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1. Introduction

Recursive games are stochastic games with the property that any non-
zero-payoff is absorbing, i.e., play immediately moves to an absorbing state
where each player has only one action available and these actions give
this particular non-zero payoff at all further stages. By its structure, it
is natural to examine such games using limiting average rewards, or total
rewards on the assumption of stopping play as soon as a non-zero payoff
occurs. Everett [1] introduced the recursive game model and immediately
solved it for the zero-sum case. We shall briefly discuss his approach. Later
Thuijsman and Vrieze [7] presented an asymptotic algebraic proof for the
existence of stationary ε-optimal strategies for recursive1 games, which can
be derived from any arbitrary sequence of stationary λ-discounted optimal
strategies, converging for λ going to 0. Because of their simple structure, one
might hope that recursive games always allow for stationary ε-equilibria as
well, but that such is not true can clearly be seen from an example in Flesch
et al. [2]. However, if we wish to solve the general existence problem for ε-
equilibria in stochastic games, then one should certainly be able to tackle
the problem for recursive games. Such has indeed been done by Vieille [8],
[9]. Vieille [8] shows that if one can exhibit the existence of ε-equilibria
in recursive games, then it follows that ε-equilibria exist in any stochastic
game.2 Vieille [9] then shows that equilibria exist in recursive games. Hence
the two papers together comprise a proof for the existence of ε-equilibria
in any arbitrary stochastic game. These results we shall leave to him for
discussion. Instead, based on the paper by Flesch et al. [2], we shall exhibit

1Unless otherwise specified we are discussing the situation for the case of a two-person
stochastic game with finite state and action spaces.

2Actually his result is even stronger; one only needs to show existence for a specific
type of recursive game.
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the existence of stationary ε-equilibria for recursive repeated games with
absorbing states, and we shall discuss some examples that illustrate the
sharpness of this result. More precisely, stationary ε-equilibria fail to exist
for three-person recursive repeated games with absorbing states, as was
shown in Flesch et al. [3], as well as for two-person recursive games with
more than one non-trivial state.

In Section 2 we shall briefly discuss the zero-sum model examined by
Everett [1]. In Section 3 we discuss the approach of Thuijsman and Vrieze
[7] for solving zero-sum recursive games. In Section 4 we deal with two
non-zero-sum recursive repeated games with absorbing states and Section
5 discusses two examples on the impossibility of extending the latter result.

2. Everett’s Recursive Games

Everett [1] introduces these games as follows:

“A recursive game is a finite set of ‘game elements,’ which are games
for which the outcome of a single game (payoff) is either a real number,
or another game of the set, but not both.”

In his model there are no assumptions on the number of actions in
each state, i.e., the actions sets are not necessarily finite. So if we assume
that there are k non-trivial states 1, 2, . . . , k, then for actions a and b for
the respective players in any of these states z, we either move to a non-
trivial state z′ with probability p(z′|z, a, b) with stage payoff 0, or we absorb
in entry (a, b) with probability p∗ab and player 1 receives at each further
stage the (absorbing) payoff u∗ab from player 2. Using these notations for
the recursive game Γ we can introduce for each (non-trivial) state z the
auxiliary game

Γz(θ) := [p∗abu
∗
ab +

k∑

z′=1

p(z′|z, a, b)θz′ ]a∈Az ,b∈Bz .

Everett [1] then proves the following.

Theorem 1
1) If for each z and θ the game Γz(θ) has a value, then the recursive game
Γ has a value v and both players have ε-optimal strategies.
2) If the players have optimal strategies in Γz(v) or if vz > 0, then player
1 has a stationary ε-optimal strategy (and similarly for player 2).

We would like to emphasize that Everett’s result was stated and proved
for recursive games with general action spaces and his proof does not apply
to the uniform value. His approach is based on the selection of a fixed point
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of the map ψ : θ 7→ val[Γz(θ)]. Generally, ψ does not have a unique fixed
point. Therefore Everett introduces two sets C1 and C2 defined as follows.

C1 = {θ| for each z either ψ(θ)z > θz and θz > 0 or ψ(θ)z = θz and θz ≤ 0}

C2 = {θ| for each z either ψ(θ)z < θz and θz < 0 or ψ(θ)z = θz and θz ≥ 0}.
Then Everett [1] proves that, on condition that for each z and θ the game
Γz(θ) has a value, the value v of the recursive game Γ is the unique point
in the intersection of the closures of C1 and C2. That is:

C1 ∩ C2 = {v}.

2.1. EXAMPLE

We examine the recursive game Γ defined by

Γ =

0 2
∗

1 0
∗ ∗

For this game the auxiliary game is

Γ(θ) =

0 2

1 0

for which we find that

ψ(θ) = val (Γ(θ)) =





2 for θ > 2
θ for 1 ≤ θ ≤ 2

2
3−θ for θ < 1.

Clearly the map ψ does not have a unique fixed point, since ψ(θ) = θ for
all θ ∈ [1, 2]. If we examine the sets C1 and C2 introduced above, then we
find that

C1 = (−∞, 1), C2 = [1,∞) and C1 ∩ C2 = {1}.

Hence, we find that the value v of Γ is 1. Moreover, the stationary strategy
(1− ε, ε)∞ is ε-optimal for player 1 and (1, 0)∞ is optimal for player 2.
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2.2. EXAMPLE

We now consider the following recursive game Γ.

0 1
(0, 1) ∗

1 0
∗ ∗

1

0 -1
(1,0) ∗

-1 0
∗ ∗

2

For this game we find that:

ψ1(θ1, θ2) = val (Γ(θ1, θ2)) = val
[

θ2 1
1 0

]
=

1
2− θ2

if θ2 ≤ 1;

ψ2(θ1, θ2) = val (Γ(θ1, θ2)) = val
[

θ1 −1
−1 0

]
=

−1
2 + θ1

if θ1 ≥ −1.

For this game the sets C1 and C2 are determined by the curves 1
2−θ2

= θ1

and −1
2+θ1

= θ2 as presented in Figure 1. As can easily be computed we find
that

C1 ∩ C2 = {(−1 +
√

2, 1−
√

2)}
and therefore (−1 +

√
2, 1−√2) is the value of this recursive game, where

the first coordinate refers to the game starting in state 1 and the second
for state 2. Please notice that neither v ∈ C1 nor v ∈ C2.

From the auxiliary games

Γ1(v1, v2) =
[

1−√2 1
1 0

]
and Γ2(v1, v2) =

[ −1 +
√

2 −1
−1 0

]

we can derive, by symmetry, that for each player the stationary strategy

((
1

1 +
√

2
,

√
2

1 +
√

2
), (

1
1 +

√
2
,

√
2

1 +
√

2
))∞,

which consists of optimal mixed actions in the auxiliary games, is optimal
for the game Γ.

Generally, in Everett’s paper the stationary ε-optimal strategies for
player 1 in the recursive game consist of optimal mixed actions αz in the
auxiliary games Γz(θ′ε), where θ′ε is an arbitrary element of C1 sufficiently
close to v, meaning that ||θ′ε − v|| < ε.
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−1 1

1

−1

(−1+√2,1−√2)

C
1

C
2

Figure 1. The sets C1 and C2, respectively left-below and right-up from the point
(−1 +

√
2, 1−√2)

3. Asymptotic Approach to Zero-Sum Recursive Games

For finite state and action spaces Thuijsman and Vrieze [7] approach the
zero-sum limiting average reward recursive games by examining the solu-
tions for the λ-discounted games as λ goes to 0.

If we let vλ be the λ-discounted value for λ ∈ (0, 1) and αλ a station-
ary λ-discounted optimal strategy for player 1, then, by examining some
sequence of λ’s going to 0, we can assume that limλ↓0 vλ and limλ↓0 αλ

converge to v and α respectively. We define

αλ
z =

{
αz if vz ≤ 0
αλ

z if vz > 0.

Thuijsman and Vrieze [7] prove the following result.

Theorem 2 The limiting average value of Γ is v and for player 1 the sta-
tionary strategy αλ is limiting average ε-optimal for λ sufficiently close to
0.
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This theorem is proved as follows. First it is observed that there does
exist a strategy β, which is a pure stationary limiting average best reply
for player 2 against αλ for all λ sufficiently close to 0. This strategy exists
because, for λ sufficiently close to 0, the ergodicity properties of the Markov
decision problem player 2 faces when trying to play a best reply to αλ, no
longer depend on λ. Next the result is derived by careful examination of
the recursion equations for the strategy pairs (αλ, β).

Henceforth assume that we have fixed such a strategy β, and also as-
sume without loss of generality that the ergodic structure for (αλ, β) is
independent of λ. The following lemma shows the optimality of αλ for ini-
tial states that are recurrent with respect to (αλ, β). Obviously our concern
is with the non-absorbing recurrent initial states, since for absorbing initial
states there is nothing to prove.

We now sketch the part of the proof of Theorem 2 for transient initial
states.

Lemma 3 If z is recurrent with respect to (αλ, β), then

γλ(z, αλ, β) = γ(z, αλ, β) = 0 = vz.

Proof. If z is recurrent, then play never reaches an absorbing state
and therefore the corresponding limiting average reward and λ-discounted
reward are both 0. It remains to show that the limiting average value vz, for
initial state z, is equal to 0 as well. First of all, notice that 0 ≤ vz, because
β is a limiting average best reply to αλ and apparently player 2 cannot
force absorption with an expected negative yield for player 1. Secondly,
suppose now that for all states in the ergodic set that z belongs to, the
limiting average value is strictly positive; then we would have that in all
these states αλ

z = αλ
z and hence we find

0 = γλ(z, αλ, β) = γλ(z, αλ, β) ≥ vλ > 0,

which is a contradiction. Thirdly, if vz > 0 and there are states in the
ergodic set that z belongs to, for which the limiting average value is 0, then
any play for (αλ, β) will lead, with probability 1, to a state with limiting
average value 0. But that contradicts the λ-discounted optimality of αλ,
since vλ

z is bounded away from 0 for λ sufficiently small. Therefore we
conclude that vz > 0 is impossible, and hence vz = 0.

In order to complete the proof of Theorem 2, the only remaining initial
states for which we have to show the ε-optimality of αλ (for λ close to
0) are the ones that are transient with respect to (αλ, β). Let us call this
set of transient states T , while R shall denote the set of recurrent states
(including the absorbing states). By the λ-discounted optimality of αλ we
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have the following inequality:

vλ
T ≤ (1− λ)P (αλ, β)TT vλ

T + (1− λ)P (αλ, β)TRvλ
R. (*)

In case the limiting average value of all states in T is positive, we have
αλ

T = αλ
T and hence

vλ
T ≤ P (αλ, β)TT vλ

T + P (αλ, β)TR(vR + ε1R),

from which we get

vT − ε1T ≤ vλ
T ≤ (ITT − P (αλ, β)TT )−1P (αλ, β)TR(vR + ε1R)

≤ γ(αλ, β) + ε1T .

In case the limiting average value of all states in T is non-positive, we have
αλ

T = αλ
T and hence, by taking limits for λ to 0 in equation (*), we get

vT ≤ P (α, β)TT vT + P (α, β)TRvR

= P (αλ, β)TT vT + P (αλ, β)TRvR

from which we get

vT ≤ (ITT − P (αλ, β)TT )−1P (αλ, β)TRvR = γ(αλ, β).

The situation where some transient states have a positive value and some
have a non-positive value can be examined in a similar, though slightly
more complicated, way. We refer to the original paper by Thuijsman and
Vrieze [7] for the details.

3.1. EXAMPLE

If we want to compute the λ-discounted solution for the recursive game
of Example 2.1, then we should observe that there is neither a pure sta-
tionary λ-discounted optimal strategy for player 1, nor for player 2. We
focus on player 1. He should play some stationary strategy (x, 1− x)∞ for
which player 2’s stationary strategies (1, 0)∞ and (0, 1)∞ yield the same
λ-discounted reward.3

By the Shapley equation we have that

γλ((x, 1− x)∞, (0, 1)∞) = 2x; and

γλ((x, 1− x)∞, (1, 0)∞) = (1− x)λ + (1− x)(1− λ)
+x(1− λ)γλ((x, 1− x)∞, (1, 0)∞)

3x depends on λ. To keep notations simple we write x instead of xλ.
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from which the latter gives

γλ((x, 1− x)∞, (1, 0)∞) =
1− x

1− x(1− λ)
.

Therefore, we derive vλ and x by solving

vλ = 2x =
1− x

1− x(1− λ)

which leads to

vλ =
3−√1 + 8λ

2(1− λ)
and x =

3−√1 + 8λ

4(1− λ)
.

For this x the strategy (x, 1 − x)∞ is λ-discounted optimal, and limiting
average ε-optimal for λ close to 0.

4. Non-Zero-Sum Recursive Repeated Games with Absorbing
States

In this section we examine non-zero-sum recursive repeated games with
absorbing states. These are recursive games with just one non-absorbing
state. Again we shall consider only the case of finite state and action spaces.
Flesch et al. [2] prove the following theorem.
Theorem 4 In any two-person non-zero-sum recursive repeated game with
absorbing states there exists a stationary limiting average ε-equilibrium.

Here a limiting average ε-equilibrium (ε > 0) is a pair of strategies
(σε, τε), such that for all σ and τ we have γ1(σ, τε) ≤ γ1(σε, τε) + ε and
γ2(σε, τ) ≤ γ2(σε, τε) + ε, i.e., σε and τε are ε-best replies to each other.

Before sketching a proof for this theorem, we wish to remark that this
theorem does not follow in some straightforward way from the approach
that Vrieze and Thuijsman [10] developed for repeated games with ab-
sorbing states, in which they showed the existence of (generally history-
dependent) limiting average ε-equilibria for the latter class. Furthermore,
examples in the next section will show that the result of the above theorem
can neither be extended to the situation of more than one non-absorbing
state, nor to the situation of more than two players.

4.1. EXAMPLE

We now consider the following recursive game

Γ =

0,0 -2,1
∗

-1,2 -1,1
∗ ∗
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For this game we find that, for all λ ∈ (0, 1), the unique stationary λ-
discounted equilibrium is given by

(αλ, βλ) = ((
1

1 + λ
,

λ

1 + λ
)∞, (

1
1 + λ

,
λ

1 + λ
)∞)

for which we have
γλ(αλ, βλ) = (−1, 1).

If we recall the method developed by Vrieze and Thuijsman [10] for repeated
games with absorbing states (see also [5]), then we should examine

(α, β) = limλ↓0(αλ, βλ) = ((1, 0)∞, (1, 0)∞)
V = limλ↓0 γλ(αλ, βλ) = (−1, 1)

and notice that
γ2(α, β) = 0 < V2.

The method of the chapter on repeated games with absorbing states tells us
that then player 1 should play some strategy α∗ (in this case (0, 1)∞) and
play (1−µ)α+µα∗ for some µ sufficiently small, thereby checking whether
or not player 2 is really (credibly) playing according to β. In this example
we would have that ((1 − µ)α + µα∗, β) = ((1 − µ, µ)∞, (1, 0)∞) which is
not a stationary ε-equilibrium since, against (1, 0)∞, player 1 would rather
play (1, 0)∞ than (1− µ, µ)∞ and gain 1.

We shall now sketch the proof of Theorem 4, which uses the notion of
proper pairs of strategies.

Definition 5 A pair of stationary strategies (xδ, yδ) is called δ-proper for
δ > 0 if
1) xδ(a) > 0 for all actions a of player 1 and xδ(b) > 0 for all actions b of
player 2.
2) If γ1(a, yδ) > γ1(ã, yδ) then xδ(ã) < δxδ(a) and if γ2(xδ, b) > γ2(xδ, b̃),
then xδ (̃b) < δxδ(b).
A pair of stationary strategies (x, y) is called proper if there is a (discrete)
sequence of δ-proper pairs (xδ, yδ) such that (x, y) = limδ↓0(xδ, yδ).

We wish to remark that for a pair of strategies neither properness nor
ε-properness implies that the pair is an ε-equilibrium. An example below
illustrates this statement for the case of proper pairs. We refer to Flesch et
al. [2] for the case of ε-proper pairs.

In Flesch et al. [2] Theorem 4 is proved by examining some specific
cases, as is done in Theorem 6 below. We refer to the original paper for the
proofs.
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Theorem 6
1) There exist a proper pair (x̃, ỹ) and a sequence of δ-proper pairs (xδ, yδ)
such that (x̃, ỹ) = limδ↓0(xδ, yδ).
2) If (x̃, ỹ) is absorbing, then (xδ, yδ) is a limiting average ε-equilibrium for
small δ.
3) If (x̃, ỹ) is non-absorbing, then at least one of the pairs (x̃, ỹ), (xδ, ỹ),
(x̃, yδ) is a limiting average ε-equilibrium for small δ.

4.2. EXAMPLE

We now consider the following recursive game Γ.

0,0 4,-3
∗

3,-2 1,-4
∗ ∗

1,-4 3,-2
∗ ∗

For this game it can be verified that the pairs

(xδ, yδ) = ((1− δ2 − δ4, δ4, δ2)∞, (δ2, 1− δ2)∞)

are δ-proper. Clearly

(x̃, ỹ) = lim
δ↓0

(xδ, yδ) = ((1, 0, 0)∞, (0, 1)∞)

is a proper pair, but obviously (x̃, ỹ) is no limiting average ε-equilibrium,
since player 2 would rather play his first column against x̃.

5. Impossibility of Generalization

In this section we show that neither two-person recursive games with more
than one non-trivial state, nor three-person recursive repeated games with
an absorbing state, need to have stationary limiting average ε-equilibria.

5.1. EXAMPLE

We now consider the following two-person recursive game Γ

0,0
(0,0,0,1)

0,0
(0, 1

2 , 1
2 , 0)

1

0,0 0,0
(1,0,0,0) (0,1,0,0)

2
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3,-1
(0,0,1,0)

3

2,1
(0,0,0,1)

4

This game is a recursive perfect information game for which there is no
stationary limiting average ε-equilibrium. One can prove this as follows.
Suppose player 2 puts positive weight on Left in state 2, then player 1’s
only stationary limiting average ε-best replies are those that put weight
at most ε

2−ε on Top in state 1; against any of these strategies, player 2’s
only stationary limiting average ε-best replies are those that put weight 0
on Left in state 2. So there is no stationary limiting average ε-equilibrium
where player 2 puts positive weight on Left in state 2. But neither is there
a stationary limiting average ε-equilibrium where player 2 puts weight 0
on Left in state 2, since then player 1 should put at most 2ε weight on
Bottom in state 1, which would in turn contradict player 2’s putting weight
0 on Left. In Thuijsman and Raghavan [6] existence of limiting average 0-
equilibria is shown for arbitrary n-person games with perfect information.
The notion of perfect information stands for the fact that in any state there
is at most one player with a non-trivial action space.

5.2. EXAMPLE

We now consider the following three-person recursive game Γ

Near
Left Right

Top 0, 0, 0 0, 1, 3
∗

Bottom 1, 3, 0 1,0,1
∗ ∗

Far

3, 0, 1 1, 1, 0
∗ ∗

0, 1, 1 0, 0, 0
∗ ∗

This is a three-person recursive repeated game with absorbing states, where
an asterisk in any particular entry denotes a transition to an absorbing state
with the same payoff as in this particular entry. There is only one entry for
which play will remain in the non-trivial initial state. One should picture
the game as a 2 × 2 × 2 cube, where the layers belonging to the actions
of player 3 (Near and Far) are represented separately. As before, player 1
chooses Top or Bottom and player 2 chooses Left or Right. The entry (T,
L, N) is the only non-absorbing entry for the initial state. Hence, as long as
play is in the initial state the only possible history is the one where entry
(T, L, N) was played at all previous stages. This rules out the use of any
non-trivial history-dependent strategy for this game. Therefore, the players
have only Markov strategies at their disposal. In Flesch et al. [3] it is shown
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that, although (cyclic) Markov limiting average 0-equilibria exist for this
game, there are no stationary limiting average ε-equilibria. Moreover, the
set of all limiting average equilibria is characterized completely. An example
of a Markov equilibrium for this game is (f, g, h), where f is defined by:
at stages 1, 4, 7, 10, . . . play T with probability 1

2 and at all other stages
play T with probability 1. Similarly, g is defined by: at stages 2, 5, 8, 11, . . .
play L with probability 1

2 and at all other stages play L with probability
1. Likewise, h is defined by: at stages 3, 6, 9, 12, . . . play N with probability
1
2 and at all other stages play N with probability 1. The limiting average
reward corresponding to this equilibrium is (1, 2, 1). For a further discussion
on three-person repeated games with absorbing states we refer to [4].
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