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Abstract

In stochastic games with ®nite state and action spaces, we examine existence of equilibria where player 1 uses the

limiting average reward and player 2 a discounted reward for the evaluations of the respective payo� sequences. By the

nature of these rewards, the far future determines player 1's reward, while player 2 is rather interested in the near future.

This gives rise to a natural cooperation between the players along the course of the play. First we show the existence of

stationary e-equilibria, for all e > 0, in these games. However, besides these stationary e-equilibria, there also exist e-
equilibria, in terms of only slightly more complex ultimately stationary strategies, which are rather in the spirit of these

games because, after a large stage when the discounted game is not interesting any longer, the players cooperate to

guarantee the highest feasible reward to player 1. Moreover, we analyze an interesting example demonstrating that 0-

equilibria do not necessarily exist in these games, not even in terms of history dependent strategies. Finally, we examine

special classes of stochastic games with speci®c conditions on the transition and payo� structures. Several examples are

given to clarify all these issues. Ó 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

We deal with stochastic games with ®nite state
and action spaces. Such games can be seen as
Markov decision processes with more controllers,
called players. Formally, such a game C can be
given by a tuple S; fIs: s 2 Sg; fJs: s 2 Sg;h
r1; r2; pi, where S is a non-empty ®nite set of states,
Is and Js are respective non-empty ®nite sets of
(pure) actions for players 1 and 2 in state s, r1 and

r2 are respective payo� functions that assign pay-
o�s r1�s; is; js�; r2�s; is; js� to any action pair �is; js�
in any state s, and p is the transition probability
map assigning a probability vector �p�t j s; is; js��t2S
to any action pair �is; js� in any state s.

The game is to be played at stages in N in the
following way. The play starts at stage 1 in an
initial state, where, simultaneously and indepen-
dently, both players are to choose an action. These
choices induce immediate payo�s to both players
given by the respective payo� functions, and next,
the play moves to a new state according to the
corresponding transition probability vector. In the
new state, at stage 2, new actions are to be chosen

European Journal of Operational Research 112 (1999) 187±195

* Corresponding author. Tel.: +31 43 388 3494; fax: +31 43

321 1889.

0377-2217/99/$ ± see front matter Ó 1999 Elsevier Science B.V. All rights reserved.

PII S 0 3 7 7 - 2 2 1 7 ( 9 7 ) 0 0 3 8 4 - 6



by the players. Then the players receive the cor-
responding payo�s given by the payo� functions,
and afterwards the play moves to some new state
according to the corresponding transition proba-
bility vector again, and so on. The players are
assumed to have complete information and perfect
recall.

A mixed action for a player in state s is a
probability distribution on the set of his actions in
state s. Mixed actions in state s will be denoted by
xs for player 1 and by ys for player 2, and the sets
of mixed actions in state s by Xs and Ys, respec-
tively. A strategy is a decision rule that prescribes a
mixed action in the current state for any past
history of the play. Such general strategies, so-
called history dependent strategies, will be denoted
by p for player 1 and by r for player 2. If for all
histories, the mixed actions prescribed by a strat-
egy only depend on the current stage and state
then the strategy is called Markov, while if they
only depend on the current state then the strategy
is called stationary. Thus the respective stationary
strategy spaces are X :� xs2SXs and Y :� xs2SYs;
while the respective Markov strategy spaces are
F :� xn2NX and G :� xn2NY . We will use the no-
tations x and y for stationary strategies and f and
g for Markov strategies of the respective players.
A stationary strategy is called pure, if it prescribes
one pure action to be used for each state. Thus the
respective spaces of pure stationary strategies are
simply I :� xs2SIs; J :� xs2SJs. Pure stationary
strategies will be denoted by i and j.

A strategy pair �p; r� together with an initial
state s determines a stochastic process on the
payo�s. The sequences of payo�s need to be
evaluated in some manner. The limiting average
reward evaluates them by the long-term average
payo�s, given for player k 2 f1; 2g by

ck�s; p; r� :� lim inf
N!1

Espr
1

N

XN

n�1

rk
n

 !
;

where rk
n denotes the random variable for the

payo� of player k at stage n. Hence the limiting
average reward places its emphasis on the far fu-
ture payo�s. Another widely used evaluation is the
b-discounted reward, b 2 �0; 1�, which is given for
player k 2 f1; 2g by

ck
b�s; p; r� :� Espr �1ÿ b�

X1
n�1

bnÿ1 rk
n

 !
:

In contrast with the limiting average reward, the b-
discounted reward is obviously rather determined
by the near future payo�s.

A strategy pair �p; r� is called an e-equilibrium,
e P 0, with respect to �w1;w2�, where both w1 and
w2 are one of the above rewards, if for all s 2 S, for
all �p and �r

w1�s; �p; r�6w1 s; p; r� � � e and

w2�s; p; �r�6w2 s; p; r� � � e;

which means that for every initial state s 2 S,
neither player can gain more than e with respect to
his own reward function by a unilateral deviation.
If both players use the limiting average reward
then we speak of limiting average equilibria, while
when the b-discounted rewards are used then we
speak of b-discounted equilibria.

Fink (1964) and Takahashi (1964) showed that
b-discounted 0-equilibria always exist in terms of
stationary strategies. The structure of limiting av-
erage equilibria is, however, substantially more
complex and the question of existence of limiting
average e-equilibria has not yet been answered.
The famous zerosum game introduced by Gillette
(1957), the Big Match, which was examined by
Blackwell and Ferguson (1968), and the non-ze-
rosum game in Sorin (1986) demonstrate that, in
general, limiting average 0-equilibria do not nec-
essarily exist and history dependent strategies are
indispensable for establishing limiting average e-
equilibria.

In this paper we investigate existence of e-
equilibria in games where the players use di�erent
evaluations. We assume that player 1 uses the
limiting average reward, while player 2 is inter-
ested in his b -discounted reward. We will call
these games average-discounted games. By the
nature of these rewards, as discussed above, the
players are interested in di�erent time periods of
the play, which may lead to a natural cooperation
between the players. First we show the existence of
stationary e-equilibria, for all e > 0, in these
games. So stationary strategies are not only su�-
cient for establishing equilibria in classical dis-
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counted games but also in these average-dis-
counted games. The existence of equilibria in terms
of stationary strategies is appealing, since sta-
tionary strategies are rather simple strategies. On
the other hand, however, these stationary equi-
libria have the drawback that they do not make
use of the special nature of these games, they do
not use that di�erent time periods interest the
players. Therefore we also prove the existence of e-
equilibria, where, after a large stage when the
discounted game is not interesting any longer, the
players cooperate to guarantee the highest feasible
reward to player 1. These e-equilibria are formed
by only slightly more complex Markov strategies,
which we call ``ultimately stationary'' (after ®nitely
many stages stationary strategies are played for-
ever). Next, we analyze an interesting example
demonstrating that 0-equilibria do not always exist
in these average-discounted games, not even in
terms of history dependent strategies. Finally, we
examine special classes of stochastic games, where
speci®c conditions are imposed on the transition
and payo� structures.

We now brie¯y discuss the following game to
clarify the issues.

Example 1.1.

Here matrices represent the states of the game.
The actions of player 1 are rows and the actions of
player 2 are columns. In each entry, the corre-
sponding payo�s are placed in the up-left corner,
while the transition is placed in the bottom-right
corner. In this game each transition is represented
by the number of the state to which transition
should occur with probability 1. Notice that the
only interesting state is state 1, since states 2 and 3
are absorbing, i.e., once the play visits either of
these states it stays there forever. Hence we assume
the initial state to be state 1. Obviously, strategies
only need to be de®ned for state 1.

Take an arbitrary discount factor b 2 �0; 1�. There
are two really simple stationary equilibria with
respect to �c1; c2

b�. One of them is playing entry
�B; L� at stage 1, yielding absorption in state 2 and
reward �2; 1�, and the other one is to play entry
�T ;R� at each stage, which gives reward �1; 2�.
These stationary equilibria, however, are not really
in the spirit of the game. The players could also
decide to play entry �T ;R� su�ciently long so that
player 2's reward, which is rather determined by
the near future payo�s, becomes almost 2, and
then, when the rest of the play does not really in-
terest player 2 any longer, to play entry �B; L� so as
to give player 1 the highest feasible payo� 2 at each
further stage. This plan, yielding a reward close to
�2; 2�, can be realized by ultimately stationary
strategies (after ®nitely many stages stationary
strategies are played forever). Note that rewards
close to �2; 2� cannot be guaranteed by stationary
e-equilibria, with small e P 0.

2. Stationary e-equilibria

This section is devoted to the analysis of the
existence of stationary e-equilibria, e > 0, in these
average-discounted games. First we introduce a
restricted strategy space for player 2. Let

�d :� min
s2S

1

jJsj :

For d 2 �0; �d� let

Y �d� :� fy 2 Y jys�js�P d 8s 2 S; 8js 2 Jsg
in words, Y �d� is the set of stationary strategies of
player 2 which use each action in each state with
probability at least d. Obviously, Y �d� is a poly-
tope, and by the choice of �d it is non-empty. The
following lemma states some well known proper-
ties of the rewards and sets of best reply strategies.

Lemma 2.1. (i) The function c1�s; x; �� is continuous
on Y �d� for any s 2 S; x 2 X ; d 2 �0; �d�: (ii) Let
�y 2 Y . Then the set

B1��y� :� fx 2 X jc1�s; x; �y�
P c1�s; x̂; �y� 8s 2 S; 8x̂ 2 Xg
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is non-empty and convex. (iii) The function c2
b�s; �; ��

is continuous on X � Y for any s 2 S; b 2 �0; 1�:
(iv) Let b 2 �0; 1�, �x 2 X ; d 2 �0; �d�. Then the set

B2
b�d;�x� :� fy 2 Y �d� jc2

b�s;�x; y�
P c2

b�s;�x; ŷ� 8s 2 S; 8ŷ 2 Y �d�g
is non-empty, convex, and closed.

Note that (ii) and (iv) also show that against a
®xed stationary strategy there exist stationary
best replies for the other player. Notice that the
above properties are weaker for the limiting av-
erage reward, which is clari®ed by the following
example.

Example 2.2.

The notation is the same as in example 1.1.
Since state 2 is trivial, stationary strategies for the
players are fully determined by the mixed actions
in state 1. Suppose that the initial state is state 1.
Let yn :� �1=n; �nÿ 1�=n� 2 Y , and let
y :� limn!1yn � �0; 1�. For x � �1; 0� we have
c1�1; x; yn� � 1 while c1�1; x; y� � 0, so c1�1; x; �� is
not continuous on Y ; nevertheless on Y �d�, with
d > 0, it is continuous (cf. (i) of Lemma 2.1) due to
the fact that the ergodic structure of the Markov
chain with respect to �x; y� is the same for any
y 2 Y �d�. One can readily verify that, for �y � �1

2
; 1

2
�,

we have B1��y� � f�k; 1ÿ k� jk 2 �0; 1�g, so B1��y�
is not closed (cf. (ii) of Lemma 2.1).

The main result of this section is the following
theorem.

Theorem 2.3. In any stochastic game, for any e > 0;
there exists a stationary e-equilibrium with respect
to �c1; c2

b�, where b 2 �0; 1�.

Proof. Take arbitrary e > 0 and b 2 �0; 1�. For a
strategy y 2 Y let B

1�y� denote the closure of
B1�y�. By (iii) in Lemma 2.1, the function c2

b�s; �; ��
is continuous on the compact space X � Y , for any
s 2 S, hence it is uniformly continuous as well.
Therefore there exists a d 2 �0; �d� such that for all
s 2 S we have

sup
x2X

sup
y2Y

c2
b�s; x; y�

"
ÿ sup

y2Y �d�
c2
b�s; x; y�

#
6 e

2
: �1�

Now consider the following set-valued map:

W : �x; y� 2 X � Y �d� 7! B
1�y� �B2

b�d; x�
� X � Y �d�:

The set X � Y �d� is convex and compact, and, in
view of Lemma 2.1, this correspondence W is non-
empty, convex, compact valued and upper semi-
continuous. Hence the conditions of Kakutani's
®xed point theorem (cf. Kakutani, 1941) are sat-
is®ed. Therefore W has a ®xed point, i.e., there
exists a pair �x; y� 2 X � Y �d� such that
�x; y� 2 �B1�y�;B2

b�d; x��:

Using this ®xed point �x; y� we construct a sta-
tionary e-equilibrium in the game. Since x 2 B

1�y�
and y 2 B2

b�d; x�, by the uniform continuity of
c2
b�s; �; �� on X � Y for all s 2 S, there exists an

x0 2 B1�y� such that for all s 2 S all the following
inequalities (and equality) hold:

c2
b�s; x0; y� �

1

2
e P c2

b�s; x; y� �
1

4
e

� sup
�y2Y �d�

c2
b�s; x; �y� � 1

4
e P sup

�y2Y �d�
c2
b�s; x0; �y�: �2�

We show that �x0; y� is an e-equilibrium. Recall
that, as discussed above, against a stationary
strategy there always exist best replies in stationary
strategies. Hence using x0 2 B1�y� we have for all
s 2 S that

c1�s; p; y�6 sup
�x2X

c1�s;�x; y� � c1�s; x0; y� 8p:

For player 2, applying Eqs. (1) and (2), we obtain
for all s 2 S that
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c2
b�s; x0; r�6 sup

�y2Y
c2
b�s; x0; �y�

6 sup
�y2Y �d�

c2
b�s; x0; �y� � 1

2
e6 c2

b�s; x0; y� � e 8r:

Therefore �x0; y� is an e-equilibrium indeed. �

3. Ultimately stationary e-equilibria

In the previous section we showed the existence
of stationary e-equilibria for all e > 0, with respect
to �c1; c2

b�. These stationary e-equilibria are ap-
pealing, because simple strategies are used. In this
section, however, we also prove the existence of e-
equilibria in terms of ultimately stationary strate-
gies (after ®nitely many stages stationary strategies
are played forever), where the players naturally
cooperate, based on the di�erent nature of their
rewards. The idea is that after a large stage N
player 2 becomes uninterested in the game due to
the large powers of the discount factor b, so after
stage N the players can cooperate to guarantee the
highest feasible reward for player 1 in the future.
During the ®rst N stages, obviously, player 1 has
to be careful not to decrease his future perspectives
after stage N .

Theorem 3.1. In any stochastic game, for any e > 0;
there exist e-equilibria with respect to �c1; c2

b�; where
b 2 �0; 1�; such that up to some stage N the players
play Markov strategies, from stage N � 1 they play
stationary strategies, and if the play is at stage
N � 1 in state s, then player 1 receives
qs :� supp;r c1�s; p;r�.

Proof. Consider a stochastic game C. Take arbi-
trary e > 0 and b 2 �0; 1�. Let N 2 N be so large
that

bN�1 max
s;is;js

r2�s; is; js�
�

ÿmin
s;is;js

r2�s; is; js�
�
6 e;

so after stage N � 1 player 2 can only improve his
b-discounted reward by at most e. In the theory of
Markov decision problems it is known that there
exist pure stationary strategies i� 2 I and j� 2 J
such that for qs as de®ned in the theorem it holds
that

qs � c1�s; i�; j�� 8s 2 S:

Consider the game CN which is played up to stage
N and in which player 1 maximizes the value of q
in the ®nal state and player 2 maximizes his N -
stage b-discounted reward, given for N -stage
strategies pN ; rN and initial state s by

EspN rN �1ÿ b�
XN

n�1

bnÿ1r2
n

 !
:

Using backwards induction, one can construct an
N -stage Markov 0-equilibrium �f N ; gN � in the
game CN . Let f denote the Markov strategy which
coincides with f N for the ®rst N stages and which
prescribes the pure stationary strategy i� after-
wards. The de®nition of g is analogous. Thus by
their de®nitions, f and g satisfy the requirements
of the theorem. We only have to show that �f ; g� is
an e-equilibrium. Observe that player 1's limiting
average reward c1 is completely determined by the
value of q in the state at stage N � 1, which is
exactly what he maximizes during the ®rst N
stages, so player 1 cannot improve at all. Player 2
can only improve his reward by e after stage N ,
because of the choice of N ; while during the ®rst N
stages, by his reward function in the game CN , he
cannot improve it at all. So �f ; g� is an e-equilib-
rium indeed. �

4. A game without average-discounted 0-equilibria

In Sections 2 and 3 we showed the existence of
e-equilibria, for all e > 0, in terms of stationary
and ultimately stationary strategies. The interest-
ing example 3 will demonstrate that, in these av-
erage-discounted games, 0-equilibria do not
always exist, not even in history dependent strat-
egies. So as it might be expected, the solutions of
average-discounted games are on the one hand
more complex than that of discounted games,
where stationary 0-equilibria always exist, but on
the other hand simpler than that of limiting aver-
age games, where stationary e-equilibria do not
generally exist for small e P 0.
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Example 4.1 (game C3).

The notation is the same as in example 1.1. We
show that 0-equilibria do not exist for initial state 1.

Theorem 4.2. In the game C3, there exist no 0-
equilibria for initial state 1 with respect to �c1; c2

b�
for any b 2 �0; 1�.

Proof. As states 2 and 3 are trivial, strategies only
need to be de®ned for histories where the initial
state is 1 and no absorption has occurred. Notice
that the only information carried by these histories
is the current stage. Therefore all history depen-
dent strategies are simply Markov strategies. Since
any mixed action in state 1 can be represented by
the probability assigned to the ®rst action, any
Markov strategy for any player is an element of
the set �1n�1�0; 1�.

Suppose by way of contradiction that
�f ; g� � �f �n�; g�n��1n�1 is a Markov 0-equilibrium
with respect to �c1; c2

b�, where b 2 �0; 1�; here f �n�
and g�n� denote the probabilities of playing action
T and L, respectively, at stage n. Let
f k :� �f �n��1n�k and gk :� �g�n��1n�k for any k 2 N,
so f k and gk are the Markov strategies f and g
starting from stage k. Let nk denote player 1's
limiting average reward when using �f k; gk� for
initial state 1.

Based on the assumption that �f ; g� is a 0-equi-
librium, we subsequently derive that we should
have:

(1) n1 > ÿ1;
(2) 0 < f �1� < 1 and 0 < g�1� < 1;
(3) �f n; gn� is a 0-equilibrium, 0 < f �n� < 1; and
0 < g�n� < 1 for all n 2 N;
(4) nn < nn�1 and g�n� < g�n� 1� for all n 2 N:

Next we show that these properties lead to a
contradiction.

Proof of (1). Since �f ; g� is a 0-equilibrium, it
su�ces to de®ne a strategy �f for player 1 which
guarantees a reward larger than ÿ1 when playing
against g. For n 2 N let

�f �n� :� 1 if g�n� > 0

0 if g�n� � 0:

�
Now with respect to � �f ; g�, whenever the play is in
state 1, either the cell �B;R� is played with prob-
ability 1 or the cell �T ; L� is played with a positive
probability, hence c1�1; �f ; g� > ÿ1.

Proof of (2). If f �1� � 1 then g�1� � 0, since it
yields absorption in entry �T ;R� giving the highest
possible reward 1 for player 2. However, this
contradicts n1 > ÿ1 (cf. (1)), hence f �1� < 1 must
hold. If f �1� � 0 then g 1� � � 1, which also con-
tradicts n1 > ÿ1; hence f �1� > 0.

If g�1� � 1 then f �1� � 1 has to hold because f is a
best reply against g, which contradicts
0 < f �1� < 1. Hence g�1� < 1. Now suppose that
g�1� � 0. Using (1) we have

ÿ 1 < n1 � f �1��ÿ1� � �1ÿ f �1��n2;

thus by f �1� > 0 we obtain n2 > n1, which means
that player 1 would be better o� by playing action
B at stage 1 and playing f 2 from stage 2 on as-
suring reward n2. This is in contradiction with the
fact that f �1� > 0. Hence g�1� > 0 must hold.

Proof of (3). By (2), the probability of no ab-
sorption at stage 1 has a positive probability,
therefore, clearly, �f 2; g2� must be a 0-equilibrium
as well. Using that �f 2; g2� is a 0-equilibrium, one
can show similarly that 0 < f �2� < 1 and
0 < g�2� < 1. Now repeating this argument yields
the statement.

Proof of (4). The strategy f 1 is a best reply
against g1 and player 1 plays action B with a
positive probability at stage 1 (cf. (3)), hence

n1 � g�1��ÿ1� � �1ÿ g�1��n2:

Now using (1) and g�1� > 0 (cf. (3)), we have
n1 < n2 indeed. Repeating this argument leads to
nn < nn�1 for all n 2 N.

At stages n and n� 1, in view of (3), player 1 plays
action T with positive probabilities, thus
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nn � g�n� � 1� �1ÿ g�n���ÿ1�;
nn�1 � g�n� 1� � 1� �1ÿ g�n� 1���ÿ1�:
Now from nn < nn�1 it follows that g�n� <
g�n� 1�.

Deriving a contradiction. Consider the strategy
�fK , K P 2, which prescribes action B up to stage
K ÿ 1 and the strategy f K from stage K on. Then
with respect to � �fK ; g�, player 1's reward is ÿ1 if
absorption occurs during the ®rst K ÿ 1 stages and
equals nK otherwise. Thus we have for all K P 2
that

c1� �fK ; g� � 1ÿ
YKÿ1

n�1

�1ÿ g�n��
" #

�ÿ1�

�
YKÿ1

n�1

�1ÿ g�n��
" #

nK

� 1ÿ
YKÿ2

n�1

�1ÿ g�n��
" #

�ÿ1�

�
YKÿ2

n�1

�1ÿ g�n��
" #

g�K ÿ 1��ÿ1��
�1ÿ g�K ÿ 1��nK�

� 1ÿ
YKÿ2

n�1

�1ÿ g�n��
" #

�ÿ1�

�
YKÿ2

n�1

�1ÿ g�n��
" #

nKÿ1

� � � �
� g�1��ÿ1� � �1ÿ g�1��n2

� n1:

However, by properties 2 and 4 we have that
g�n� > g�1� > 0 for all n 2 N. Therefore, if player
1 uses �fK with a large K then absorption occurs in
entry �B; L� during the ®rst K ÿ 1 stages with
probability almost 1. Formally,

lim
K!1

1ÿ
YKÿ1

n�1

�1ÿ g�n��
" #

� 1;

thus

n1 � lim
K!1

c1� �fK ; g� � ÿ1;

which contradicts (1). Hence the basic assumption
that �f ; g� is a 0-equilibrium is false. �

5. Special classes of stochastic games

This section is devoted to the study of average-
discounted equilibria in special classes of games.
We brie¯y treat several classes of games in which
(e-)equilibria can be achieved by using other
techniques.

Unichain games. A stochastic game is called
unichain if, for any stationary strategy pair, there
is just one ergodic set of states. This condition
assures that the limiting average reward c1�s; �; �� is
also continuous on X � Y for all s 2 S and that the
best reply sets B1��y�; �y 2 Y ; are closed (cf. (i) and
(ii) in Lemma 2.1). In these games one can estab-
lish stationary 0-equilibria with respect to �c1; c2

b�
by simply applying Kakutani's ®xed point theorem
on X � Y .

Perfect information, switching control and
ARAT games. A stochastic game has perfect in-
formation if, in each state, one of the players has
only one action available. A stochastic game with
switching control is a stochastic game with the
property that, in each state s, the transition
probabilities only depend on the actions of one
of the players, i.e., either p�s; is; js� � p�s; is� for
all is; js or p�s; is; js� � p�s; js� for all is; js. Finally,
a stochastic game is called an ARAT game (ad-
ditive reward and additive transition structure) if
it has the following property: for each pair of
actions �is; js� in each state s, the payo�s
rk�s; is; js�, k � 1; 2, can be decomposed as
rk�s; is; js� � rk

1�s; is� � rk
2�s; js� while, similarly, the

transition probability p�s; is; js� can be decom-
posed as p�s; is; js� � p1�s; is� � p2�s; js�. So by the
de®nitions, perfect information stochastic games
have switching control as well as ARAT struc-
ture.

In perfect information games and ARAT
games one can establish average-discounted 0-
equilibria, almost analogously as in the proof for
the existence of limiting average 0-equilibria for
these games in Thuijsman and Raghavan (1997).
The idea is that player 1 has to play a pure sta-
tionary limiting average optimal strategy i, i.e.
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infr c1�s; i; r� � supp infr c1�s;p; r� for all s 2 S,
(pure stationary limiting average optimal strate-
gies always exist in these games, cf. Liggett and
Lippman, 1969; Raghavan et al., 1985), and
player 2 has to play a stationary b-discounted
best reply y against the strategy i. This already
implies that player 2 does not have a pro®table
deviation against i. Notice that, since the strategy
i prescribes one pure action for each state, player
2 can immediately detect any deviation of player
1. Now in order to eliminate the pro®tability of
deviations of player 1, if player 2 detects a devi-
ation from i then he has to punish player 1 by
switching to a strategy r satisfying c1�s;p; r�
6 c1�s; i; y� � d for all s and p, where d > 0 is
su�ciently small. Note that these punishments are
e�ective due to the transition structure of these
games.

In switching control stochastic games the proof
is somewhat more complicated, because player 1
does not need to have pure stationary limiting
average optimal strategies. Nevertheless, Filar
(1981) showed that there exist stationary limiting
average optimal strategies for player 1. Now the
main di�erence is that player 2 cannot immediately
detect deviations of player 1, but, as shown in
Thuijsman and Raghavan (1997), player 2 can
conduct statistical tests on the action frequencies
of player 1, and by doing so he can detect devia-
tions in the long run with probability almost 1.
This way we obtain average-discounted e-equilib-
ria, for all e > 0, for switching control games as
well.

Repeated games with absorbing states. These are
stochastic games where all the states but one are
absorbing. Here one can establish average-dis-
counted e-equilibria, for all e > 0, as follows. For
any a 2 �0; 1�, there exists a stationary equilibrium
�xab; yab� with respect to �c1

a; c
2
b� (cf. Fink, 1964;

Takahashi, 1964); this game is in fact a discounted
game with two di�erent discount factors. Using
techniques as in Vrieze and Thuijsman (1989) one
can show that either �x1b; y1b� or �x1b; yab� with a
large a can be supplemented with history depen-
dent ``punishment'' strategies to establish an e-
equilibrium with respect to �c1; c2

b�; here �x1b; y1b�
is the limit strategy pair of some sequence
�xanb; yanb�; n 2 N, with an " 1.

6. Concluding remarks

In this article we have studied average-dis-
counted games. Here in contrast with classical
discounted or limiting average games, the players
use di�erent evaluations for their payo� sequences.
These games and their solutions turn out to be
more complex than discounted games, however,
they still have a substantially simpler structure
than limiting average games.

We also wish to remark that, in the literature of
stochastic games and Markov decision processes,
games have already been studied where, instead of
using the discounted or the limiting average eval-
uation, the players (or the player) use convex
combinations of several discounted rewards with
di�erent discount factors and the limiting average
reward (cf. for example Filar and Vrieze, 1992;
Feinberg and Shwartz, 1994, 1995). Although the
ideas have something in common, the arising
problems require a di�erent analysis.
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