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On Equilibria in Repeated Games With Absorbing States 1 

By O. J. Vrieze and E Thui j sman 2 

Abstract: We prove the existence of e-(Nash) equilibria in two-person non-zerosum limiting avera- 
ge repeated games with absorbing states. These are stochastic games in which all states but one 
are absorbing. A state is absorbing if the probability of ever leaving that state is zero for all available 
pairs of actions. 

1 The Stochastic Game Model: Definitions and Notations 

We consider two-person stochastic games with finite state and act ion spaces and 
with N : =  {1,2 .... } as set o f  stages. 

A stochastic game situation can be seen as a finite set o f  matrices 
{A1,A 2 ..... Az}, corresponding to the set o f  states S: = {1,2 ..... z}, in which entry (i,j) 
of  A s, sES, has the following shape: 

rI(s,i,j),rII(s,i,J) _ 

For all s,i and j :  rI(s, id),rlI(s, id)ER and p(s,i,j)=(p(1 Is,i,j), p(2[s,i,j) ..... 
p(zls,i,j) is a probabil i ty vector  in R z. 

The stochastic game corresponding to this si tuation is played in the following 
way. At each stage n E N  the system is in one o f  the states. Say it is in state s at stage 
n. Simultaneously and independently player I chooses a row, i for instance, and play- 
er II  chooses a column,  j for instance. These choices may be seen as outcomes o f  
probabil i ty experiments done by the players. Then the players are informed o f  each 
other ' s  choices, player I receives the immediate  payoff  rI(s,i,j), player II  receives the 
immediate  payoff  rII(s,i,j), and next the system moves to a subsequent state deter- 
mined by a probabil i ty experiment according top(s,i,j), i.e. a move to state t occurs 
with probabil i ty p(t[s,i,j), for each tES. In  this new state choices have to be made  
by the players at stage n + l ,  etc.. 
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A player's strategy is a specification of a probability distribution at each stage, 
and for each state, over his available actions, conditional on the history of the game 
up to that stage. Notice that we assume the players to have complete information 
about everything that has happened in the past. A strategy for player I will be deno- 
ted by a and for player II  by r. A strategy is a Markov strategy if the specified proba- 
bility distribution at each stage only depends on the current state and on the stage 
number. A strategy is called a stationary strategy if it is a Markov strategy and the 
specified probability distributions are the same for all stages. Stationary strategies 
are denoted by x for player I and by y for player II. 

A pair of  strategies (a, r) together with an initial state sES determine a stochastic 
process on the sets of  immediate payoffs. For all hEN let Rk(n) denote the stocha- 
stic variable representing the immediate payoff  to player kE{I,II} at stage n. Since 
we will assume that both  players want to maximize their expected overall reward, the 
players have to use some criterion to evaluate streams of payoffs. The two main eva- 
luation criteria are f3-discounted, where players discount future payoffs, and limi- 
ting average, where players, roughly speaking, evaluate by looking at the expected 
average reward. To be more exact: for a pair of  strategies (a,r) and an initial state s 

GO 

7~ (s,a,T)=Es~z ((1-13) Z 13n-IRk(n)) 
n = l  

is the (expected) B-discounted reward to player/c, where r 

7k(s,o,r) =Es~r(lim inf 1 T Rk(n)) 
T--GO T n=l  

is the (expected) limiting average reward to player k. 
Depending on which criterion is used (both players use the same) the game is 

called a/3-discounted stochastic game or a limiting average stochastic game. 
The game is called a zerosum stochastic game if rlI(s,i,j) = - r  I (s,i,j) for all s,i,j. 

In case the game is zerosum there is no need to denote the rII(s,i,j)'s, they will be 
skipped. 

A zerosum game has value valER z, if for all e > 0 there exist strategies _a for 
player I and z for player II,  such that for all a and ~ and for all sES: 

e(s,a_,-r) >_ val(s)-c and e(s,a,Z) < val(s) + e , 

where e=  -y~ (~E(0,1)) or e=  .yI corresponding to whether we observe the game as a 

/g-discounted game or as a limiting average game. The/3-discounted value will be de- 
noted by v~; the limiting average value will be denoted by v. In case the value exists, 
strategies g and _r, with the above property, are called e-optimal strategies for player 
I and player II respectively. I f  we can take e = 0, then _~ is called an optimal strategy 
for player I; a similar definition goes for player II. 
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In non-zerosum games one is interested in e-equilibria. An e-equilibrium (e > 0) 
is a pair of  strategies (_q,r_) such that for all a and 7 and all starting states sES: 

eI(s,a,7_) _< eI(s,g,7_) + e and 

elI(s,a, 7) _ elI(s,g,Z ) + e, 

where again e=  3"~ (/3E(0,1)) or e=  3'; thus we speak of  a ~-discounted e-equilibrium 
and a limiting average e-equilibrium respectively. A 0-equilibrium will be called an 
equilibrium. The interpretation of  an e-equilibrium is that, once the players have 
"agreed" to play some specific e-equilibrium, neither player can gain more than e 
by changing his strategy, if his opponent  does not change strategy. Thus, an e-equili- 
br ium is in a way self-enforcing; once it is agreed upon, it is not worthwhile to deviate 
from it. 

A uniform limiting average e-equilibrium is a pair of  strategies (_q,_r) which is an 
average e-equilibrium for all N-stage games for N sufficiently large. In remark 3 of  
section 4 we indicate that the e-equilibria we construct are uniform. 

In non-zerosum games one has also the notion of Nash Equilibrium Payoffs, 
NEPs for short. A NEP is a density point of  rewards corresponding to e-equilibria 
(e > 0) for e tending to 0. To be more precise: (rI,r II) is a NEP for the game with star- 
ting state s if for all e > 0 there exist (q, rD for player I and player II respectively such 
that: 

i) (_q,D is an e-equilibrium 

ii) l e k ( s , g , Z ) - r  k] <_ e for kE{I,II}, 

where again e=  7~ (;3E(0,1)) or e=  3' depending on whether we consider the game 
to be/3-discounted or limiting average respectively. In the sequel we will examine 
t3-discounted as well as limiting average equilibria and NEPs for the same stochastic 
game situation. 

We will close this section with one more definition: A repeated game with absor- 
bing states is a stochastic game in which all states but one are absorbing. A state s 
is called absorbing if for all i j  and t :~s it holds t h a t p ( t l s ,  i,j) = 0 ( a n d p ( s l s ,  i,j) = 1). 

2 Historical  Review 

Shapley (1953), initiator of  the theory of stochastic games, showed that zerosum/3- 
discounted stochastic games have a value and that both players possess optimal sta- 
t ionary strategies. For non-zerosum/3-discounted stochastic games Fink (1964) sho- 
wed the existence of  equilibria consisting of stationary strategies. 

Limiting average stochastic games appear to be more troublesome. Gillette 
(1957) gave an example of  a limiting average zerosum stochastic game for which it 
was not clear whether it had a value or not. The game was baptized "the big match"  
and it was first in 1968 that Blackwell and Ferguson (1968) were able to prove that 
the  big match has a value; however, to obtain e-optimality, one player has to use a 
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history dependent strategy. This big match is an example of a zerosum repeated ga- 
me with absorbing states. These zerosum repeated games with absorbing states were 
studied more extensively by Kohlberg (1974), who showed that all such games pos- 
sess a limiting average value. Later, Mertens and Neyman (1981) were able to prove 
that all limiting average zerosum stochastic games have a value. Their proof  is based 
on the work of  Blackwell and Ferguson (1968), of  Kohlberg (1974) and of  Bewley 
and Kohlberg (1976), who used Puiseux series to prove relations between/3-discoun- 
ted and limiting average stochastic games. 

Until now the existence of e-equilibria has not been proved for general limiting 
average non-zerosum stochastic games. Nevertheless, the existence turned out to be 
true for several subclasses, i.e. stochastic games with special properties for the re- 
ward or transition functions. Rogers (1969), for instance, showed the existence of  
stationary equilibria in irreducible stochastic games, i.e. stochastic games for which, 
for every pair of  stationary strategies, the underlying Markov chain is irreducible. 
Other classes, for which the existence of stationary equilibria has been shown, are 
for example: stochastic games in which one player controls the transitions (Par- 
thasarathy and Raghavan (1981)), stochastic games with state independent transi- 
tions and separable rewards (Parthasarathy et al (1984)). 

In this paper we will prove the existence of e-equilibria in limiting average non- 
zerosum repeated games with absorbing states. We have some good indications that 
our approach can be extended to solve the question of existence of e-equilibria in 
general. 

For zerosum stochastic games it holds that v = lira v~, as is shown by Mertens 
/3T1 

and Neyman (1981). One may think that a similar statement could be true for the 
limiting average and/3-discounted NEPs in non-zerosum stochastic games. Sorin 
(1986) showed that this is not the case. He also showed that a limiting average NEP 
need not be a limit of average NEPs in the corresponding finite stage games. Never- 
theless, we will show that sequences of stationary/3-discounted equilibria, conver- 
ging for/3 tending to 1, are very useful to construct limiting average e-equilibria. 

3 The Main Theorem 

Theorem 

For every repeated game with absorbing states there exist limiting average e-equili- 
bria for all e > 0. 

Our proof  of this theorem is a constructive one and is given in section 3.3. First 
we introduce some notations in section 3.1 and derive some preliminary results in 
section 3.2. 
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3.1 Notations 

Without loss of generality we suppose the absorbing states to be of  size lxl (else take 
some equilibrium point in the associated bimatrix game). The initial state will al- 
ways be the non-absorbing one. Then we can describe the repeated game with absor- 
bing states by one mxn-matrix in which entry (iu) is of  the following shape: 

where ai.,bi.,a*.,b~.ER and p/jE[0,1]. 
~ q J 

Player I is the row player, having available the choices 1,2,...,rn and player II is 
the column player who can choose among the actions 1,2 ..... n. 

If entry (id) is chosen, then player I receives a(/, player II receives bij and with 
probabili typ6 the system moves to an absorbing state, where player I always receives 
a*., and player II always receives b*.; with probability l-p6 the system remains in the 
initial state, and actions are chosen again at the next stage. 

A stationary strategy x for player I is a probability vector (x 1,x 2 ..... Xm) and like- 
wise for player II: y =  (Yl 0'2 .... 0"n)- 

Associated with a non-zerosum game we can distinguish two zerosum games: 
one with the payoffs to player I in which player I is the maximizing player and player 
II the minimizer, and one with the payoffs to player II in which player II is the maxi- 
mizing player and player I is the minimizer. Let val I and val II be the respective values 
of  these games (val being v~ or v). Then (val I, val II) can be considered as threatpoint 
in the sense that, player II can prevent player I from earning more than val I (possi- 
bly up to 6 > 0) and player I can prevent player II from earning more than val II (pos- 
sibly up to ~ > 0). 

Definition 1 

Let 6 > 0. A 6-threat strategy a*(6) for player I is a strategy that keeps player II's limi- 
ting average income below v II + 6. Similar a &threat strategy T*(6) for player II 
keeps player I's limiting average income below v I + & 

On the other hand, player I can guarantee himself val I (possibly up to 6 > 0) and 
player II can guarantee himself val II (possibly up to 6 > 0). Hence for every e-equili- 
brium (if, r_) it holds that 

ek(q,D->valk-e for kE[I,II}, (1) 

where e is "r or -rE and val is v or v~ respectively. 
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From the result of Fink (1964) we know that, for every/3E(0,1) there exists a sta- 
tionary/3-discounted equilibrium, i.e. a/3-discounted equilibrium consisting of sta- 
tionary strategies. 

By compactness arguments one can find a sequence of ~'s tending to one and 
a sequence of stationary r equilibria (_x~,s such that the following de- 
finitions make sense: 

_x: = lim x/3 2: = lim y~ (2) 
~ 1  ~T1 

OI: = lim 3'#(~#,Y#) GII: = lim .y~I ~#,y#). (3) 
~11 /311 

Furthermore, by the definition of equilibrium, it holds that for all a an z: 

~ (a,y~) _ ~ (x_~,Z~) and ~ I  (_x~,z) __ 7~ I (x~,y/3). (4) 

From (1), (3) and the mentioned result of Mertens and Neyman (1981) it follows that: 

GI= lira -y~ ~ , y ~ )  >_ lim v~ = v I (5) 
311 /311 

and likewise 

G II _> v II. (6) 

We call a pair of stationary strategies (xy) absorbing, when an absorbing state 
will be reached with probability 1 in case these strategies are played. 

3.2 Preliminary Results 

In this section we state some results which are more or less well-known. The formu- 
la's of the following lemmas turn out to be very useful and are of fundamental im- 
portance to our proof. 
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L e m m a  2 

For a pair of stationary strategies (xy): 

(1-/3)~. ~. xiaijY j + /3~. ~. xiPija~jy j 
y I t x y  " = l J l J 

1--/3 + /3E. ~. XiPijY j 
l J  

and 

(1-/3)E. ~. xiaijY j + /3Z. Z. xiPija~jy j 
7I(xy) = lira t j l j 

/311 1-/3 + /3E. E. xiPijY j 
l j  

Proof." The first formula is obtained by solving the Shapley-equation: 
= .. * /30-pi;)~I~ (x;,,))yj. T~(X,y) ~. ~. X i ((1--/3) aij + /3pqa ij + 

1 J  
The second formula follows from the first, using a special case of v = lim vf. 

/311 

The next lemma needs no proof. 

L e m m a  3 

a) If (xy) is absorbing, then 

F:,. Z. xiPija~jyj  
.gI(xy ) = l J 

r,. r, x iP i j y  j 
1 J  

~ xiPij b*. �9 . u Y j  
and 7n(xy) = ~ J 

~. ~ xiPijYj 
t J  

b) If (xy) is non-absorbing, then 

3,I(xy) = Z. E. x i aijY j and -yII(x,y) = ~. ~. xibijY j. 
l j  l j  

The following lemma can be derived from lemma 2 and lemma 3. 

L e m m a  4 

Let {(x~y~) :/3E(O,1)} be a sequence of pairs of stationary strategies, converging for 
/3 tending to 1. Let (xy): = ~ l  (x~y~). 

a) If (xy) is absorbing, then (x~y~) is absorbing for/3 close to 1, and 3f k (xy) = lira 
7~ (xf~vr for ke[I,II} , /3}1 

b) If (xB~vB) is non-absorbing for/3 close to 1, then (x~v) is non-absorbing and 7k(xy) 
= for kelU /. 
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From now on, fix a sequence of stationary/3-discounted equilibria (xS,y~) 
with the properties (2) and (3). From this sequence we will derive a limiting average 
e-equilibrium, which is even uniform (cf. Remark 4.3). 

The next lemma is a consequence of  lemma 4, definitions (2) and (3) and pro- 
perty (4). 

Lemma 5 
If  y is such that ~ ,y )  is absorbing, then TIl(_x,y) _ G II . 

Proof." G II = lim 3,~ I ~/3,YB) -> lim .y~I (xsd,) = y I I~y) .  
/311 /3tl 

From this lemma we will conclude in the sequel, that player II cannot profitably 
deviate in an absorbing way from his "equilibrium strategy". 

I e t  r be arbitrary. Let qn(x_,r) be the probability that the system is still "alive" 
at stage n, when the players use _x and r. Let r prescribe to play the mixed action yn 
at stage n. Then the contribution to 7 II (x,r) via absorption at stage n equals: 

3,abs_ n I I  (x_,r):=qn(x_,r)~. ~. x_i Pi j b*.u Ys;n (7) 
t J  

In view of lemmas 3 and 5 we get 

II (x_,r)<qn(x_,r)(E ~ xi Pij Yj)Gi I Yabs-n . . - 
l J 

(8) 

=Prx_,r{absorption at stage n}G II. 

From (7) and (8) we immediately obtain the following lemma. 

Lemma 6 
If for _x and r, txn~,r)E[0,1] is the probability of  absorption up to stage n, then the 
contribution to -yII(x_,r) via absorption up to stage n is at most #n(x_,r)GII, for every 
nE(N U c~). 

At this point, define the carrier of a stationary strategy x as C(x): = {iE[1,2 ..... 
m]; x(O > 0] and similar for a stationary strategyy. The next lemma follows directly 
from the equalizing property of equilibrium strategies. 

Lemma 7 
If  x is such that C(x) C C(xs), BE(0,1), then yI~(x,yt3) = q/~(Y_~,2~). 

Since for/3 close to 1 it holds that C~)  C C(x_5), lemma 7 has as consequence: 
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Corollary 8 

3'~(_x,Y~) = Y~(Y-~,Z~3) for all/3 close to 1. 

Obviously, when interchanging the roles of the players in the lemmas 2-8, analogous 
statements can be made. 

3.3 Main Proof  

We now return to the existence of e-equilibria. The proof is divided into three parts: 

Case A: ~ ,y)  absorbing, 
Case B: (Y_,Z) non-absorbing and .yk(x_,.E ) >__ G k for k -- I,II 
Case C: ~,y__) non-absorbing and @~,y)  < G k for k = I or k = II. 

Case A: (x,y) is absorbing. 

Lemma 4 and corollary 8 imply that 

.yk(y_,y_) = G k for k = I,II. (9) 

Observe that, since ~,y_) is absorbing, for every 8> 0, there exists N6 EN such 
that the probability that the system has reached an absorbing state before stage N 6 
is at least 1-6. 

Let e>0  and take 6>0  such that (1-6)Gk-3M>-Gk-e/2 for both k=l,I1,  
where M =  ma?~ {laijl, I bij[, l a*j l, [b*j I}. 

td 
Define _a and _r as follows: 

_a: play x stationary up to stage N6; if at stage N a absorption has not yet occurred, 
start playing some o*(e/2) (cf. definition 1); 

_r: play y stationary up to stage Na; if at stage Na absorption has not yet occurred, 
start playing some r*(e/2) (cf. definition 1). 

Lemma 9 

In case A, the pair (if, r_) is an e-equilibrium. 

Proof" Let player I play_a and let player II play an arbitrary r. By lemma 6, the defini- 
tion of o*(e/2) and (6) it follows that 

3 ,II (.~,r) ~ /f N6 (x_,r)G II + (1--/xN6(x_,r)) (v II + e/2) 

G II + e/2. 

(10) 
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On the other hand, by (9) and by the definitions of g and Z: 

V II ~ , ~  ___ (1--6) 3, II (.X__,Z)-e3M 
= (1-6)G II - 6M _> G II - e/2. 

(11) 

Combining (10) and (11) yields: 3,II ~q,'r) __ V II (.g,Z) + e. 
Analogously one can show that 3, I (0,7) <_ vI(g_,Z) + e for all a, which proves 

the lemma. �9 

Case B: (S,2) is non-absorbing and @(x,y_) >_ G k for k= I,II. 

When player I plays _x, then by lemmas 5 and 6, player II cannot gain anything by 
deviating from y in an absorbing way. So, in order to obtain an equilibrium based 
on ~,2),  player I should threat with punishment to prevent that player II deviates 
f rom2 in a non-absorbing way, and analogously player II should threat with punish- 
ment to prevent that player I deviates from _x (like in the Folk-theorem, cf Aumann 
(1981)). 

To arrange this, let YN = 1 ( YNI ,YN2 ..... YNn), where Y Nj is the random varia- 

ble denoting the number of  times player II chose column j up to stage N. Observe 
that if player II uses strategy y, then lim YN = Y with probability 1. 

N--oo 
Consequently, for every 6 > 0  and ~E(0,e/2M) there exists N~EN, such that 

Pr{IYN-y_I > c~ for some N>_N~, given player II uses y} < & Now, choose 6 > 0  
such that (1-6)2"u 7k(x,~_) --e/2 for k= I as well as for k= II, 
and define _a by: 

keep playing the stationary strategy_x unless at some stage N_> N6 it would hap- 
pen that ] YN-Y[ > ~; in that case start playing some threat strategy o*(e/2). 

Define _~ analogously. 

Thus each player checks the credibility of his opponent 's  strategy. 

Lemma 10 

The pair (_q,_r) as defined above is an e-equilibrium in case B. 

Proof" Let player I play a and let player II play an arbitrary strategy r. Define: 

v(~-,r):=Pro,r {[YN-Y[ > c~ for some stage N>_N~} and 

~(g,z): =Pr~, r {absorption before player I starts punishment}. 

Then 
1-Tr(a,r)-/z(_q,r) = Pr~_,r{nO absorption and ] YN-Y-I <- c~ for all N_>N~]. Hence 
by definition 1, lemma 6, equation (6) and assumption B: 

?II(a, r) <_ re(if, ~') (v II + c/2) +/x(.g, 7)G II + (1-  ~r (_q, r)-~(_O_, ~'))(VII~,Y_) + aM) 

_< V II ~ , y ) +  e/2. (12) 
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On the other hand 

3,II(ff,Z) _> (1-6) 2 ,yII(x_,y)-(l-(1-6)2)M>_TII(.x_.,y)-e/2. (13) 

Combining (12) and (13) yields: 7 iI (_q,r) _< "yII(g,Z)+ e for all z. 
Analogously one can show that 7I(o,_r) _< 7I(g,_r)+ e for all a, which proves the 
lemma. �9 

Case C: ~,y) is non-absorbing and 7k~,s  < G k for k=  I or for k=  II. 

Without loss of  generality, we will assume 

.yI(~,s < G I (14) 

In case C it holds that ~,y~) is absorbing for/3 close to 1, whereas ~,2)  is non- 

absorbing. This follows because: 
Suppose that ~,yr is non-absorbing for/3 close to 1. Then by lemma 4, corol- 

lary 8 and (3) we have: 

7I(F_,Z) = lim 3'~,Y~) = lim 7 ~ , y f l )  = G I, 
/311 /311 

(15) 

which contradicts (14). 
The main idea in the proof  of  existence of e-equilibria in case C is to divide each 

o f the strategies 2~ into two separate stationary strategies, one of them is non-absor- 
bing against x while the other is absorbing against _x. The limits of these strategies 
will form the base for the construction of  the e-equilibrium strategy of player II. 

For/3 close to 1 define ~ and . ~ E R  n by: 

I ~ J  for j@{1,2 ..... n} (16) 
if is non-absorbing 

YSJ: = if ~ , j )  is absorbing 

( ~  if ~ d )  is non-absorbing 
: =  

~j if ~ , j )  is absorbing 
for j~{1,2 ..... n} (17) 

Observe that y~ = ~  + . ~ ,  ~ e 0  and s for all/3 close to 1, 

lim ~% = 0 and lim St/= lim yr = 2. 
/311 t3t1 /3tl 
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Define y~ and y*~ER n as the normalizations of ?~ and y~ : 

Y{3j: ~'~Jk f~ jE{1, 2 ..... n] 

;v}J for je{1,2 ..... n}. 

z y ,  k k "  

(18) 

(19) 

By taking subsequences we may assume that lira y~ exists. Define y*: = lim y~. 
[311 /3tl 

Obviously y = lim yfi = lim yfi. 
/311 /3tl 

In the sequel the following definitions will play an important role. First, define 
ABS: = {x; C(x) C C(x) and (xy*) is absorbing}. By definition of y* it holds that 
x_EABS. Next, for xEABS define: 

),~(x): = 1-/3 

1-/3+/3Z. Z. xiPijy~j 
l j  

and ),(x): = lim Xg~(x), 
/3T1 

whenever this limit exists. If it does not exist, take some convergent subsequence. 
It is clear that k(x)E[0,1 ]. 

The following lemma is crucial in our approach. 

Lemma 11 
For xEABS: lira ,yI~(x,y_~) = X(x)TI(x,y) + (1-X(x)) 7I(xy*). 

/3T1 

Proof" From lemma 2, (16) and (17) we obtain: 

/3illim 7~(x,z~) = /3111im k/3(x ) Zi ~ xiaij@t3J+]:*~J) 

+ lim ~X~(x) ~. ~. xi Pij ct~ (913 j +~:~j). 
/311 1-13 t j 

(20) 

From (16) observe that xiP 6 = 0 for all i whenever ~3j > 0; hence ~. Z. xiP(iY3j = 
~. ~. XiPijg*j" t J 
t J  

Then from (20), using lemmas 3 and 4, we derive: 

lim -y~(x,s = k(x) ~ Z. x i a6y j 
/3~1 i j 
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* ~* 
~. xi P 6 a 6 Y r j 

+ lim /3k~(x) (~. E xiPijY~j)  i j 
BI1 1 - ~  t j ~. ~. xiPijY*~j 

l J  

a* lp* ~. ~. x~ p~j ij ~ ~j 
= X(X) 71 (X,~__) + lim (1-k~ (x)) 1 J 

t311 F, F, xi Pij Y*~j 
i j  

= )t(x) V I (x,y) + (1- k(x)) 3,I(x,y*). �9 (21) 

Using lemma 7 and (3), lemma 11 gives 

Corollary 12 

G I = X(x) 7,I(x,y_)+ (1-X(x)) ~,I(xy*) for xEABS, and particularly for x. 

Assumption (14) and corollary 12 lead to: 

.gI(_xy.) > G I and X~) ~ 1. (22) 

Also by lemmas 2, 7 and an analogue of lemma 4 we have: 

3, II (_x,y*) = lim 3,~I(y_By~) : lim 7~I~ ,y~)  = G II. (23) 
r ~T1 

By (22) and (23) it can be seen that, if the players could manage that absorption 
occurs proportional to (x_y*), then both players should be satisfied more or less. 
Unfortunately, _x need not be an e-best answer to y*. Therefore player II has to use 
a more complex strategy in order to prevent player I from deviating from x_. This 
strategy will consist of a behavioural strategy on (.E, Y*), defined like in Kohlberg 
(1974, p 731), and amplified with a threat strategy as in cases A and B. The strategy 
will be constructed in such a way that against_x absorption happens with probability 
close to 1; hence, the limiting average reward to player kE{I,II] will be close to 
@~y*). 
For e > 0 let ~e be the strategy defined by: 

If at stage N absorption has not yet occurred, then with probability e2f(mN) 
play y* and with probability 1--e2f(mN) play y. Here f ( m ) : = ( 1 - e )  m for 
mE[0, oo) and m N is given by (cf. Kohlberg (1974, p 731)): 

I O for N = I  
mN: = N - 1  , , , , 

max {0, ~ (~.Pi j a i  jY j  -~ .P in jY jTI (  x,y ))1 f o r N > l  
n = l  j n n j 

where i n is the row chosen by player I at stage hE{l,2 ..... N- l} .  
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Lemma 13 

For all e>0  and kE{I,II}: under (x_,re) absorption happens with probability 1 and 
yk(x_,re) = @(xy*). 

Proof: If  ~,re) is being played, then na N would be 0 for infinitely many N. Hence, 
player II would play y* with probability e 2 infinitely often. This results in absorp- 
tion according to ~ y * )  with probability 1. [] 

Lemnaa 14 

For all e > 0 and all strategies o of player I: 
Probo, r, {A< ~} Eo, r, {lim inf gN---yI~y*)lA< ~}___e, where A is the random 

N ~ o o  
variable denoting the stage at which absorption takes place, and gN is the random 
variable denoting the average of the first N payoffs to player I. 

Proof." Analogous to the proof of (2.7) in Kohlberg (1974, p 732-733). [] 

We are now ready to define for e > 0 a pair of strategies (g,_r), which is an e-equili- 
brium in case C, as will be shown in lemma 15. Let e > 0. Take 6 > 0 and N~EN such 
that: 

i) (1-/~)7 k (y_,re/2)-~M>yk (x_,re/2)_e/2 for k=I , I I  

ii) under (y_,r~/2) absorption will happen before stage N~ with probability _ 1-& 
(cf. temma 13). 

Define _o (resp. r~ by: 
play _x (resp. rd2) unless 

a) no absorption occurs before stage N~ 
b) player II (resp. I) chooses an action outside C(y) U C(y*) (resp. C(x)). 
In case (a) or (b) immediately start playing an e/2-threat strategy ~r*(e/2) (resp. 
7"(e/2)), as defined in definition 1. 

Lemma 15 

In case C the pair (~,_~), as defined above, is a limiting average e-equilibrium corre- 
sponding with the NEP (7I(x_y*), 7II(y_y*)). 

Proof." By the definitions of g and _r and by lemma 13: 

yI(g, Z) _> yI(x_,y*)-e/2 and 3,II(g,Z) ___ yl I (xy*)-e /2  = GII-e /2  (24) 

Part 1: Player II cannot gain more than e by deviating against g. Because: Suppose 
player I uses _~ and player II uses an arbitrary strategy r. Let/z(q,r) be the probability 
of absorption before stage N~. 
Then by lemma 6, the definition of g and (6): 

TII(g,r) _</z(..~, r)G II + (1--/zQq, r)) (v II + e/2) _ G II + e/2. (25) 
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Hence, combining (24) and (25) we have shown: 

ylI(R,r)-<ylI(g_,_r)+ e for all strategies r. (26) 

Part 2: Player I cannot gain more than e by deviating against _r. Because: First of 
all, observe that at each stage n<_Na player II uses y* with probability less than 
(e/2) 2. Without loss of generality we can assume e _< 1/M, and hence (d2)  2 __ e/4M. 

Now, suppose player II uses _r and player I uses an arbitrary strategy o. Under 
(a,_r) realisations of two types may occur: 
type (a): realisations for which player I at some stage before Na chooses an action 
outside C(x_), 
type (b): realisations for which player I only chooses actions within C~) until stage 
N~. 

Let ~(a ,J  be the probability that player I chooses some action outside C(x) be- 
fore stage N~ and let I~(a,r_) be the probability of absorption in such a case. 

The contribution to the limiting average reward of player I, by realisations of 
type (a), is at most (using the player I version of lemma 6, the definition of _r and (6)): 

/~(o,_r)[/x(o,J ((1-e/4M)G I + (e/4M)M) + (1-/,(e,_r))(vI+ e/2)] 

_<~(,~,_r) (G I +e/2). (27) 

In order to determine the contribution of realisations of type (b), we distinguish 
realisations of this type with absorption before stage N 6, and realisations of this ty- 
pe without absorption before stage N~. Let ~r(o,J be the probability that no 
absorption occurs before stage N6. As a consequence of lemma 14, the contribution 
of realisations of type (b) with absorption before stage Na is at most 

(1-~(cr,Z)-lr(o,J) (3,I(x_# *) + e/2). (28) 

The contribution of realisations of type (b) without absorption before stage Na is 
at most: 

-x(o,r) (v I + e/2) (29) 

Combining (27), (28) and (29) we have: 

3~I(o,J _< ~(cr, r_) (O I + e/2) + (1 -~(a,_r)- rr(o,J) (-yI(x,y*) + e/2) 

+ ~r(a,Z) (v I + e/2) _< VI(g_~v *) + d2.  (30) 
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Hence, combining (30) with (24) we have shown that: 

3,I(o,Z) _.< yI(E,Z)+ e for all strategies o. 

The lemma now follows from (24), (26) and (31). 

(31) 

[] 

4 R e m a r k s  and  E x a m p l e s  

Remark 1 

If  in case C it holds that ),~) > 0, then ~'i: = ~'(t) > 0 for' all iEABS. Moreover, from 
the definition of  )~( ) one can derive straightforward that: 

If xEABS and C(x) C A B S ,  then 

k(x) = 1/( E xi/)~i). 
iEC(x) 

Remark 2 

If in case C it holds that X(y_)= 0, then ~k i = 0 for all iEABS. Hence, corollary 12 im- 
plies 3,I(iy *) = y ~ v * ) ,  which means that within C~)  player I has no profitable de- 
viations against y*. 

Therefore ~ , ( 1 - p ) y  +py*), supplemented which threats as in case A, will con- 
stitute an e-equilibrium for pE(0,1) small enough. 

Remark 3 

In cases A, B and C the limiting average e-equilibria can be seen as uniform e-equili- 
bria (cf. section 1) by taking uniform e/2-threat strategies. The latter is possible be- 
cause Kohlberg (1974) shows that there exist uniform limiting average e-optimal stra- 
tegies in zerosum repeated games with absorbing states. 

Remark 4 

The limiting average ~-equilibria we constructed can also be seen as e-equilibria with 
1 T 

respect to the alternative criterion lim i n f ~  ~ Es~r(Rk(n)). This is due to the fact 
T--oo l n=l 

that Kohlberg (1974) shows that, for zerosum repeated games with absorbing states, 
there exist strategies which are e-optimal for both criteria. Using such threat strate- 
gies in all cases, and such a behavioural "Kohlberg" strategy in case C, gives the re- 
suit. 
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Remark 5 

If for a general stochastic game we can take a sequence of  stationary/3-discounted 
equilibria ~ , .v~)  which converges to some pair (x_,y), and if 3,k(s,x_,y_) >_ Gk(s) for 
kE{I,II}, for all initial states s, and if there are no transient states, then one can easily 
construct a limiting average e-equilibrium. This can be done along the same lines 
as in cases A and B. 

Examples 

We will conclude this paper by giving examples to illustrate that each of  the discer- 
ned cases A, B, C with X~) > 0 and C with X~) =0, can actually occur. Let us consi- 
der the following game 

0,0 - 1 , 0  

- 1 , 0  

in which absorption can only occur in entry (2,2). 
To illustrate case A notice that ~ , ~ ) = ( ( 0 , 1 ) ,  (0,1)), r is a sequence 

of stationary/3-discounted equilibria with the desired properties. 
We get an example of  case B, when in the above game we take ~,Yt3) = ((1,0), 

(1,0)),/3~(0,1). 
The above game also contains an example for case C with X(x)=0: take (x~,y~) 

1-(1-/3)1/2 -1  +/3+ (1-/3)1/2 
= ((0,1), (- , )),/3E(0,1). 

So, the only case that remains to be illustrated is case C with MX)> O. Sorin 
(1986) examines the following game: 

0,1 

1,0 

1,0  
~ 1 , 0  

0,2  
/ / / ~ 1 - - 0 , 2  

in which absorption can only occur in the second column. 
Here the unique stationary/3-discounted equilibria are given by ~ , y ~ )  = 

((2/3,1/3),(1/(2-/3),(1-/3)/(2-/3))),/3E(0,1). It can easily be verified that all the con- 
ditions of  case C with X~) > 0 are fulfilled. 

Acknowledgment." We wish to thank the referee for his helpful comments and particularly for poin- 
ting out that our e-equilibria are uniform. 
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