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Abstract

In this paper we discuss the main existence results on optimality and equilibria in two-person stochastic games with
finite state and action spaces. Several examples are provided to clarify the issues.

1 The Stochastic Game Model

In this introductory section we give the necessary definitions and notations for the two-person case of the stochastic
game model and we briefly present some basic results. In section 2 we discuss the main existence results for zero-sum
stochastic games, while in section 3 we focus on general-sum stochastic games. In each section we discuss several
examples to illustrate the most important phenomena.

It all started with the fundamental paper by Von Neumann [1928] in which he proves the so called minimax theorem
which says that for each finite matrix of reals A = [aij ]m n

i=1,j=1 there exist probability vectors x̄ = (x̄1, x̄2, . . . , x̄m) and
ȳ = (ȳ1, ȳ2, . . . , ȳn) such that for all x and y it holds that2 xAȳ ≤ x̄Aȳ ≤ x̄Ay. In other words: maxx miny xAy =
miny maxx xAy. This theorem can be interpreted to say that each matrix game has a value. A matrix game A is
played as follows. Simultaneously, and independent from each other, player 1 chooses a row i and player 2 chooses a
column j of A. Then player 2 has to pay the amount aij to player 1. Each player is allowed to randomize over his
available actions and we assume that player 1 wants to maximize his expected payoff, while player 2 wants to minimize
the expected payoff to player 1. The minimax theorem tells us that, for each matrix A there is a unique amount
val(A), which player 1 can guarantee as his minimal expected payoff, while at the same time player 2 can guarantee
that the expected payoff to player 1 will be at most this amount.

Later Nash [1951] considered the n-person extension of matrix games, in the sense that all n players, simultaneously
and independently choose actions that determine a payoff for each and every one of them. Nash [1951] showed that in
such games there always exists at least one (Nash-)equilibrium: a tuple of strategies such that each player is playing
a best reply against the joint strategy of his opponents. For the two-player case this boils down to a “bimatrix game”
where players 1 and 2 receive aij and bij respectively in case their choices determine entry (i, j). The result of Nash
says that there exist x̄ and ȳ such that for all x and y it holds that x̄Aȳ ≥ xAȳ and x̄Bȳ ≥ x̄By, where A = [aij ] and
B = [bij ] are finite matrices of the same size.

Shapley [1953] introduced dynamics into game theory by considering the situation that at discrete stages in IN
the players play one of finitely many matrix games, where the choices of the players determine a payoff to player 1 (by
player 2) as well as a stochastic transition to go to a next matrix game. He called these games “stochastic games”,
which brings us to the topic of this paper. Formally, a two-person stochastic game with finite state and action spaces
can be represented by a finite set of matrices A1, A2, . . . , Az corresponding to the set of states S = {1, 2, . . . , z}. For
s ∈ S matrix As has size ms × ns ∈ IN × IN and entry (i, j) of As contains:

a) a payoff rk(s, i, j) ∈ IR for each player k ∈ {1, 2}

b) a transition probability vector p(s, i, j) = (p(1|s, i, j), p(2|s, i, j), . . ., p(z|s, i, j)) where p(t|s, i, j) is the probability
of a transition from s to t whenever entry (i, j) of As is selected.

Play can start in any state of S and evolves by players independently choosing actions in and jn of Asn , where sn
denotes the state visited at stage n. In case r1(s, i, j) + r2(s, i, j) = 0, the game is called zero-sum, otherwise it is
called general-sum. In zero-sum games players have strictly opposite interests, since they are paying each other.

A strategy for a player is a rule that tells him for any history hn = (s1, i1, j1, s2, i2, j2, . . . , sn−1, in−1, jn−1, sn) up
to stage n, what mixed action to use in state sn at stage n ∈ IN . Such behavior strategies will be denoted by π for
player 1 and by σ for player 2.

1Further address: P.O. Box 616, 6200 MD Maastricht, The Netherlands (frank@math.unimaas.nl)
2Note that we do not distinguish row vectors from column vectors. In the matrix products this should be clear from the context.
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For initial state s and any pair of strategies (π, σ) the limiting average reward and the β-discounted reward,
β ∈ (0, 1), to player k ∈ {1, 2} are respectively given by

γk(s, π, σ) = Esπσ

(
lim infT→∞ 1

T

∑T
n=1 r

k(Sn, In, Jn)
)

(1)

γkβ(s, π, σ) = Esπσ
(
(1− β)

∑∞
n=1 β

n−1rk(Sn, In, Jn)
)

(2)

where Sn, In, Jn are random variables for the state and actions at stage n. Let γk(π, σ) and γkβ(π, σ) denote vectors
of rewards with coordinates corresponding to the initial states.
A stationary strategy for a player consists of a mixed action for each state, to be used whenever that state is being
visited, regardless of the history. Stationary strategies for player 1 are denoted by x = (x1, x2, . . . , xz), where xs is the
mixed action to be used in state s. For player 2’s stationary strategies we write y. A pair (x, y) of stationary strategies
determines a Markov-chain (with transition matrix) P (x, y) on S, where entry (s, t) of P (x, y) is p(t|s, xs, ys) =∑ms

i=1

∑ns

j=1 xs(i)p(t|s, i, j)ys(j). If we use the notation rk(x, y) = (rk(1, x1, y1), rk(2, x2, y2), . . . , rk(z, xz, yz)) with
rk(s, xs, ys) =

∑ms

i=1

∑ns

j=1 xs(i)rk(s, i, j)ys(j) then

γkβ(x, y) = (1− β)(I − βP (x, y))−1rk(x, y) (3)

where I is the identity matrix, and

γk(x, y) = Q(x, y)rk(x, y) (4)

with

Q(x, y) = limT→∞
1
T

∑T
n=1(P (x, y))n (5)

It is well-known (cf. Blackwell [1962]) that

Q(x, y)P (x, y) = Q(x, y) (6)

Q(x, y) = limβ↑1 (1− β)(I − βP (x, y))−1 (7)

and hence (3), (4) and (7) give

γk(x, y) = limβ↑1 γkβ(x, y) (8)

Notice that (5) and (6) imply that row s of Q(x, y) is the unique stationary distribution for the Markov chain P (x, y)
starting in state s. A stationary strategy x is called pure if #{i : xs(i) > 0} = 1 for all s. Pure stationary strategies
shall be denoted by f and g for players 1 and 2 respectively. It is well-known (cf. Hordijk et al. [1983]) that, when
playing against a fixed stationary strategy, a player always has a pure stationary best reply:

∀β ∀y ∃f1, f1
β ∀π

[
γ1(f1, y) ≥ γ1(π, y) and γ1

β(f1
β , y) ≥ γ1

β(π, y)
]

(9)

Obviously, for player 2’s best replies an analogon of (9) holds.
Finally, we wish to mention one more type of strategies, namely Markov strategies. These are strategies that, at

any stage of play, prescribe actions that only depend on the current state and stage. Thus, the past actions of the
opponent are not being taken into account. Strategies for which these choices do depend on those past actions shall
be called history dependent.

2 Zero-sum Stochastic Games

In zero-sum stochastic games it is customary to consider only the payoffs to player 1, which player 1 wishes to maximize
and player 2 wants to minimize. Since in the sequel we also consider the zero-sum situation where player 2 is the
maximizer and player 1 the minimizer, we shall incorporate the player number in the definitions of value and optimal
strategies. Thus, for k = 1, 2, the k-zerosum game is the stochastic game determined by player k’s payoffs, where
player k is maximizing his reward while the other player is minimizing player k’s reward.

In his ancestral paper on stochastic games Shapley [1953] shows

∀β ∃v1
β ∃x1

β , y
1
β ∀π, σ

[
γ1
β(x1

β , σ) ≥ v1
β ≥ γ1

β(π, y1
β)
]

(10)

The vector v1
β is called the β-discounted 1-value and the strategies x1

β , y
1
β are called stationary β-discounted optimal

strategies in the 1-zerosum game. Shapley’s proof is based on the observation that v1
β is the unique solution of the

following system of equations:

αs = val[(1− β)r1(s, i, j) + β
∑
t p(t|s, i, j)αt]

ms ns
i=1,j=1 ,s ∈ S (11)

where val denotes the matrix game value operator.
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Everett [1957] and Gillette [1957] were the first to consider undiscounted rewards. Everett [1957] examined recursive
games, which can be defined as stochastic games where the only non-zero payoffs can be obtained in absorbing states,
i.e. states that have the property that once play gets there, it remains there forever. Although optimal strategies need
not exist for such games, Everett [1957] shows that for each recursive game the limiting average value v1 exists, and
can be achieved by using stationary ε-optimal strategies x1

ε, y
1
ε . Precisely:

∃v1 ∀ε > 0 ∃x1
ε, y

1
ε ∀π, σ

[
γ1(x1

ε, σ) + ε1z ≥ v1 ≥ γ1(π, y1
ε)− ε1z

]
(12)

Here 1z denotes the vector (1, 1, . . . , 1) in IRz.

Example 2.1

Consider the following recursive game.
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To explain this notation: Player 1 chooses rows; player 2 chooses columns; for each entry the above diagonal number
is the payoff to player 1 and the below diagonal number is the state at which play is to proceed; in case of a stochastic
transition we write the transition probability vector at this place.

States 3 and 4 are absorbing and obviously states 1 and 2 are the only interesting initial states. For this game the
limiting average value is v1 = (1,−1, 1,−1). For player 1 a stationary limiting average ε-optimal strategy is given by
((1− ε, ε), (1, 0)) for states 1 and 2 respectively (clearly, in states 3 and 4 he can only choose the one available action).

As can be verified using (11), the β-discounted value is v1
β = ( 1−

√
1−β2

β ,
−1+
√

1−β2

β , 1,−1) and for player 1 the unique

stationary β-discounted optimal strategies are given by playing Top, his first action, with probability 1−β2−
√

1−β2

β−β2−β
√

1−β2

in state 1 as well as in state 2.
An elementary proof for Everett’s [1957] result is given by Thuijsman & Vrieze [1992], where for the recursive game

situation a stationary limiting average ε-optimal strategy is constructed from an arbitrary sequence of stationary βn-
discounted optimal strategies, with limn→∞ βn = 1.

Example 2.2

This famous game is the so called big match introduced by Gillette [1957].

2
0

�
���

��

3
1

�
���

��
1

1

�
���

��

1
0

�
���

��

1
2

0

�
���

��

2
3

1

�
���

��

3

For this game the unique stationary β-discounted optimal strategies are given by x1
β = ( 1

2−β ,
1−β
2−β ) and y1

β = ( 1
2 ,

1
2 ) for

players 1 and 2 respectively, and v1
β = 1

2 for initial state 1. However, it was not clear for a long time, whether or not the
limiting average value would exist. The problem was that against any Markov strategy for player 1 and for any ε > 0
player 2 has a Markov strategy such that player 1’s limiting average reward is less than ε. On the other hand, player 2
can guarantee that he has to pay a limiting average reward of at most 1

2 , but he cannot guarantee anything less than
1
2 . Hence there is an apparent gap between the amounts the players can guarantee using only Markov strategies. The
matter was settled by Blackwell & Ferguson [1968], who formulated, for arbitrary ε > 0, a history dependent strategy
for player 1 which guarantees a limiting average reward of at least 1

2 − ε against any strategy of player 2. This history
dependent limiting average ε-optimal stratey is of the following type. At stage n suppose that play is still in state 1
where player 2 has chosen left l(n) times, while he has chosen right r(n) times. Then, player 1 should play Bottom
(his second action) with probability ε2(1− ε)k(n), where k(n) = max{0, l(n)− r(n)}.

Later, this result on the big match was generalized by Kohlberg [1974], who showed that every repeated game with
absorbing states has a limiting average value. A repeated game with absorbing states is a stochastic game in which,
just like in the big match, all states but one are absorbing.

Finally, by an ingeneous proof Mertens & Neyman [1981] showed that for every stochastic game the limiting average
value exist. Their proof exploits the remarkable observation by Bewley & Kohlberg [1976] that the β-discounted value
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as well as the stationary β-discounted optimal strategies can be expanded as Puiseux series in powers of 1 − β. For
example, for the above big match we have that x1

β = (1, 0) + (−1, 1)(1− β) + (1,−1)(1− β)2 + (−1, 1)(1− β)3 + . . .
Apart from these general results, specially structured stochastic games have been examined. We already dis-

cussed recursive games and repeated games with absorbing states, but we should also mention the following classes:
irreducible/unichain stochastic games (cf. Rogers [1969], Sobel [1971], Federgruen [1978]), i.e. stochastic games for
which for any pair of stationary strategies the related Markov chain is irreducible/unichain; single controller stochas-
tic games (cf. Parthasarathy & Raghavan [1981]), i.e. games in which the transitions only depend on the actions
of one and the same player for all states; switching control stochastic games (cf. Filar [1981], Vrieze et al. [1983]),
i.e. games with transitions for each state depending on the action of only one player; perfect information stochastic
games (cf. Liggett & Lippman [1969]), where in each state one of the players has only one action available; stochastic
games with additive rewards and additive transitions ARAT (cf. Raghavan et al. [1985]), i.e. there are rk1 , r

k
2 , p1, p2

such that rk(s, i, j) = rk1 (s, i) + rk2 (s, j) and p(s, i, j) = p1(s, i) + p2(s, j) for all s, i, j; stochastic games with sepa-
rable rewards and state independent transitions (cf. Parthasarathy et al. [1984]), i.e. there are rka , r

k
b , pa such that

rk(s, i, j) = rka(s) + rkb (i, j) and p(s, i, j) = pa(i, j) for all s, i, j. All these classes admit stationary limiting average
optimal strategies. Later, in Thuijsman & Vrieze [1991, 1992] and in Thuijsman [1992] new (and far more simple)
proofs were provided for the existence of stationary solutions in several of these classes. Characterizations, in terms of
game properties, for the existence of stationary limiting average optimal strategies are provided in Vrieze & Thuijsman
[1987], Filar et al. [1991] and Thuijsman [1992].

Before closing this section on optimality we mention the result by Tijs & Vrieze [1986] (also see Vrieze [1987]) who
show that for every stochastic game there is for each player a non-empty set of initial states for which a stationary
limiting average optimal strategy exists. This proof relies on the Puiseux series work by Bewley & Kohlberg [1976]. A
new and direct proof for the same result is given in Thuijsman & Vrieze [1991], Thuijsman [1992]. A detailed study of
the possibilities for limiting average optimality by means of stationary strategies can be found in Thuijsman & Vrieze
[1993], while in Flesch et al. [1996b] it is shown that the existence of a limiting average optimal strategy implies the
existence of stationary limiting average ε-optimal strategies.

3 General-sum Stochastic Games

One of the first persons to examine non-zerosum stochastic games was Fink [1964], who showed the existence of
stationary β-discounted equilibria for stochastic games:

∀β ∃x, y ∀π, σ
[
γ1
β(π, y) ≤ γ1

β(x, y) and γ2
β(x, σ) ≤ γ2

β(x, y)
]

(13)

Since, by its definition, for the zero-sum situation an equilibrium can only consist of a pair of optimal strategies,
the big match (cf. example 2.2) immediately shows that limiting average equilibria do not always exist. Where we
introduced ε-optimal strategies for the zero-sum case, we now have to introduce ε-equilibria for the general-sum case.
A pair of strategies (πε, σε) is called a limiting average ε-equilibrium (ε > 0) if neither player 1 nor player 2 can gain
more than ε by a unilateral deviation. To put it precisely

∀π, σ [γ1(π, σε) ≤ γ1(πε, σε) + ε1z and γ2(πε, σ) ≤ γ(πε, σε) + ε1z] (14)

The existence of limiting average ε-equilibria for arbitrary general-sum stochastic games has not yet been established.
Neither do we know of any counterexample to their existence. The most general results on the existence of equilibria
are the following. First it was observed that in every stochastic game there is a non-empty set of initial states for which
ε-equilibria exist (cf. Thuijsman & Vrieze [1991], Thuijsman [1992] or Vieille [1993]). Our proof of this result was
based on ergodicity properties of a converging sequence of stationary βn-discounted equilibra, with limn→∞ βn = 1.
However, the equilibrium strategies are of a behavioral type: at all stages players must take into account the history
of past moves of their opponent. Nevertheless, a side-result of this approach was a simple and straightforward proof
for the existence of stationary limiting average equilibria for irreducible/unichain stochastic games (which was earlier
derived by Rogers [1969], Sobel [1971], Federgruen [1978]).

Concerning the (simultaneous) existence of limiting average ε-equilibria for all initial states, sufficient conditions
have been formulated in Thuijsman [1992], which are based on properties of a converging sequence of stationary
βn-discounted equilibra, with limn→∞ βn = 1, while in Thuijsman & Vrieze [1997] quite general sufficient conditions
have been formulated in terms of stationary strategies, and of observability and punishability of deviations. We call
this the threat approach, since the players are constantly checking after each other, and any “wrong” move of the
opponent will immediately trigger a punishment. Thus the threats are the stabilizing force in the limiting average
equilibria. Using this threat approach existence of ε-equilibria has been shown for repeated games with absorbing
states (cf. Vrieze & Thuijsman [1989], where a prototype threat approach is being used), as well as for stochastic
games with state independent transitions (cf. Thuijsman [1992]), as well as for stochastic games with three states (cf.
Vieille [1993]), as well as for stochastic games with switching control (cf. Thuijsman & Raghavan [1997]), and existence
of pure 0-equilibria has been shown for stochastic games with additive rewards and additive transitions (ARAT, cf.
Thuijsman & Raghavan [1997]), which includes the perfect information games.

4



We remark that previous to our threat approach for none of these classes, the existence of limiting average ε-
equilibria was known, even though the zero-sum solutions had been derived a long time ago. Also note that even
for perfect information stochastic games stationary limiting average equilibria generallly do not exist, although for
the zero-sum case pure stationary limiting average optimal strategies are available (cf. Liggett & Lippman [1969]).
Example 3.2 below will illustrate this point.

For recursive repeated games with absorbing states (cf. Flesch et al. [1996a]) and for ARAT repeated games with
absorbing states (cf. Evangelista et al. [1997]) the existence of stationary limiting average ε-equilibria has been shown
(without threats).

We conclude this paper with three very special examples. In example 3.1 we examine a repeated game with
absorbing states for which there is a gap between the β-discounted equilibrium rewards and the limiting average
equilibrium rewards. In example 3.2 we discuss a perfect information stochastic game which does not have stationary
limiting average ε-equilibria, but where the only equilibria known to us, are of the threat type. In example 3.3 we
discuss a three person recursive repeated game with absorbing states for which the only limiting average equilibria
consist of cyclic Markov strategies. This is very remarkable since, in that game, neither history dependent nor
stationary limiting average ε-equilibria do exist.

Example 3.1
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This is an example of a repeated game with absorbing states, where play remains in the initial state 1 as long as
player 1 chooses Top, but play reaches an absorbing state as soon as player 1 ever chooses Bottom. Sorin [1986]
examined this example in great detail. The 1-zero-sum and 2-zero-sum limiting average values (for initial state 1)
are given by (v1, v2) = (1

2 ,
2
3 ). Clearly then, there can be no stationary limiting average ε-equilibrium, because

against any stationary strategy of player 1, player 2 can get at least 1, and by doing so player 1 would get 0 < v1,
which he can always achieve by playing limiting average ε-optimal in the 1-zero-sum game. However, for each pair
in Conv{( 1

2 , 1), ( 2
3 ,

2
3 )}, where Conv stands for convex hull, Sorin [1986] gives history dependent limiting average ε-

equilibria that yield this pair as an equilibrium reward. Besides, he shows that any limiting average ε-equilibrium
corresponds to a reward in Conv{( 1

2 , 1), ( 2
3 ,

2
3 )}, while all β-discounted equilibria yield ( 1

2 ,
2
3 ). Although this observation

suggests that the limiting average general-sum case can not be approached from the β-discounted general-sum case,
by studying this example Vrieze & Thuijsman [1989] discovered a general principle to construct, starting from any
arbitrary sequence of stationary βn-discounted equilibria with limn→∞ βn = 1, a limiting average ε-equilibrium.

Example 3.2
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This game is a recursive perfect information game for which there is no stationary limiting average ε-equilibrium. One
can prove this as follows. Suppose player 2 puts positive weight on Left in state 2, then player 1’s only stationary
limiting average ε-best replies are those that put weight at most ε

2−ε on Top in state 1; against any of these strategies,
player 2’s only stationary limiting average ε-best replies are those that put weight 0 on Left in state 2. So there is no
stationary limiting average ε-equilibrium where player 2 puts positive weight on Left in state 2. But there is neither
a stationary limiting average ε-equilibrium where player 2 puts weight 0 on Left in state 2, since then player 1 should
put at most 2ε weight on Bottom in state 1, which would in turn contradict player 2’s putting weight 0 on Left.
Following the construction of Thuijsman & Raghavan [1997], where existence of limiting average 0-equilibria is shown
for arbitrary n-person games with perfect informtion, we can find an equilibrium by the following procedure. Take
a pure stationary limiting average optimal strategy f1 for player 1 (this exists by Liggett & Lippman [1969]); let g1

be pure stationary limiting average optimal for player 2 in the 1-zero-sum game; let g2 be a pure stationary limiting
average best reply for player 2 against f1 in the 2-zero-sum game (which exists by (9)). Now define g∗ for player 2
by: play g2 unless at some stage player 1 has ever deviated from playing f1, then play g1. Here, f1 = (1, 0) = g2 and
g1 = (0, 1). Now it can be verified that (f1, g∗) is a limiting average equilibrium.
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Example 3.3
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This is a three-person recursive repeated game with absorbing states, where an asterisk in any particular entry denotes
a transition to an absorbing state with the same payoff as in this particular entry. There is only one entry for which
play will remain in the non-trivial initial state. One should picture the game as a 2 × 2 × 2 cube, where the layers
belonging to the actions of player 3 (Near and Far) are represented separately. As before, player 1 chooses Top or
Bottom and player 2 chooses Left or Right. The entry (T, L, N) is the only non-absorbing entry for the initial state.
Hence, as long as play is in the initial state the only possible history is the one where entry (T, L, N) was played at
all previous stages. This rules out the use of any non-trivial history dependent strategy for this game. Therefore, the
players only have Markov strategies at their disposal. In Flesch et al. [1997] it is shown that, although (cyclic) Markov
limiting average 0-equilibria exist for this game, there are no stationary limiting average ε-equilibria. Moreover, the
set of all limiting average equilibria is being characterized completely. An example of a Markov equilibrium for this
game is (π, σ, τ), where π is defined by: at stages 1, 4, 7, 10, . . . play T with probability 1

2 and at all other stages play
T with probability 1. Similarly, σ is defined by: at stages 2, 5, 8, 11, . . . play L with probability 1

2 and at all other
stages play L with probability 1. Likewise, τ is defined by: at stages 3, 6, 9, 12, . . . play N with probability 1

2 and at
all other stages play N with probability 1. The limiting average reward corresponding to this equilibrium is (1, 2, 1).
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