

joint with J. Flesch, P. Uyttendaele, Maastricht University and T. Parthasarathy, Indian Statistical Institute, Chennai

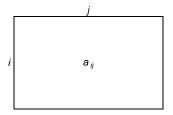
Toulouse, September 12-16, 2011

Outline

- Introduction
- **Stochastic Games**
- Evolutionary Games
- **Evolutionary Stochastic Games**
- **Concluding Remarks**

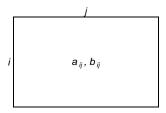
1928, John von Neumann

2-Person Zerosum Games



Existence of Value and Optimal Strategies

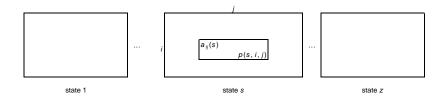
n-Person Non-Zerosum Games



Existence of Equilibria

1953, Lloyd Shapley

2-Person Zerosum Stochastic Games



Existence of Value and Optimal Strategies

1973, John Maynard Smith and George Price

Evolutionary Games

$$\rho_{j}$$

$$a_{ij}, b_{ij}$$
with $b_{ij} = a_{ji}$

- Population of Different Types Playing against Itself.
- Population Distribution $p = (p_1, p_2, \dots, p_n)$.
- Type k has Fitness e_kAp in Population p.
- Concept of Evolutionary Stable Strategies (ESS).

How to Model a Population Playing a Stochastic Game?

How to Model a Population Playing a Stochastic Game?

Some Words about Stochastic Games

Question

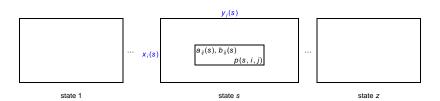
How to Model a Population Playing a Stochastic Game?

- Some Words about Stochastic Games
- Some Words about Evolutionary Games

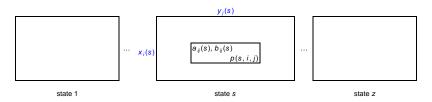
How to Model a Population Playing a Stochastic Game?

- Some Words about Stochastic Games
- Some Words about Evolutionary Games
- Presentation of a Combined Model

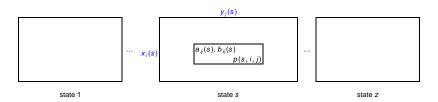
Stochastic Games



Stochastic Games

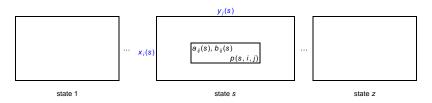


Finitely Many States, Finitely Many Actions for each Player



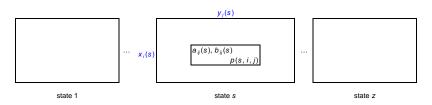
- Finitely Many States, Finitely Many Actions for each Player
- Payoffs and Transitions at each Stage 1, 2, 3, 4, ...

Stochastic Games



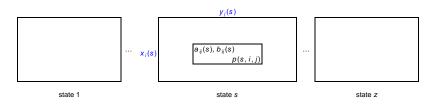
Evolutionary Stochastic Games

- Finitely Many States, Finitely Many Actions for each Player
- Payoffs and Transitions at each Stage 1, 2, 3, 4, ...
- Each State can serve as Initial State

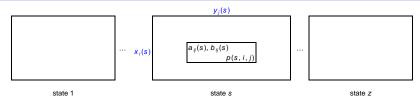


- Finitely Many States, Finitely Many Actions for each Player
- Payoffs and Transitions at each Stage 1, 2, 3, 4, ...
- Each State can serve as Initial State
- Complete Information and Perfect Recall

Stochastic Games

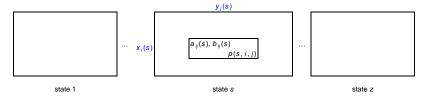


- Finitely Many States, Finitely Many Actions for each Player
- Payoffs and Transitions at each Stage 1, 2, 3, 4, . . .
- Each State can serve as Initial State
- Complete Information and Perfect Recall
- Discounting or Averaging the Stage Payoffs

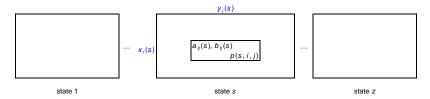


Some Highlights of Stochastic Game Theory

Stochastic Games

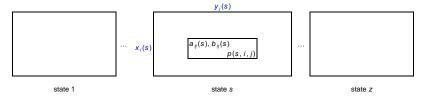


 1953, L.S. Shapley: 2-Person Zerosum Stopping Stochastic Games - Value Stochastic Games



- 1953, L.S. Shapley: 2-Person Zerosum Stopping Stochastic Games - Value
- 1957, H. Everett / D. Gillette: 2-Person Zerosum Undiscounted Stochastic Games

Some Highlights of Stochastic Game Theory

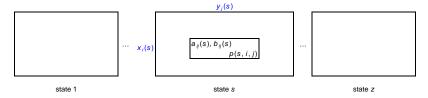


- 1953, L.S. Shapley: 2-Person Zerosum Stopping Stochastic Games - Value
- 1957, H. Everett / D. Gillette: 2-Person Zerosum Undiscounted Stochastic Games
- 1964, A.M. Fink / M. Takahashi: *n*-Person β-Discounted Stochastic Games - Equilibria

Introduction

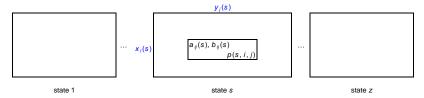
Some Highlights of Stochastic Game Theory

Stochastic Games



- 1953, L.S. Shapley: 2-Person Zerosum Stopping Stochastic Games - Value
- 1957, H. Everett / D. Gillette: 2-Person Zerosum Undiscounted Stochastic Games
- 1964, A.M. Fink / M. Takahashi: *n*-Person β-Discounted Stochastic Games - Equilibria
- 1981, J.F. Mertens and A. Neyman: 2-Person Zerosum Undiscounted Stochastic Games - Value

Some Highlights of Stochastic Game Theory



- 1953, L.S. Shapley: 2-Person Zerosum Stopping Stochastic Games - Value
- 1957, H. Everett / D. Gillette: 2-Person Zerosum Undiscounted Stochastic Games
- 1964, A.M. Fink / M. Takahashi: *n*-Person β-Discounted Stochastic Games - Equilibria
- 1981, J.F. Mertens and A. Neyman: 2-Person Zerosum Undiscounted Stochastic Games - Value
- 2000. N. Vieille: 2-Person Undiscounted Stochastic Games - Equilibria

1973, John Maynard Smith and George Price

Evolutionary Games

$$p_{j}$$

$$a_{ij}, b_{ij} \qquad \text{with } b_{ij} = a_{ji}$$

- Population of Different Types Playing against Itself.
- Population Distribution $p = (p_1, p_2, \dots, p_n)$.
- Type k has Fitness e_kAp in Population p.
- Concept of Evolutionary Stable Strategies (ESS).

The ESS Concept

Evolutionary Games

$$p_{j}$$

$$a_{ij}, b_{ij} \qquad \text{with } b_{ij} = a_{ji}$$

ESS: Population Distribution $p = (p_1, p_2, \dots, p_n)$ with

- $pAp \ge qAp \ \forall q$
- If $q \neq p$ and qAp = pAp, then pAq > qAq

The Replicator Dynamic by Taylor and Jonker, 1978

Evolutionary Games

$$\rho_{j}$$

$$a_{ij}, b_{ij}$$
with $b_{ij} = a_{ji}$

Population Development by the Replicator Equation:

$$\bullet \dot{p}_k = p_k \left(e_k A p - p A p \right)$$

Remarks on ESS and Asymptotic Stability

A Static Concept and a Dynamic Process

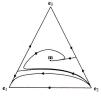
- A Static Concept and a Dynamic Process
- ESS Not Always Exists

- A Static Concept and a Dynamic Process
- ESS Not Always Exists
- Replicator Dynamic Not Always Converges

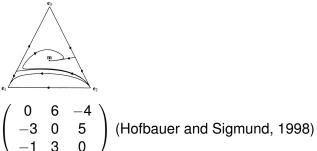
- A Static Concept and a Dynamic Process
- ESS Not Always Exists
- Replicator Dynamic Not Always Converges
- Any ESS is Asymptotically Stable

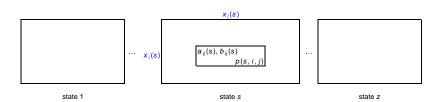
- A Static Concept and a Dynamic Process
- ESS Not Always Exists
- Replicator Dynamic Not Always Converges
- Any ESS is Asymptotically Stable
- Limit Points of Dynamic Not Always ESS

- A Static Concept and a Dynamic Process
- ESS Not Always Exists
- Replicator Dynamic Not Always Converges
- Any ESS is Asymptotically Stable
- Limit Points of Dynamic Not Always ESS



- A Static Concept and a Dynamic Process
- ESS Not Always Exists
- Replicator Dynamic Not Always Converges
- Any ESS is Asymptotically Stable
- Limit Points of Dynamic Not Always ESS





•000000000

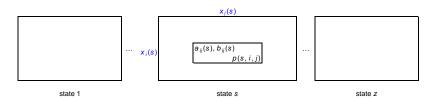
Assumptions for Evolutionary Stochastic Games

Evolutionary Stochastic Games

•000000000

• Symmetric Payoffs: $b_{ii} = a_{ii}$

Assumptions for Evolutionary Stochastic Games

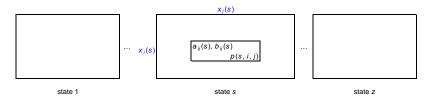


Evolutionary Stochastic Games

•000000000

- Symmetric Payoffs: $b_{ii} = a_{ii}$
- Symmetric Transitions: p(s, i, j) = p(s, j, i)

Assumptions for Evolutionary Stochastic Games

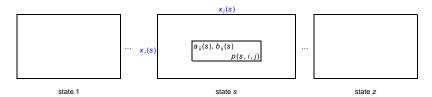


Evolutionary Stochastic Games

•000000000

- Symmetric Payoffs: $b_{ii} = a_{ii}$
- Symmetric Transitions: p(s, i, j) = p(s, j, i)
- Unichain Stochastic Game

Assumptions for Evolutionary Stochastic Games



Evolutionary Stochastic Games

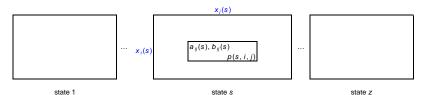
000000000

- Symmetric Payoffs: $b_{ii} = a_{ii}$
- Symmetric Transitions: p(s, i, j) = p(s, j, i)
- Unichain Stochastic Game One Ergodic Set for Any Pair of Stationary Strategies

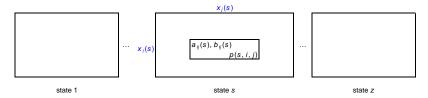
Introduction



- Symmetric Payoffs: $b_{ij} = a_{ji}$
- Symmetric Transitions: p(s, i, j) = p(s, j, i)
- Unichain Stochastic Game
 One Ergodic Set for Any Pair of Stationary Strategies
- Types Correspond to Pure Stationary Strategies

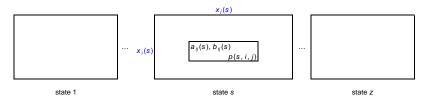


Assumptions Continued



• Fitness of Type k in Population $\bar{x} = (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)$ is Average Reward $\gamma(e_k, x)$ where x Stationary Strategy determined by \bar{x}

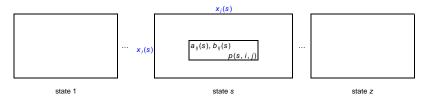
Introduction



- Fitness of Type k in Population $\bar{x} = (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)$ is Average Reward $\gamma(e_k, x)$ where x Stationary Strategy determined by \bar{x}
- Different Populations can give Same Stationary Strategy

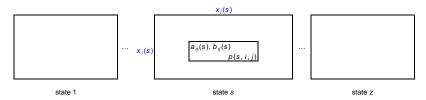
Assumptions Continued

Introduction

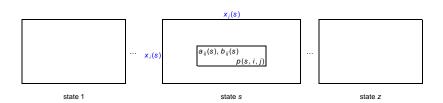


- Fitness of Type k in Population $\bar{x} = (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)$ is Average Reward $\gamma(e_k, x)$ where x Stationary Strategy determined by \bar{x}
- Different Populations can give Same Stationary Strategy
- Stationary Strategy x is ESS if
 - $\gamma(x,x) \ge \gamma(y,x) \ \forall$ Stationary Strategies y
 - If $y \neq x$ and $\gamma(y, x) = \gamma(x, x)$, then $\gamma(x, y) > \gamma(y, y)$

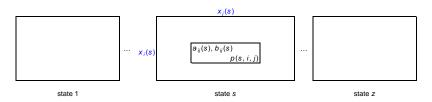
Assumptions Continued



- Fitness of Type k in Population $\bar{x} = (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)$ is Average Reward $\gamma(e_k, x)$ where x Stationary Strategy determined by \bar{x}
- Different Populations can give Same Stationary Strategy
- Stationary Strategy x is ESS if
 - $\gamma(x,x) \ge \gamma(y,x) \ \forall$ Stationary Strategies y
 - If $y \neq x$ and $\gamma(y, x) = \gamma(x, x)$, then $\gamma(x, y) > \gamma(y, y)$
- Population Development by Replicator Dynamic
 - $\dot{\bar{x}}_k = \bar{x}_k \left(\gamma(e_k, x) \gamma(x, x) \right)$



Some Remarks



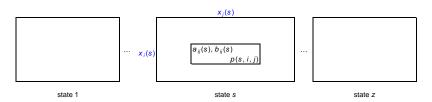
Evolutionary Stochastic Games

000000000

ESS Not Always Exists

- ESS Not Always Exists
- Replicator Dynamic Not Always Converges

Some Remarks



Evolutionary Stochastic Games

000000000

- ESS Not Always Exists
- Replicator Dynamic Not Always Converges
- Limit Points of Dynamic Not Always give ESS

Why Unichain?

000000000

state 1

state 2

0000000000

Evolutionary Stochastic Games

state 1

state 2

state 1

state 2

(Trajectory)

0000000000

Evolutionary Stochastic Games

state 1

state 2

state 1

state 2

(Trajectory)

0000000000

1951, George Brown / Julia Robinson

The Fictitious Play Process:
Playing Best Replies against Observed Action Frequencies

0000000000

1951, George Brown / Julia Robinson

The Fictitious Play Process:

Playing Best Replies against Observed Action Frequencies

For Matrix Games FP leads to Optimal Strategies

1951, George Brown / Julia Robinson

The Fictitious Play Process:

Playing Best Replies against Observed Action Frequencies

- For Matrix Games FP leads to Optimal Strategies
- No FP Convergence for Bimatrix Games (Shapley, 1964)

1951, George Brown / Julia Robinson

The Fictitious Play Process:

Playing Best Replies against Observed Action Frequencies

- For Matrix Games FP leads to Optimal Strategies
- No FP Convergence for Bimatrix Games (Shapley, 1964)
- ..

A 2 State Example with Fictitious Play

0000000000

state 1

state 2

A 2 State Example with Fictitious Play

state 1

state 2

(Trajectory)

Evolutionary Stochastic Games

0000000000

state 1 state 2 state 3

state 1 state 2 state 3

(Trajectory)

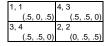
A 3 State Example with Fictitious Play

000000000

state 3

state 1 state 2

A 3 State Example with Fictitious Play



state 2

state 1

state 3

(Trajectory)

 Existence of Symmetric Equilibria for Symmetric Stochastic Games? Introduction

- Existence of Symmetric Equilibria for Symmetric Stochastic Games?
- Relation between Replicator Dynamic and Fictitious Play for Symmetric Stochastic Games?

Introduction

- Existence of Symmetric Equilibria for Symmetric Stochastic Games?
- Relation between Replicator Dynamic and Fictitious Play for Symmetric Stochastic Games?
- Some Stability Issues on Population Dynamic

Other 'Evolutionary' Work in Maastricht

Other 'Evolutionary' Work in Maastricht

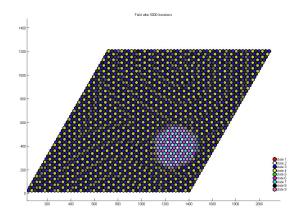
Examining the effects of periodic fitness in replicator dynamics

Evolutionary Stochastic Games

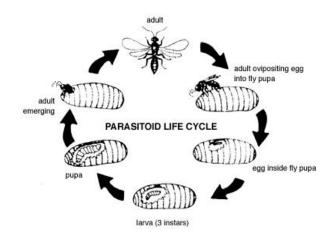
(Trajectory)

Other 'Evolutionary' Work in Maastricht

Examining the effects of local replicator dynamics



Studying sex choice ovipositioning behavior of parasitoid wasps



Thanks

Thank you for your attention! Any comment is welcome!

This presentation will be available at www.personeel.unimaas.nl/F-Thuijsman