 2

.

Therefore
u ≤ u2(1− λ) + (1− u)(λ + (1− λ)u)

which leads to u ≤ 1
2 .
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Hence, by our initial observation in this proof, the only possibility is to
have u = 1

2 .
Putting these things together we have shown that Eλ = {(1

2 , 2
3)}.

It can be verified that for the Paris Match the unique stationary λ-
discounted equilibrium is the pair (( 2

2+λ , λ
2+λ), (1

2 , 1
2)). In this equilibrium

strategy pair, each player minimizes his opponent’s λ-discounted reward.
Although λ-discounted equilibria always exist, we would like to remark
that the Big Match, discussed above, shows that, like optimal strategies
in the zero-sum case, limiting average equilibria generally fail to exist in
the general-sum case. Therefore we have to introduce the concept of ε-
equilibria. A pair of strategies (σε, τε) is a limiting average ε-equilibrium
(ε > 0) if for all σ and τ we have γ1(σ, τε) ≤ γ1(σε, τε) + ε and γ2(σε, τ) ≤
γ2(σε, τε) + ε. Thus σε and τε are ε-best replies to each other.

Sketch of proof for part (c). To illustrate why E∞ ⊆ conv{(1
2 , 1), (2

3 , 2
3)}

we quote Sorin [6]:

“The idea of the proof is very simple: if the probability of getting an
absorbing payoff on the equilibrium path is less than 1, then after some
time player 1 is essentially playing action 1; the corresponding feasi-
ble rewards from this stage on are not individually rational, hence a
contradiction.”

We refer to the original paper by Sorin [6] for a mathematically sound
translation of this argument.

As for the converse, E∞ ⊇ conv{(1
2 , 1), (2

3 , 2
3)}, the argument may best

be seen by an example. Take for instance the reward ( 7
12 , 10

12), which is a
point in conv{(1

2 , 1), (2
3 , 2

3)}; we shall explain the method of Sorin [6] to
construct ε-equilibria that correspond to this reward. Consider the auxil-
iary zero-sum repeated game with absorbing states presented by:

1

2

1 2
7
12 − 5

12

− 7
12

∗
5
12

∗

Let σε be a limiting average ε-optimal strategy for player 1 in this
auxiliary game, and let β = ( 5

12 , 7
12)∞. Then for (σε, β) play absorbs with

probability 1, yielding γ(σε, β) = ( 7
12 , 10

12). Hence σε is a limiting average
best reply for player 1 against β in the original game, because no absorption
would yield a limiting average reward of only 5

12 to player 1. It can also
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be verified along “Big Match-like” arguments, that β is an ε-best reply for
player 2 against σε.

The type of limiting average ε-equilibrium strategies developed by Sorin
[6] for the Paris Match enabled Vrieze and Thuijsman [7] to show the ex-
istence of ε-equilibria for arbitrary non-zero-sum repeated games with ab-
sorbing states, for the case of finite action spaces. The latter approach used
the equilibrium structure developed by Sorin [6] and the existence of the
limiting average value of zero-sum repeated games as shown by Kohlberg
[4]. In the next chapter we shall take a closer look at the class of non-zero-
sum repeated games with absorbing states, and we shall provide a simple
proof for the existence of ε-equilibria. Several examples will illustrate the
solution.
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