Why do people like abstract art?

Frank Thuijsman

f.thuijsman@maastrichtuniversity.nl

TAOP - I Am A Painter, Maastricht, November 1, 2017
Kazimir Malevich (1915): The Black Square
Da Vinci – Vitruvius (1485/1490)
Da Vinci – Vitruvius (1485/1490)
Da Vinci – Vitruvius (1485/1490)
Golden Ratio

\[
\frac{AB}{AP} = \frac{AP}{PB}
\]
Golden Ratio
Golden Ratio
Golden Ratio – Da Vinci (1475)
Golden Ratio – Botticelli (1485)
Golden Ration – Botticelli (1485)
Golden Ratio – Vermeer (1665)
Golden Ratio – Mondriaan (1920)

[Image: Mondriaan's painting with golden ratio lines drawn on it]
Piet Mondriaan (1920): Composition A
Beyond the Sky
Pythagoras’ Theorem

\[a^2 + b^2 = c^2 \]
Pythagoras’ Theorem

\[3^2 + 4^2 = 5^2 \]

Pythagoras at Chartres Cathedral
Pythagoras’ Theorem

$3^2 + 4^2 = 5^2$

Pythagoras at Chartres Cathedral
Pythagoras and Music

Can the ratios of small numbers give us a perfect musical system?

\[L_1 = 1/2, \ L_2 = 1/2 : \text{ unison; } \]
\[L_1 = 1/3, \ L_2 = 2/3 : \text{ octave; } \]
\[L_1 = 3/5, \ L_2 = 2/5 : \text{ perfect fifth; } \]
\[L_1 = 4/7, \ L_2 = 3/7 : \text{ perfect fourth} \]

Two intervals that add up to an octave are each other’s inversions: e.g. 3/2 x 4/3 = 2, so a fourth is the inversion of the fifth, etc.
Pythagoras’ Theorem

\[a^2 + b^2 = c^2 \]
Pythagoras’ Theorem

$$a^2 + b^2 = c^2$$
Pythagoras’ Theorem

\[a^2 + b^2 = c^2 \]
Pythagoras’ Theorem

\[a^2 + b^2 = c^2 \]
Pythagoras’ Theorem

\[a^2 + b^2 = c^2 \]
Pythagoras’ Theorem

\[a^2 + b^2 = c^2 \]
Pythagoras’ Theorem

\[a^2 + b^2 = c^2 \]
Seven Bridges of Königsberg (±1730)
Seven Bridges of Königsberg (±1730)
Leonard Euler (1707-1783)

\[V - E + F = 2 \]
Leonard Euler (1707-1783)

\[V - E + F = 2 \]

4
Leonard Euler (1707-1783)

\[V - E + F = 2 \]

4 - 7
Leonard Euler (1707-1783)

\[V - E + F = 2 \]

\[4 - 7 + 5 \]
Leonard Euler (1707-1783)

\[V - E + F = 2 \]

\[4 - 7 + 5 = 2 \]
Leonard Euler (1707-1783)

\[V - E + F = 2 \]
Leonard Euler (1707-1783)

\[V - E + F = 2 \]

\[4 - 3 + 1 = 2 \]
Leonard Euler (1707-1783)

\[V - E + F = 2 \]

\[4 - 4 + 2 = 2 \]
Leonard Euler (1707-1783)

\[V - E + F = 2 \]
\[4 - 5 + 3 = 2 \]
Leonard Euler (1707-1783)

\[V - E + F = 2 \]

\[4 - 6 + 4 = 2 \]
Leonard Euler (1707-1783)

\[V - E + F = 2 \]
\[4 - 7 + 5 = 2 \]
Euler and Mondriaan

\[V - E + F = 2 \]
Euler and Mondriaan

\[V - E + F = 2 \]

45
Euler and Mondriaan

\[V - E + F = 2 \]

45 – 71
Euler and Mondriaan

\[V - E + F = 2 \]

\[45 - 71 + 28 \]
Euler and Mondriaan

\[V - E + F = 2 \]

\[45 - 71 + 28 = 2 \]
Platonic Solids

<table>
<thead>
<tr>
<th>Tetrahedron</th>
<th>Octahedron</th>
<th>Hexahedron</th>
<th>Icosahedron</th>
<th>Dodecahedron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Four Sided</td>
<td>Eight Sided</td>
<td>Six Sided</td>
<td>Twenty Sided</td>
<td>Twelve Sided</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>△ Fire</td>
<td>△ Air</td>
<td>▽ Earth</td>
<td>▽ Water</td>
<td>⊙ Aether</td>
</tr>
<tr>
<td>4 faces</td>
<td>8 faces</td>
<td>6 faces</td>
<td>20 faces</td>
<td>12 faces</td>
</tr>
<tr>
<td>4 points</td>
<td>6 points</td>
<td>8 points</td>
<td>12 points</td>
<td>20 points</td>
</tr>
<tr>
<td>6 edges</td>
<td>12 edges</td>
<td>12 edges</td>
<td>30 edges</td>
<td>30 edges</td>
</tr>
</tbody>
</table>

\[V - E + F = 2 \]

- Tetrahedron: \[4 - 6 + 4 = 2 \]
- Octahedron: \[6 - 12 + 8 = 2 \]
- Hexahedron: \[8 - 12 + 6 = 2 \]
- Icosahedron: \[12 - 30 + 20 = 2 \]
- Dodecahedron: \[20 - 30 + 12 = 2 \]
Beautiful Numbers
Beautiful Numbers

\[\pi = 3.14159... \]
Beautiful Numbers

\[\pi = 3.14159... \] half circumference of circle with radius 1
Beautiful Numbers

\[\pi = 3.14159...\] half circumference of circle with radius 1
\[e = 2.71828...\]
Beautiful Numbers

\[\pi = 3.14159...\text{ half circumference of circle with radius 1}\]

\[e = 2.71828...\quad e = 1 + \frac{1}{1} + \frac{1}{2*1} + \frac{1}{3*2*1} + \frac{1}{4*3*2*1} + \cdots\]
Beautiful Numbers

\[\pi = 3.14159... \quad \text{half circumference of circle with radius 1} \]
\[e = 2.71828... \quad e = 1 + \frac{1}{1} + \frac{1}{2\times1} + \frac{1}{3\times2\times1} + \frac{1}{4\times3\times2\times1} + \cdots \]
\[i = ? \]
Beautiful Numbers

$\pi = 3.14159...$
half circumference of circle with radius 1

$e = 2.71828...$
$e = 1 + \frac{1}{1} + \frac{1}{2*1} + \frac{1}{3*2*1} + \frac{1}{4*3*2*1} + \ldots$

$i = ?$
$i^2 = -1$, i is an imaginary number
Beautiful Numbers

\[\pi = 3.14159... \text{\quad half circumference of circle with radius 1}\]

\[e = 2.71828... \quad e = 1 + \frac{1}{1} + \frac{1}{2\cdot1} + \frac{1}{3\cdot2\cdot1} + \frac{1}{4\cdot3\cdot2\cdot1} + \cdots\]

\[i = ? \quad i^2 = -1, \ i \text{ is an imaginary number}\]

\[e^{\pi i} + 1 = 0\]
Beautiful Numbers

\[\pi = 3.14159... \quad \text{half circumference of circle with radius 1} \]
\[e = 2.71828... \quad e = 1 + \frac{1}{1} + \frac{1}{2\cdot1} + \frac{1}{3\cdot2\cdot1} + \frac{1}{4\cdot3\cdot2\cdot1} + \ldots \]
\[i = ? \quad i^2 = -1, \ i \text{ is an imaginary number} \]

\[e^{\pi i} + 1 = 0 \]

THANKS
Enjoy the Abstract in Art and Beyond!

\[e^{\pi i} + 1 = 0 \]

THANKS
Enjoy the Abstract in Art and Beyond!

\[e^{\pi i} + 1 = 0 \]

THANKS