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Almost Stationary (-Equilibria in
Zero-Sum Stochastic Games

J. FLESCH,1 F. THUIJSMAN,2 AND O. J. VRIEZE
3

Communicated by G. P. Papavassilopoulos

Abstract. We show the existence of almost stationary (-equilibria, for
all (H0, in zero-sum stochastic games with finite state and action
spaces. These are (-equilibria with the property that, if neither player
deviates, then stationary strategies are played forever with probability
almost 1. The proof is based on the construction of specific stationary
strategy pairs, with corresponding rewards equal to the value, which
can be supplemented with history-dependent δ -optimal strategies, with
small δH0, in order to obtain almost stationary ( -equilibria.

Key Words. Zero-sum stochastic games, limiting average rewards,
equilibria.

1. Introduction

We deal with zero-sum stochastic games with finite state and action
spaces. These games model conflict situations in which two players are
involved with completely opposite interests. Such a game Γ can be seen as
a finite collection of matrices (Ms )s∈S , corresponding to states s in the state
space S, where entry (is , js ) of Ms consists of a payoff r(s, is , js )∈R and N

in the following way. The play starts at stage 1 in an initial state, say in
state s1∈S, where simultaneously and independently both players are to
choose an action: player 1 chooses a row i1

s1 of Ms1 , while player 2 chooses
a column j 1

s1 of Ms1 . These choices induce an immediate payoff r(s1, i1
s1 , j 1

s1)
to player 1 from player 2. Next, the play moves to a new state according to
the probability vector p(s1, i1

s1 , j 1
s1), say to state s2. At stage 2, new actions
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i
2
s2 and j

2
s2 are to be chosen by the players in state s2. Then, player 1 receives

the corresponding payoff r(s2, i
2
s2 , j

2
s2) from player 2 and the play moves to

some state s3 according to the probability vector p(s2, i
2
s2 , j

2
s2), and so on.

The sequence (s1, i1
s1 , j 1

s1 , . . . , snA1, i
nA1
snA1 , j

nA1
snA1 , sn ) is called the history up

to stage n. The players are assumed to have complete information and per-
fect recall.

The respective sets of actions in state s will be denoted by Is and Js . A
mixed action for a player in state s is a probability distribution on the set
of his actions in state s. Mixed actions in state s will be denoted by xs for
player 1 and by ys for player 2; the sets of mixed actions in state s are
denoted by Xs and Ys , respectively. A strategy is a decision rule that pre-
scribes a mixed action in the current state for any past history of the play.
Such general strategies, so-called history-dependent strategies, will be
denoted by π for player 1 and by σ for player 2. If, for all histories, the
mixed actions prescribed by a strategy depend only on the current state,
then the strategy is called stationary. Thus, the stationary strategy spaces
are simply X_Bs∈S Xs for player 1 and Y_Bs∈SYs for player 2. We will
use the notations x and y for the stationary strategies of the respective
players.

A strategy pair (π , σ ) together with an initial state s determines a stoch-
astic process on the payoffs. The sequences of payoffs are evaluated by the
limiting average reward,

γ (s, π , σ )_ lim inf
N→S

Esπσ 1(1yN ) ∑
N

nG1

rn2Glim inf
N→S

Esπσ (RN),

where rn denotes the random variable for the payoff at stage n and RN

denotes the random variable for the average payoff up to stage N. We will
also use the vector notation

γ (π , σ )_ (γ (s, π , σ ))s∈S .

We assume that player 1 is trying to maximize γ , while player 2 wishes to
minimize γ .

For xs∈Xs and ys∈Ys , let

r(s, xs , ys)_ ∑
is∈Is, js∈Js

xs (is )ys ( js ) · r(s, is , js ),

p(t us, xs , ys )_ ∑
is∈Is , js∈Js

xs (is )ys ( js ) · p(t us, is , js ).

For x∈X and y∈Y, we will also use the vector notation

r(x, y)_ (r(s, xs , ys ))s∈S .
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A pair of stationary strategies (x, y) determines a Markov chain with
transition matrix Pxy on S, where entry (s, t) of Pxy is p(t us, xs , ys ). With
respect to this Markov chain, we can speak of transient states and recurrent
states, and we can group the recurrent states into minimal closed sets, so-
called ergodic sets. As in Ref. 1, let

Qxy_ lim
N→S

(1yN ) ∑
N

nG1

(Pxy)
n.

Entry (s, t) of the stochastic matrix Qxy , denoted by q(t us, x, y), is the
expected average number of stages the process is in state t when starting in
s. We have

γ (x, y)GQxyγ (x, y)GQxyr(x, y). (1)

Against a fixed stationary strategy y, there always exists a stationary
best reply x of player 1 (cf. Ref. 2); i.e.,

γ (x, y)Xγ (π , y), ∀π .

Obviously, a similar statement holds for the best replies of player 2.
In Ref. 3, it is shown that

sup
π

inf
σ

γ (s, π , σ )Ginf
σ

sup
π

γ (s, π , σ )G: vs , ∀s∈S. (2)

Here, v_ (vs )s∈S is called the limiting average value and v satisfies

vsGVal (As ), ∀s∈S, (3a)

where As_3 ∑
t∈S

p(t us, is , js )vt4
is∈Is , js∈Js

, (3b)

and where Val stands for the matrix game value; see for example Ref. 4,
page 112. In a stochastic game, a strategy π of player 1 is called (-optimal,
(X0, for initial state s∈S if

γ (s, π , σ )XvsA( , ∀σ .

If π is ( -optimal for all initial states in S, then π is called ( -optimal. 0-
optimal strategies will be simply called optimal. For the strategies of player
2, ( -optimality is defined analogously. Although for all (H0, by (2) there
exist ( -optimal strategies for both players, the famous big match example
of Gillette (Ref. 5), examined by Blackwell and Ferguson (Ref. 6), demon-
strates that in general the players need not have optimal strategies and that,
for achieving ( -optimality, history-dependent strategies are indispensable.
For (X0, any pair of (y2-optimal strategies (π , σ ) for the respective players
forms a ( -equilibrium, which means that neither player can gain more than
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( by unilateral deviation, i.e.,

γ (s, π̄ , σ )A(Yγ (s, π , σ )oγ (s, π , σ̄ )C( , ∀π̄ , ∀σ̄ , ∀s∈S.

The concept of ( -equilibria, as pairs of ( -best replies to each other, is used
for general stochastic games as well. However, for general nonzero-sum
stochastic games, existence of ( -equilibria is known only on condition of
specifically structured payoff and transition functions. Often, these ( -equili-
bria are stationary or almost stationary. An ( -equilibrium is called station-
ary if it consists of stationary strategies, while it is called almost stationary
when it has the following property: if neither player deviates, then with
probability almost 1, play develops as if stationary strategies are played at
all stages; see Refs. 7–9.

Generally speaking, while playing an ( -equilibrium requires both play-
ers to play, at each state and stage, new history-dependent mixed actions,
the structure of an almost stationary ( -equilibrium is substantially simpler.
For an almost stationary ( -equilibrium, the players play history-indepen-
dent mixed actions as long as they do not detect any deviation by their
opponent. Only in the latter case, which occurs with probability close to 0,
the player has to turn to a complex history-dependent strategy. Thus, only
in the performance while playing, the almost stationary ( -equilibrium is
simpler than other history-dependent ( -equilibria; in view of computational
purposes, it is not any simpler. As we have mentioned above, when dealing
with zero-sum stochastic games, the existence of ( -equilibria is not an issue
here, since any pair of ( -optimal strategies yields a 2( -equilibrium.

To illustrate the issue, we now discuss briefly the big match.

Example 1.1. Consider the game represented by

This game, known as the ‘‘big match’’, was introduced in Ref. 5. Player
1 chooses rows and player 2 chooses columns; the number in the up-left
corner of an entry is the payoff to player 1 by player 2 whenever this entry
is selected; the number in the down-right corner of an entry indicates the
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new state where play will continue at the next stage. Of course, the interest-
ing initial state is state 1. In Ref. 6, it is shown that the value of this game
is 1y2, that the stationary strategy yG(1y2, 1y2) is optimal for player 2,
while player 1 can only achieve ( -optimality by history-dependent strategies.
An example of an ( -optimal strategy π (( ) for player 1 is to play B at stage
n when player 2 has chosen Left L(n) times and Right R(n) times, with
probability (2(1A( )a(n), where

a(n)Gmax{R(n)AL(n), 0}.

This pair of strategies (π (( ), y) would be an ( -equilibrium that yields pre-
cisely 1y2 to player 1. Instead of achieving 1y2 through these complicated
strategies, the players could play the almost stationary ( -equilibrium
(x(( ), y), where x(( ) is the following strategy: play Top unless at some stage
in the far future you notice that the player 2 action frequencies are not
sufficiently close to (1y2, 1y2); in that case, immediately start playing π (( ).

In Section 3, we present the construction of stationary strategy pairs
satisfying special properties, which enable us to supplement them with his-
tory-dependent δ -optimal strategies with small δH0, as threat strategies
according to the general terminology, to eliminate the profitability of poss-
ible deviations from these stationary strategies.

2. Almost Stationary ( -Equilibria

First, we define formally the concept of almost stationary ( -equilibria.

Definition 2.1. An ( -equilibrium (π , σ ) is an almost stationary ( -equi-
librium, (X0, if there exists a pair of stationary strategies (x*, y*) such that,
when playing (π , σ ), the players will use the mixed actions corresponding
to the stationary strategies (x*, y*) at all stages with probability at least
1A( .

Note that, although ( has two different roles in this definition, it will
lead to no confusion. Now, we are ready to state the main result of this
paper.

Theorem 2.1. In every zero-sum stochastic game, for any (H0, there
exists an almost stationary ( -equilibrium.

The proof will be based on the construction of specific stationary strat-
egy pairs with rewards equal to the value. In order to force the players to
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play these stationary strategies, as a standard tool, the players will use stat-
istical tests on past action frequencies of their opponents to detect deviations
with probability almost 1. If a deviation is detected, then a history-depen-
dent δ -optimal strategy has to be played in the future, where δH0 is suffic-
iently small. The role of these δ -optimal strategies is to rule out the
profitability of possible deviations of the players.

2.1. Preliminaries. Before we turn to the construction, we recall some
basic concepts from matrix game theory and we derive some preliminary
results. For x∈X and y∈Y, let

Vs (xs , ys )_ ∑
t∈S

p(t us, xs , ys )vt , V (x, y)_ (Vs (xs , ys ))s∈S .

In words, Vs (xs , ys ) is the expected value after transition from state s with
respect to (xs , ys ). For s∈S, xs∈Xs , ys∈Ys , let Ls (xs , ys ) be the probability
that, after transition from state s with respect to (xs , ys ), the new value vt is
different from vs , so

Ls (xs , ys )_ ∑
t∈S,vt≠vs

p(t us, xs , ys );

if vtGvs for all t∈S, then Ls (xs , ys ) is defined to be equal to 0. Obviously,
Vs (xs , ys )≠vs implies Ls (xs , ys )H0. The next lemma states, with respect to
(x, y), that if the value does not change in expectation under transitions,
then the value is a constant on each set of states that is ergodic with respect
to (x, y).

Lemma 2.1. Let (x, y)∈XBY satisfy V (x, y)Gv. Suppose that E is an
ergodic set with respect to (x, y). Then, vsGvt for all s, t∈E, and Ls (xs , ys )G
0 for all s∈E.

Proof. Let

Er _5s∈E*vsGmax
t∈E

vt6 .

Using V (x, y)Gv and the fact that E is an ergodic set for (x, y), we obtain

vsGVs (xs , ys )G ∑
t∈S

p(t us, xs , ys )vt

G ∑
t∈E

p(t us, xs , ys )vt , ∀s∈Er ;

thus, Er ⊂E is a closed set of states for (x, y). Therefore, Er GE, which implies

vsGvt , for all s, t∈E.
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Now,

Ls (xs , ys )G0, for all s∈E,

follows from the definition of Ls (xs , ys ). h

For s∈S, let

X ′s_{xs∈Xs uVs (xs , ys )Xvs , ∀ys∈Ys}, X ′_Bs∈S X ′s ,

Y ′s_{ys∈Ys uVs (xs , ys )Yvs , ∀xs∈Xs}, Y ′_Bs∈SY ′s ,

Irs_{is∈Is uVs (is , ys )Gvs , ∀ys∈Y ′s}, Xr s_conv(Irs ), Xr _Bs∈S Xr s ,

Jrs_{ js∈Js uVs (xs , js )Gvs , ∀xs∈X ′s}, Yr s_conv(Jrs ), Yr _Bs∈S Yr s ,

where conv stands for the convex hull of a set. The sets X ′s and Y ′s are the
respective sets of optimal mixed actions of the players in the matrix game
As [see (3)], while the elements of Irs and Jrs are so-called equalizers in the
matrix game As . It is well known in matrix game theory that, for all s∈S,
the sets X′s and Y ′s are nonempty polytopes and also that, for all
s∈S, xs∈Int(X ′s), ys∈Int(Y ′s ), where Int stands for the relative interior of a
set, we have

IrsG{is∈Is uxs (is )H0}, JrsG{ js∈Js uys ( js )H0}. (4)

The next lemma provides sufficient conditions for Xr sGX ′s or Yr sGY ′s in
some state s.

Lemma 2.2. Let s∈S. If Ls (xs , js )H0 implies Vs (xs , js )Hvs for all
(xs , js )∈X ′sBJs , then Xr sGX ′s . Similarly, if Ls (is , ys )H0 implies Vs (is , ys)Fvs

for all (is , ys )∈IsBY ′s , then Yr sGY ′s .

Proof. We only show the first part; the proof of the second part is
similar. By (4), we have Xr s ⊃X ′s . It remains to verify that Xr s⊂X ′s . Since X ′s
is convex, it is sufficient to show that is∈X ′s for all is∈Irs . Take an arbitrary
is∈Irs . Using the compactness of X ′s , there exists an x̂s∈X ′s satisfying

x̂s (is )Xxs (is ), for all xs∈X ′s .

By the condition, we have that

Ls (x̂s , js )H0 implies Vs(x̂s , js )Hvs , for all js∈Js ;

therefore, using x̂s∈X ′s , we obtain that

((1Aλ ) · x̂sCλ · is )∈X ′s , for small λH0.

By the choice of x̂s , we must have x̂sGis , thus is∈X ′s . h
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In Ref. 10, it is shown that, in every zero-sum game, there exists an
initial state s1 in

Smax_5s∈S*vsGmax
t∈S

vt6
for which player 1 has a stationary optimal strategy x1; similarly, there
exists an initial state s2 in

Smin_5s∈S*vsGmin
t∈S

vt6
for which player 2 has a stationary optimal strategy y2. Obviously, the
strategy x1 must keep the play in Smax with probability 1 when starting in
s1, and the strategy y2 must keep the play in Smin with probability 1 when
starting in s2. Hence, if we take stationary best replies y1 against x1 and x2

against y2, we obtain the following result.

Lemma 2.3. There exist stationary strategy pairs (x1, y1), (x2, y2) and
corresponding ergodic sets E1, E2 such that

E1⊂Smax_5s∈S*vsGmax
t∈S

vt6 , γ (s, x1, y1)Gvs , ∀s∈E1,

E2⊂Smin_5s∈S*vsGmin
t∈S

vt6 , γ (s, x2, y2)Gvs , ∀s∈E2.

Suppose that E⊂S is an ergodic set with respect to (x′, y′ )∈
Int(X ′ )BInt(Y ′ ) and also that

Xr sGX ′s , Yr sGY ′s , for all s∈E.

Then, we may define a restricted game Γ̄E where the state space is E and
the players are restricted to use strategies that prescribe only actions in Irs
and Jrs , if the play is in state s∈E. Obviously, this restricted game Γ̄E is a
well-defined stochastic game as well. Let v̄ denote the value of the restricted
game Γ̄E . Observe that, for the original value, by Lemma 2.1, we have

vsGvtG: vE , for all s, t∈E.

The following result follows from Ref. 11.

Lemma 2.4. Suppose that v̄sXvE for all s∈E or v̄sYvE for all s∈E.
Then, there exists a state s∈E such that v̄sGvE .
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Note that the value of the restricted game v̄s , s∈E, does not need to be
equal to the original value vE in all states in E, not even under the above
condition, which will be demonstrated by Example 2.1 below.

2.2. Construction. Fix arbitrary x′∈Int(X ′ ) and y′∈Int(Y ′ ). We keep
x′ and y′ fixed for the rest of this section. Let T denote the set of transient
states, and let R be the set of ergodic sets with respect to (x′, y′ ). Since any
stationary strategy pair induces at least one ergodic set, we have R ≠∅.
Now, we divide R into three parts. Let

R
1_{E∈R u∃s∈E, ∃(is , ys )∈IsBY ′s: Vs (is , ys )Gvs , Ls (is , ys )H0},

R
2_{E∈R \R

1 u∃s∈E, ∃(xs , js )∈X ′sBJs : Vs (xs , js )Gvs , Ls (xs , js )H0},

R
3_R \ (R 1∪R

2).

Note that the sets T, R
1, R

2, R
3 are independent of the particular choices

of x′∈Int(X ′ ) and y′∈Int(Y ′ ), because for all such choices the set of actions
that get weight 0 is the same; therefore, these choices all yield the same
Markov chain structure; the only differences can be found in the positive
transition weights. Also note that R

1 is the set of ergodic sets E with respect
to (x′, y′ ) for which there exists a pair of mixed actions in some state s∈E
such that player 1 plays a pure action, player 2 plays optimally in the matrix
game As , and the expected value after transition equals the original value,
but with a positive probability a transition occurs to a state where the value
is different. The intuition behind R

2 is analogous. The partition of R

induces naturally the following partition of S \T:

S1_ *
E∈R

1
E, S2_ *

E∈R
2
E, S3_ *

E∈R
3
E.

If R
1∪R

2≠∅, then by the definitions of R
1 and R

2 there exists a non-
empty set S*⊂S1∪S2, which contains precisely one state from each ergodic
set in R

1∪R
2 such that, for all s∈S*∩S1, there exists a pair

(i*s , y*s )∈IsBY ′s satisfying

Vs (i*s , y*s )Gvs , Ls (i*s , y*s )H0,

and for all s∈S*∩S2 there exists a pair (x*s , j*s )∈X ′sBJs satisfying

Vs (x*s , j *s )Gvs , Ls (x*s , j *s )H0.

In fact, these states and pairs of mixed actions provide the possibility to
leave all the ergodic sets belonging to R

1 and R
2 in such a way that the

value does not change in expectation. The construction of strategies with
this property (of leaving sets in R

1 and R
2 in a satisfactory way), requires
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only an adaptation of (x′, y′ ) in states belonging to S*. Then, for these
adapted strategies, the only recurrent states that remain belong to S3. So, if
we can further adapt the strategies such that, in each state of S3, the players
can achieve precisely the value as a reward, then for all initial states the
reward equals the value. Therefore, we now turn our attention to R

3.
Using S3∩ (S1∪S2)G∅, by Lemma 2.2 we have

Xr sGX ′s , Yr sGY ′s , for all s∈S3.

Assume that E∈R
3 (in fact, we will show later that R

3 is always non-
empty). As in the preliminaries, we may define a restricted game Γ̄E . Clearly,
in this restricted game the respective stationary strategy spaces are

Xr E_Bs∈E Xr s , YrE_Bs∈EYr s .

We use v̄s , s∈E, for the value of the restricted game Γ̄E . Recall that, for the
original value, we have

vsGvtG: vE , for all s, t∈E.

We now show the existence of stationary strategy pairs in Γ̄E with rewards
equal to the original value vE .

Lemma 2.5. Let E∈R
3. There exists a stationary strategy pair (x̄, ȳ)∈

Xr EBYrE such that γ (s, x̄, ȳ)GvE for all s∈E.

Proof. We distinguish two essentially different cases.

Part 1. Assume that

v̄sXvE , for all s∈E;

the case v̄sYvE , for all s∈E, is similar. Lemma 2.4 implies that there exists
a state s∈E such that v̄sGvE . Let

Emin_{t∈E uv̄tGvE}.

Let (x2, y2)∈Xr EBYrE and let E2⊂Emin in Γ̄E as in Lemma 2.3. So, we have

γ (s, x2, y2)GvE , for all s∈E2.

For s∈E, let

x̄s_5x2
s ,

x′s ,
if s∈E2,

if s∈E \E2,
ȳs_5y2

s ,

y ′s ,
if s∈E2,

if s∈E \E2.

The only ergodic set for (x̄, ȳ)∈Xr EBYrE in the restricted game Γ̄E is clearly
E2; hence, for any s, t∈E, we have that qE (t us, x̄, ȳ)H0 holds only if t∈E2;
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thus, (1) yields

γ (s, x̄, ȳ)GvE , for all s∈E.

Part 2. Assume that

min
s∈E

v̄sFvEFmax
s∈E

v̄s .

Take

(x1, y1)∈Xr EBYrE , E1⊂Emax_5s∈E* v̄sGmax
t∈E

v̄t6,

(x2, y2)∈Xr EBYrE , E2⊂Emin_5s∈E* v̄sGmin
t∈E

v̄t6 ,

in Γ̄E as in Lemma 2.3. By the assumption, we have E1∩E2G∅. For a, b∈
(0, 1) and s∈E, let

(xab
s , yab

s )_5
(a · x1

sC(1Aa) · x′s , a · y1
sC(1Aa) · y ′s), if s∈E1,

(b · x2
sC(1Ab) · x′s , b · y2

sC(1Ab) · y ′s), if s∈E2,

(x′s , y ′s), if s∈E \ (E1∪E2).

Recall that we have fixed x′∈Int(X ′ ) and y′∈Int(Y ′ ), and also that
Xr sGX ′s , Yr sGY ′s for all s∈E. Notice that

xab
s ∈Int(Xr s ), yab

s ∈Int(Yr s ), for all s∈E and a, b∈(0, 1);

hence, the set E is ergodic for (xab, yab ) for all a, b∈(0, 1). Notice also that
a and b control the respective expected lengths of periods when staying in
E1 and E2. Since E is ergodic for (xab, yab ) for all a, b∈(0, 1), we have that

qE (t us1 , xab, yab)GqE (t us2 , xab, yab),

for all s1 , s2 , t∈E, a, b∈(0, 1);

thus, equality (1) implies that

γ (s, xab, yab)Gγ (t, xab, yab )_γ ab
E , for all s, t∈E, a, b∈(0, 1).

We show that there are a, b∈(0, 1) such that γ ab
E GvE . Take arbitrary a′, b′∈

(0, 1). If γ a′b′
E GvE , then we are done. So, assume without loss of generality

that γ a′b′
E HvE and consider (xa′b, ya′b ). Observe that, the larger b we take, the

more time the play spends in E2. Thus, one can show that

lim
b↑1

γ a′b
E Gmin

t∈E
v̄tFvE .
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By the continuity of q(t us, xab, yab) and r(s, xab
s , yab

s ) in a, b∈(0, 1), where
s, t∈E, using (1) we have that γ ab

E is also continuous in a, b∈(0, 1); hence,
there is a b such that γ a′b

E GvE . h

Now we are ready to complete the construction based on the previously
derived results. Recall that we have already fixed a pair of stationary stra-
tegies (x′, y′ )∈Int(X ′ )BInt(Y ′ ). For all ergodic sets E∈R

3, let (x̄s , ȳs )∈
Xr sBYr s , s∈E, be as in Lemma 2.5. We define a stationary strategy pair as
follows for all τ∈(0, 1):

(xτ
s , y τ

s )_5
(τ · x′sC(1Aτ ) · i*s , y*s ), if s∈S*∩S1,

(x*s , τ · y′sC(1Aτ ) · j *s ), if s∈S*∩S2,

(x̄s , ȳs ), if s∈S3,

(x′s , y′s), otherwise.

The next lemma shows that, for these stationary strategy pairs, the
recurrent states all belong to S3 and the reward equals the value for all
initial states.

Lemma 2.6. For all τ∈(0, 1), we have γ (xτ , yτ )Gv and, if F is an
ergodic set with respect to (xτ , yτ ), then F⊂S3.

Proof. Let τ∈(0, 1). By the definitions, we have

Vs (x
τ
s , yτ

s )Gvs , for all s.

By Lemma 2.1, the value is a constant on each ergodic set for (xτ , yτ ). By
the construction of (xτ , yτ ), in each state in S* with positive probability a
transition occurs to a state with a different value, so all recurrent states
must belong to S3.

The equality V (xτ , yτ )Gv implies

Pxτy τvGv;

hence, the definition of Qxτyτ yields

Qxτy τvGv.

For any s∈S, if q(t us, xτ , y τ )H0, then t belongs to an ergodic set with
respect to (xτ , y τ ), so we have t∈S3. Now, the choice of (x̄z , ȳz ), z∈S3,
implies by Lemma 2.5 that

γ (t, xτ , y τ )Gvt , for all t∈S3,
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so applying (1) gives

γ (s, xτ , y τ )G ∑
t∈S

q(t us, xτ , y τ ) · γ (t, xτ , y τ )

G ∑
t∈S3

q(t us, xτ , y τ ) · vtGvs , ∀s∈S,

which completes the proof. h

We now prove Theorem 2.1. We show that, for any (H0, the stationary
strategy pair (xτ , y τ ), for sufficiently large τ∈(0, 1), can be supplemented
with history-dependent δ -optimal strategies, for small δH0, to obtain an
almost stationary (-equilibrium.

Proof of Theorem 2.1. We give only an outline of the proof, since the
tools used are standard; see for example Refs. 7 and 12 or, in a more general
fashion, Ref. 9. Let (H0. We will define strategy pairs (πτ , στ ) for all τ∈
(0, 1) so that (πτ , στ ) is an almost stationary (-equilibrium for sufficiently
large τ∈(0, 1). These strategy pairs will be constructed in such a way that,
if neither player deviates, then the stationary strategy pair (xτ , y τ ) is played
forever with probability at least τ . In view of Lemma 2.6, this means that
the corresponding rewards are converging to the value v as τ tends to 1.
Hence, when verifying the (-equilibrium conditions, it suffices to show that,
for any initial state s∈S, player 1 cannot get more than vsC(y2 and player
2 cannot decrease the reward below vsA(y2 by unilateral deviations. The
strategies πτ and στ will be defined analogously, so we focus only on the
player 1 strategy πτ and on the possible deviations of player 2. So, now we
define πτ for τ∈(0, 1).

The idea is that, while employing stationary strategies, player 1 checks
the player 2 behavior during the play by employing statistical tests. These
tests are based on the observation that, if player 2 truly uses his stationary
strategy, then:

(i) if actions are chosen outside the support of the stationary strat-
egy, they are observed immediately;

(ii) if play remains in the same ergodic set (ergodic w.r.t. these
stationary strategies), then the action frequencies of player 2
should converge to the weights of the mixed actions correspond-
ing to this stationary strategy;

(iii) from any transient state (w.r.t. the stationary strategies), the
probability of remaining in the transient states longer than n
stages converges to 0.
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So, if player 2 chooses an action outside the support of y τ , then player 1
knows for sure that player 2 deviated; if play remains in the set of transient
states for longer than some specified number of stages, then player 2 has
deviated with probability close to 1; if after some specified number of stages
within an ergodic set the player 2 action frequencies are not within some
specified range from the theoretical ones, then player 2 has deviated with
probability close to 1. On condition that player 2 should play yτ , if player
1 decides that with probability at least τ player 2 is deviating, then player
1 starts playing a (1−τ )-optimal strategy. Note that these probabilities are
conditioned on the initially given stationary strategies.

Deviations of Player 2 outside the Support. If player 2 chooses an
action js∈Js in state s∈S with y τ

s ( js )G0, then clearly player 1 notices
immediately the deviation, so the inequalities

lim
τ↑1

Vs (x
τ
s , js )Xvs , for all js∈Js , s∈S,

assure that, by choosing any action js∈Js in any state s∈S with y τ
s ( js )G0,

the reward is at least

Vs (x
τ
s , js )A(1Aτ )XvsA(y2,

if τ is large enough, using the fact that πτ prescribes a (1−τ )-optimal strat-
egy afterwards.

Deviations of Player 2 within the Support. If player 2 prescribes only
actions which have positive probabilities with respect to yτ , τ∈(0, 1), then
we divide the set of stages up to the current stage into blocks Bk of consecu-
tive stages as follows: a new block starts at each stage the play enters T, or
a new set E∈R . In block Bk, the probability that player 1 detects a devi-
ation of player 2 although player 2 truly used y τ will be at most d k, where
d k∈(0, 1) for all k∈N and ∑S

kG1 d kY1Aτ . The latter inequality will guaran-
tee that the total probability of making this mistake is at most 1−τ .

Deviations of Player 2 within Ergodic Sets. If the current block is Bk

and the play is in some E∈R
3, then player 1 checks the action frequencies

of player 2 in E; if the empirical action frequencies are not close enough to
the theoretical ones, then player 1 detects a deviation. If the number of
stages in block Bk is large enough, then the probability that player 1 detects
a deviation although player 2 used y τ is at most d k. If the empirical action
frequencies are close to the theoretical ones, then the corresponding reward
is close to the value. Notice that the play never leaves E if the players use
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only actions which are chosen with positive probabilities with respect to the
pair (xτ , y τ ).

Deviations of Player 2 in Transient States. If the current block is Bk

and the play is in T or in some E∈R
2, then the play should leave T or E

within Nk stages, for large Nk with probability at least 1−d k, if player 2
uses y τ . If the play does not leave T or E within Nk stages, then player 1
detects a deviation of player 2, with probability at least 1−d k, so he starts
playing a (1−τ )-optimal strategy afterward. Notice that xτ

s ∈X ′s for all s∈
T∪S2; hence, the play can only leave T∪S2 in such a way that the value
does not decrease in expectation.

Finally, if the current block is Bk and the play is in some E∈R
1, then

player 1 checks the action frequencies of player 2. This way, player 1 can
make sure that the unique state s in S*∩E is visited frequently enough and
also that the play leaves E via i*s and the new value does not differ much
from vs [recall that Vs(i*s , y*s )Gvs ]. If player 2 truly uses y τ , then player 1
detects no deviation with probability at least 1Ad k.

We have described how player 1 makes sure that the reward is not
much less than the value once the play reaches an ergodic set in R

3 and
also that the play reaches eventually an ergodic set in R

3 in such a way
that the value does not drop much in expectation; so, by taking a sufficiently
large τ∈(0, 1), the proof is complete. h

2.3. Examples. We provide two examples to illustrate the construc-
tion above.

Example 2.1. Once more, consider the game represented by

In other words, we reexamine the ‘‘big match’’; see Example 1.1. This
example shows how the ergodic sets in R

1 and R
2 can be left in such a

way that the value does not change much in expectation. The limiting aver-
age value is known to be vG(1y2, 1, 0). Following the construction above,
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we have

X ′1G{(1, 0)}, X ′2GX ′3G{(1)},

Y ′1Gconv{(1y2, 1y2), (0, 1)}, Y ′2GY ′3G{(1)},

R
1G{{1}}, S1G{1},

R
2G∅, S2G∅,

R
3G{{2}, {3}}, S3G{2, 3}.

To see that S1G{1}, take

S*G{1}, i*1 GB, y*1 G(1y2, 1y2).

As X ′ is a singleton and states 2 and 3 are trivial, for τ∈(0, 1) we have

xτG((τ , 1−τ ), (1), (1)), y τG((1y2, 1y2), (1), (1)).

Clearly,

γ (xτ , y τ )Gv, for all τ∈(0, 1).

Note that player 1 has no incentive to deviate from xτ when playing against
y τ , because any strategy of player 1 would give a reward of 1y2 against y τ ,
τ∈(0, 1). On the other hand, if τ is large, then player 1 is able to check the
action frequencies of player 2 in state 1 with a high precision; thus, if the
initial state is state 1, then player 1 can make sure that the eventual tran-
sitions to state 2 and state 3 will have almost equal probabilities; so, by the
choice of a sufficiently large τ , player 2 cannot gain more than an arbitrarily
small ( by any deviation from y τ .

Example 2.2. Consider the game represented by

This example clarifies how stationary strategy pairs with rewards equal to
the value can be constructed in ergodic sets in R

3; see Lemma 2.5. The
notation is the same as in Example 1.1. Notice that states 3 and 4 are trivial.
The value of the game is vG(0, 0, 0, 1). To see that v1Gv2G0, take the
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stationary δ -optimal strategy

yδG((1Aδ , δ ), (0, 1), (1), (1))

for player 2, where δ∈(0, 1). One can easily check that

γ (1, x, yδ )Yδ and γ (2, x, yδ )G0, for all x∈X;

so, using the fact that, against a stationary strategy, there always exists a
stationary best reply and the fact that the smallest payoff in the game is
zero, we have v1Gv2G0 indeed. Following the construction above, we have

X ′GX,

Y ′1G{(1, 0)}, Y ′sGYs , ∀sG2, 3, 4,

R
1G∅, S1G∅,

R
2G∅, S2G∅,

R
3G{{1, 2}, {3}, {4}}, S3G{1, 2, 3, 4}.

We focus only on the ergodic set EG{1, 2}, as states 3 and 4 are trivial.
Define Γ̄E as in the preliminaries, and let v̄s , sG1, 2, denote the value of Γ̄E .
Clearly,

v̄1G1H0Gv1 , v̄2G0Gv2 .

Note that

v̄sXvs , for all s∈E;

thus, Lemma 2.4 assures that v̄tGvt , for some t∈E [take tG2 here]. Now,
the strategies

x̄G((1y2, 1y2), (1))∈Xr E , ȳG((1, 0), (0, 1))∈YrE

satisfy

γ (s, x̄, ȳ)Gvs , for all s∈E;

see proof of Lemma 2.5. Now, for all τ∈(0, 1),

xτG((1y2, 1y2), (1), (1), (1)), y τG((1, 0), (0, 1), (1), (1))).

Clearly,

γ (xτ , yτ )Gv, for all τ∈(0, 1).

Note that player 2 has no incentive to deviate from y τ when playing against
xτ . On the other hand, player 2 can check the action frequencies of player
1 in state 1. So, if player 1 decides to play action Top at each stage, which
is the only way for player 1 to get a reward higher than 0 when playing
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against y τ from initial state 1, then after finitely many stages player 2 detects
the deviation of player 1 with probability almost 1 and starts using the
strategy yδ with small δ . This assures that player 1 cannot get more than
an arbitrary small (H0. Note that the probability that player 1 truly uses
xτ , τ∈(0, 1), but accidentally chooses action Top for a very long time is
small.

3. Concluding Remarks

It is worthwhile to mention that long-term average payoffs are some-
times evaluated by other rewards. The most common alternative rewards
are the following:

lim sup
N→S

Esπσ (RN), Esπσ 1lim inf
N→S

RN2 , Esπσ 1lim sup
N→S

RN2 ,

where RN is the random variable for the average payoff up to stage N∈N.
All these rewards are known to be equal for stationary strategy pairs. Also,
the corresponding values are equal (cf. Ref. 3); hence, for any (H0, almost
stationary (-equilibria exist for these alternative rewards as well. Sometimes
(-equilibria, (X0, are expected to be uniform; i.e., a pair (π , σ ) is a uniform
(-equilibrium, (X0, if ∀δH0, ∃Nδ , ∀NXNδ , ∀π̄ , ∀σ̄ such that

(Esπ̄σ (RN)A()AδYEsπσ (RN)Y(Esπσ̄ (RN )C()Cδ .

Since stationary strategies guarantee uniform rewards, and since the players
have uniform (-optimal strategies (cf. Ref. 3), almost stationary uniform (-
equilibria can be constructed in a similar way.
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