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Summary. For two person zero sum stochastic games we 
introduce a new criterion for evaluating streams of pay- 
offs. When the players use this criterion we call such 
games total reward stochastic games. It is unknown 
whether total reward stochastic games, with the property 
that the average value is zero for each initial state, al- 
ways have a value. We examine an example of such a 
total reward stochastic game in which one of the players 
can play e-optimal only by using history dependent 
strategies. 

Zusammenfassung. Fiir stochastische Zwei-Personen- 
Null-Summen-Spiele wird ein neues Kriterium zur Be- 
wertung der Auszahlungsstr6me eingeftihrt, das Ge- 
samt-Gewinn-Kriterium. Es ist bisher unbekannt, ob 
stochastische Spiele, deren Wert beziiglich des Durch- 
schnittsgewinn-Kriteriums gleich Null ist, beziJglich des 
Gesamt-Gewinn-Kriteriums einen "Wert" besitzen. Es 
wird ein BeispM untersucht, in dem ein Spieler nur 
e-optimal spielen kann, wenn er yon der Vorgeschichte 
abh/ingige Strategien benutzt. 

1. Introduction 

We consider a two person stochastic game. Such a game 
is played in stages. At each stage the game is in one of 
finitely many states. Both players observe the current 
state and independently choose an action out of  a finite 
set. The pair of actions at stage n E N = {1,2, 3 . . . .  } 
together with the current state determine a payoff r  n to 
be made by player II to player I. Furthermore the cur- 
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rent state and the action choices determine a probability 
function according to which the system moves to a next 
state. 

A player's strategy is a specification of a probability 
distribution at each stage over his available actions, con- 
ditional on the history of the game up to that stage. By 
history we mean the sequence of past states and actions 
up to that stage. Any pair of strategies determines an 
expected payoffE[rn] at stage n, for each n E N. 

There are different ways of evaluating such a stream 
of expected payoffs. The value of the game depends on 
which evaluation is being used. 

Shapley [6] proved that the H-discounted game, i.e. 
the game with "evaluation" Y,n=l[Jn-lE[rn], for 

E [0, 1) has a value and that both players possess opti- 
mal stationary strategies, i.e. strategies independent of 
history and stage. (Here E stands for the expectation 
sign.) 

It was unknown for many years whether aver- 
age stochastic games, i.e. games with "evaluation" 

1 
l i m i n f -  Ztn=l E[rn] , always have a value. The fact 

t--* oo t 

that average stochastic games do have a value has been 
proved by Mertens and Neyman [4]. At the same time 

[ 1 
they showed, that the evaluation rule E lim i n f -  

I_ t~oo t ] 
I7  t leads to the same value. (Evidently also for n = l  gn 

A 

the discounted criterion the evaluation E[Zn= x pn-irn ] 
leads to the same discounted value.) 

Before that, Blackwell and Ferguson [2] have shown, 
that history dependent strategies are essential for average 
stochastic games. They have analysed "the big match", 
an average stochastic game introduced by Gillette [3], 
and proved that this game has a value. However, one of 
the players has no history independent average e-opti- 
mal strategy in the big match. 
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The aim of  this paper is to introduce a third evalua- 
tion rule, called the total reward criterion. This criterion 
turns out to be a refinement in addition to the average 
criterion. We will give an example showing, that, like in 
"the big match",  also for this criterion players may need 
to use history dependent strategies. In the last section 
we show that a total reward stochastic game can be 
viewed as an average stochastic game, however the set of  
states has to be enlarged to an infinite set. 

2. The Total Reward Evaluation 

Observe that for the discounted evaluation rule early in- 
comes have the main impact on the discounted reward, 
while for the average criterion future returns determine 
the average reward. Several objections can be raised 
against the average evaluation rule. Consider, for ex- 
ample, the following two trivial games. In every state 
both players have only one action and the transitions 
are deterministic. 

State : 1 2 3 1 2 
t D i ] 

game I game 2 

(Player I is the row player, player II the column player; 
a cell rip means payoff  r to player I, p is the transition 
probability vector.) 

For game 1, clearly the average value equals (0, 0, 0). 
However player I would prefer to start in state 1 (getting 
total reward 1) and player II would prefer to start in 
state 2 (paying total reward -1 ) .  Likewise in game 2 the 
average value equals (0, 0), but also here player I likes to 
start in state 1, thus owning half of  the time two units 
and half of  the time zero units. And player II likes to 
start in state 2, being due half of  the time minus two 
units and half of  the time zero units. 

This phenomenon asks for a more sensitive evaluation 
rule, which we call the total reward criterion and which is 

1 2~ t E[r . ] .  defined by the "evaluation" lim inf --  Err= t n = 1 
T--,~ T 

The choice of this evaluation rule may need some 
explanation. Observe that Y.t= 1 E[rn] are partial sums 

1 T 
for every t E gq. Then ~ ~'t = 1 ~_t n=l E[rn] is the average 

of  the first T partial sums. 
Speaking of  total rewards we would like to evaluate a 

stream (g [ r l ] ,  E[r2]  . . . .  ) by ]~n=lE[rn]. However 
this sum may have more than one limit point in 
IR U (+~o,-oo}. See for example game 2 above. 

The next evaluation one can think of  is the Cesaro- 
1 

limit of the row of partial sums, i.e. lim --52T= 1 
T--,~ T 

Z'tn = 1 E[rn ]. For instance, it sounds fair that for game 2, 
starting in state I ,  the stream of  payoffs, giving partial 
sums (2, 0, 2, 0 . . . .  ) is evaluated as 1, since 1 is the average 
possession of  player I. It can be shown that for station- 
ary strategies this limit always exists in IR U (+~, -oo} .  
However, for non-stationary strategies this need not be 

1 
the case. Therefore we choose l i m i n f - -  ~T=I 

T--,~ T 
~tn= 1 E[rn] as evaluation. We also might have chosen 
"lim sup" or any convex combination of  "lim inf" and 

1 
"lim sup" as evaluation. In case En=l  E[rn] or lim --  

T--,~ T 
]~r= 1 Etn= 1 E[rn] exists in IR t2 (+~ , -oo}  it equals 

1 
lim i n f -  Y.T= 1 E t=  1 E[rn]. 
T-*~ T 

We now mention some properties of  the total reward 
evaluation rule. Evidently, if the average value is unequal 
to zero in some state, then for such a state the total 
reward value exists and equals + ~  or -r162 dependent on a 
positive or negative sign of  that average value. If  for 
some state the average value equals 0 and if one player 
has no average optimal strategy, then the total reward 
value does not need to exist as is demonstrated by the 
following example (the "big match" of  Blackwell and 
Ferguson [2]). 

, I  - i  i 

1 2 3 

For state 1 the average value equals 0. It is well 
known that player I has no average optimal strategy in 
this game. So for every strategy 7r 1 for player I there 
exists a strategy 7r 2 for player II such that the corre- 

1 
sponding average reward is lim inf t ~tn=l E[rn] < O. 

t.--~oo 

Hence for the corresponding total reward it holds that 
1 

etr.J=-  Furthermore it can 

easily be verified that the stationary strategy rr~' 

= , for player II yields an expected payoff  0 at 

each stage, no matter what choices player I makes. 
Consequently, the total reward value does not exist 
since sup inf v(rq,  ~r2) = -oo :/: 0 = inf sup v(rq, zr2). 

7r I Ir 2 7r 2 Ir I 
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(Throughout this paper rr 1 and 7r 2 are strategies for 
player I and player II respectively and v(rr 1, rr2) is the 
corresponding total reward.) 

For this example the nonexistence of the total 
reward value is a consequence of the fact that not for 
each state the average value equals 0. For games for 
which the average value equals zero for all states and 
for which in addition at least one player has no average 
optimal stationary strategy for some state, the total 
reward value, so it exists, is plus or minus infinity. 

The following example illustrates this fact. 

S S  
2 

For this game the average value equals (0, 0) and the 
total reward value (0% 0). This can be seen as follows. 
Starting in state 1, player I can be sure that the total 
reward is oo. To acquire this he could use the strategy 
rr~ defined by: if the system is in state 1 at stage n, then 

1 
choose the first row with probability 1 - - -  and the 

1 n +  1' 
second row with probability n -"~ '  Hence for state 1 the 

total reward value is ~.  Although player II has no aver- 
age optimal stationary strategy, he does have an average 
optimal Markov strategy. (At the first stage he should 
play optimal in the one-stage game, at the next two 
stages he should play optimal in the two-stage game, at 
the next three stages he should play optimal in the three- 
stage game, etc., cf. Vrieze [7].) Here a (semi-)Markov 
strategy is a strategy in which the action choice at each 
stage solely depends (on the initial state,) on the current 
state and on the stage. 

So in the above example we have the curious phe- 
nomenon that on the one hand player II can assure him- 
self an average reward 0, but on the other hand he can- 
not prevent player I from obtaining total reward ~.  The 
above examples illustrate that, only under the next as- 
sumption A,  the total reward value, if it exists, can be 
finite. 

Assump t ion  A :  

(i) The average value equals 0 for all initial states. 

(ii) Both players possess average optimal stationary 
strategies. 

We do not know, whether the total reward value al- 
ways exists under Assumption A. We do know that 

sup inf v(rq, %)  and inf sup v(rr t, rr2) are both finite in 
~r 1 rr 2 rr 2 rr 1 

this case (the average optimal stationary strategies assure 
each of the players a finite total reward) and we have 
good indications that these quantities are equal under 
Assumption A. In a subsequent paper we will show 
besides other results, that, under Assumption A, if both 
players possess total reward e-optimal stationary strate- 
gies, then the total reward value equals the limit for/3 
tending to 1 of the H-discounted values. Notice, that, 
under Assumption A, this limit also equals the constant 
term x o in the solution of the limit discount equation 
(cf. Bewley and Kohlberg [ 1 ]). It is known that the aver- 
age value also appears in the solution of the limit dis- 
count equation (as the leading coefficient X_l). We ex- 
pect that under Assumption A, x o will always be the 
total reward value but we did not yet find a proof for 
this. If for a game, satisfying Assumption A, the total 
reward value exists, then obviously any total reward 
e-optimal strategy is optimal with regard to the average 
criterion. In this sense the total reward criterion can be 
interpreted as a sensitive criterion in addition to the 
average criterion. 

We like to conclude this section with the following 
remark, which was communicated to us by Neyman [5]. 

It is not clear whether for total rewards the expres- 

sion E [ l i T m ~ f l ~ : = l  ' ] X;~= 1 r n makes any sense. 

Consider the following example. 

1 2 

1 
Then lira inf -- •T= x Z'tn = 1 E[rn ] = 0, while 

T->~ T 

E[ l iminf  1 ~ = 1  t ] Er= l  r n = -  as for every realisa- 
[ T ~ o T  ~ '  

1 
tion of the random walk it holds that lim inf Y.tr__-i 

1 rn = -oo. 

3. The Model of  the Bad Match 

By the bad match we mean the following game: 

I 2 3 4 
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The initial state is state 1. The players only have to make 
a decision at stages where the system is in state 1. Evi- 
dently if the system starts in state 1 at stage 1, then the 
players only need to make a decision at the odd stages. 
Those stages we call decision epochs. Notice, if player 
I chooses action 2 on any decision epoch, the system 
immediately moves to state 2, where it will remain for- 
ever without any nonzero payoff. Hence the game may 
be viewed as being terminated as soon as the system 
reaches state 2. It can easily be seen for this game that 
the average value equals zero for all states. 

4. A Solution to the Bad Match 

We start by defining a history dependent strategy for 
player I. First we define the function p : ( 0 ,  1 ,2  . . . .  } 

[0, 1] by p(m) = 1/(m + 1) 2. Let N be a nonnegative 
integer. We define the history dependent strategy lr N for 
player I by:  having observed the choices player II made 
at the first n decision epochs (hence the first n odd 
stages), say b i, b2, ..., bn E { 1, 2}, n ~> 0, calculate the 
excess k n of 2's over l ' s  amongb 1, b2 . . . .  , b n and choose 
on decision epoch n + 1 action 2 with probability 
p(k  n + N )  (and action 1 with probability 1 - p ( k  n + N)) .  
This strategy appears to be total reward 1/(N+ 1) - o p t i -  
mal for player I. We now state our main theorem, the 
proof of  which can be found in the appendix. 

T h e o r e m  

(i) The total reward value o f  the bad match is zero 
(for initial state 1). 

[ii) Player I1 can play total reward optimal by choosing 
action 1 with probability 1/2 and action 2 with prob- 
ability 1/2 at each decision epoch. 

(iii) For each nonnegative integer N strategy 7rN1 is total 
reward 1/(N + 1)-optimal for  player I. 

(iv) Player 1 has no total reward e-optimal history in- 
dependent strategy for  e > 0 sufficiently small. 

(v) Player I has no total reward optimal strategy. 

is narrowed by the fact that each total reward game can 
be associated with an average stochastic game, in such a 
way that the total rewards in the original game equal the 
average rewards in the associated game for each pair of  

strategies. 
Let for the original game I', S be the state space, A s 

and Bs the action spaces in state s E S, r(s, a, b) the 
immediate payoff  and p(s, a, b) the transition probabil- 
ity vector for s E S, a E As, b E B s. 

Next, let for n = 2, 3 . . . .  

H n := {(Sl, a l, b 1, s2, a2, b2 . . . . .  Sn- l ,  an - 1, bn --1 ); 

s k E S, a k E Ask, b k EBsk ,  for k = 1 ,2  . . . .  , n - 1} and let 

H i = {1}. 
So I-I n consists of  the finite set of  histories that could 

have occurred up to stage n in the original game. 
LetSn : = H n x S ,  n =  1 , 2 , . . .  
Now the associated game can be defined. The variables 

are denoted with quotation-marks. 
Define the game P'  by:  

o o  

S':=USn, 
n = l  

for s' = (h n, s) E S n let A'  s, := As and B' s, := Bs, 
payoffs: r'(s', a', b') := ~ - I  r(sk, ak, bk) + r(s, a, b), 
when s' = (hn, s), a' = a, b ' = b 

and h n = (si, a l ,  b 1 . . . . .  s n - l ,  a n - l ,  bn -1 ) ,  
transitions: p' ( t'ls', a', b ') := p(tls, a, b) 
if s' = (fin, s), a' = a, b' = b and t '  = (h n, s, a, b, t); 

else p'(t 'ls' ,  a', b') = O. 

In the game P'  histories are translated into states at each 
stage. It can be verified that the sets o f  strategies coincide 
for the original game and game I".  Notice that in I"  each 
state s' can be reached along exactly one history path. 
At each stage T, for each pair of  strategies and for every 
initial state (1, s) E (1} x S in F' it holds that 

z T 1  Eir'tl E L l  t -  1 r(st, at, bt)] = E[~.n= 1 r(Sn, an, bn) + 

:Cr=l , = Z,n=l E[r(Sn, an, bn)]. 

5. Conclusions 

The bad match underlines that there is an analogy be- 
tween total reward stochastic games and average stochas- 
tic games. 

From the above game it appears that non-Markovian 
strategies seem to play a similar role in total reward 
games as in average stochastic games. This relationship 

1 
Hence lim inf Ztr:lE[r't] 

T .__~, ~ "T 

1 
: ~-'n = 1 E[r(Sn, an, bn)],  m f-f zL,  ' 

showing the equivalency of  the average criterion for 
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game P' with the total reward criterion for the original 
game. The technique of Mertens and Neyman [4] can- 
not be applied straightforward to P'. This is due to the 
fact that, even under Assumption A, the immediate 
payoffs in F' are not uniformly bounded. Realisa- 
tions (si,al,bx,s2,a2,b2,. . .)  may occur for which 
Z,g=l r(sk, ak, be) becomes arbitrary large (or small). 
Whether the Mertens and Neyman technique can be 
adapted to our case is not yet known to us. 

Concerning the discounted criterion, it can be verified, 
that for game P' with regard to the discounted evalua- 
tion rule it holds, that for initial state s' = (s 1, a 1, b 1 . . . .  , 

Sn-l,an-1, bn-l,s): 

1 

+ v~(~l, ~0(s)). 

So, if the Mertens and Neyman technique could be 
applied, in the sense that for F' the average value equals 
the limit for ~ tending to 1 of (1 - 3 )  times the 3-dis- 
counted value, then the above equality shows that this 
limit would, for initial state (1, s), equal the limit for 3 
tending to 1 of the 3-discounted value for the original 
game. Hence this would imply that the total reward 
value of the original game equals the limit of the 3-dis- 
counted values of the original game for discount factor 
3 tending to 1. 

Appendix 

In this appendix we give a proof of the theorem in 
Sect. 4. 

Lemma 1. Let 7r~ be the stationary strategy for player H 
defined by choosing action 1 with probability 1/2 and 
choosing action 2 with probability 1/2 at each decision 
epoch. Then vOh , n~) = O for any strategy ff l of  player I. 

Proof. Whatever choices player I makes, at each stage the 
expected payoff is 0. Namely, in state 1 at each decision 
epoch the expected payoff is zero. At each other stage 
the system is in state 3 or state 4, with the same prob- 
ability, giving an expected payoff zero. When the system 
has moved to state 2 no nonzero payoffs occur any- 
more. [] 

The following corollary is immediate. 

Corollary 2. inf sup vQrl, 7r2) ~ 0. 
rr 2 n 1 

The next lemma states that, restricting to (semi-) Markov 
strategies, player I can only assure himself a total reward 
of at most - 1. 

Lemma 3. Using a history independent strategy, player I 
cannot guarantee himself more than -1. 

Proof. Let ZqM be a history independent strategy for 
player I. We consider two cases. 

In case 1, suppose that the probability that player I 
will ever choose action 2, is zero. Then player I chooses 
action 1 with probability 1 at each decision epoch. 
Strategy z~2, described by always choosing action 1, 
leads to V(nIM, if2) = - 1  (the average of the alternating 
partial sums - 2  and 0). 

In case 2, suppose that the probability that player I 
will ever choose action 2 is e > 0. Then for each 6 E (0, e) 
there is a N 8 E IN such that the probability that player I 
will choose action 2 before decision epoch N 5 is larger 
than e -  8. For each 8 E (0, e) define strategy 7r~ for 
player II by: at decision epochs 1,2 . . . .  ,N~ choose ac- 
tion 2 and choose action 1 always thereafter. One can 
verify 

v(~lM, ~ )  < (e - 6 ) -  ( - 1 )  + 6 �9 (1) + ( l  - e ) -  ( - 1 )  

= - 1  +26.  

Since player II can choose 8 as small as he wants, the 
proof is completed. [] 

We will show that the strategy nN (defined in Sect. 4) 
1 

is a total reward - optimal strategy for player I. So 
N + I  1 

we have to show v(lr N, n 2 ) > / N  +---~ for all strategies zr 2 

for player II. To do this we fix an arbitrary strategy 7r 2 
for player II. The random variables defined below are 
supposed to correspond to 7r~ and this n 2. Let the 
random variable X denote the number of decision 
epochs before player I chooses action 2. For each m E IN 
define the event K(m) by K(m):= { X ) m ,  or X < m  
and bx+ l = 1}. So K(m) is the event that at decision 
epoch m: either player I has not yet chosen his second 
row, or he did choose his second row and was lucky in 
receiving 1 unit. In other words K(m) is the event that 
the total reward up to decision epoch m is non-negative. 

Let PN(K(m)) be the probability that K(m) occurs. 
In the following lemma we relate the probability of 
K(m + 1) under lr N with the probability of K(m) under 
~ N - I  and ffl dV+l respectively. 

Note that PN(K(m + 1)) =PN(X = 0 and b I = 1) 
+PN(X>~m + 1, or 1 <~X<m + I andbx+ x = l ib 1 = 1) 
+PN(X>~m + 1, or 1 <.X<m + 1 andbx+ ~ = lib 1 = 2). 
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Lemma 4 

(i) PN(X>~m+I ,  or l ~ < X < m + l  
Ibl = i)  = (l  -p(N))PN_I(K(m)) .  

(ii) PN(X>~m +1, or 1 <<.X<m + 1 
Ib I = 2) = (1 -p(N))PN+I(K(m)).  

and bx+ 1 = 1 

and bx+ 1 = 1 

Proof. We only proof (/) as the proof of  (ii) is similar. 
Observe that in the left hand side o f  (i) the event X = 0 
is excluded. Given b 1 = 1, making a choice at decision 
epoch n + 1, with some history (1, b 2 . . . .  , bn) according 
to 1tin yields the same (randomized) choice as making a 
decision on decision epoch n with history (b 2, b 3 . . . . .  bn) 
according to 7rl N - I .  At every decision epoch, when the 
system is in state 1, the game can be considered as start- 
ing again. At decision epoch 1, player I, playing 7tin 
chooses action 1 with probability 1 - p ( N ) ,  which then 
equals the survival chance at this epoch. Hence, given 
b 1 = 1, using gl  N gives the same stochastic process as 
initially choosing action 1 with probability 1 - p ( N ) a n d  
using 1tin -1 thereafter. So {i) holds. [] 

Consequently, PN(Km + 1) = PN( X = 0, b 1 = 1) + 
(1 -p(N))PN_I(K(m))  + (1 -p(N))PN+I(K(m)).  The 
following lemma states that for all m and N the proba- 
bility that the total reward up to decision epoch rn is 
nonnegative, is at least N/2(N + 1). 

Lemma5 .  PN(K(m)) >-N/2(N + 1 ) f o r  all m E N  and 
all nonnegative N. 

Proof. The proof  proceeds by induction. 

(a) Take m = 1. 
I f b  1 = 1, thenPN(X>- lib I = 1)= 1 - p ( N ) a n d  

P N ( X <  1 and b x + l  = lib1 = 1) =p(N) .  

SoPN(K(1)IbI = 1) = 1 >>-N/2(N+ 1). 
If  b I =2 ,  then PN(K(1)Ibl =2)=PN(X>~ l ib I =2 )  

= 1 - p ( N )  >>-N/2(N+ 1). Let Pl  be the probability with 
which player II will choose his action 1 at decision 
epoch 1, then 

PN(K(1)) =pxPN(K(1)lbl = 1) 

+ (1 -p l )PN(K(1)Ibl  = 2)>~pl (N/2(N+ 1)) 

+ (1 - p i ) ( N / 2 ( N +  1 ) ) = N / 2 ( N +  1). 

(b) Now suppose PN(K(m))>~N[2(N+ 1) for some 
m E N and all nonnegative N. Then in view of  Lemma 4: 
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PN(K(m + 1)lb I = 1) =PN(X = 0 and bl  = 11b I = 1) 

+PN(X>~m + 1 ,or  1 <<,X<m + 1 a n d b x +  1 = lib1 = 1) 

= p(N) + (1 - p(N))PN_ t (K(m)) 

>i p(N) + (1 - p ( N ) ) ( N -  1)/2N = N/e(N + 1). 

Also in view of  I_emma 4: 

PN(K(m + l)[b I = 2) =PN(X = 0 and b 1 = lib 1 = 2) 

+PN(X>~m + 1, or 1 <<,X<m + 1 a n d b x +  1= l ib 1= 2) 

= 0 + (1 - p(N))P N + 1 (K(m)) 

>/(1 - p ( N ) ) ( N +  1)/2(N+ 2) =N/2(N+ 1). 

HencePN(K(m + 1)) =plPN(K(m + 1)lb 1 = 1)+ 
(1 -p l )PN(K(m + 1)131 = 2) >~N/2(N+ 1), which shows 
that the lemma is also true for m + 1. [] 

The next lemma demonstrates that rriN guarantees a 
total reward of  at least - 1 / ( N  + 1) for each n 2 for which 
player I, using strategy 7tiN, will choose his second row 
with probability 1. 

Lemma6 .  I f  lim PN(X>~m)=O, then v(TrlN,'/r2) 
>1-1/(N+ 1). 

Proof. Since by definition 

PN(K(m)) = PN(X >>- m) + PN(X < m and b x  + 1 = 1), 

we derive from Lemma 5 in view of  the assumption of  

Lemma 6: 

lim PN(K(m)) = PN(bx + I = 1) >~ N/2(N + 1). 
m ...r o o  

Player I will surely choose action 2 some time and the 
total reward is solely determined whether player II plays 
his first or his second action at that stochastic moment 
X + 1 (payoffs until decision epoch X + 1 sum up to 
zero). Then 

v(zriN, zr2) =eN(bx+l = 1)- 1 +PN(bx+I = 2)" (--1) 

= 2P~v(bx + ~ = 1 ) -  1 >.N/(N+ 1 ) -  1 

= - I / ( N  + 1). [] 

Notice that, if for a certain n, k n = -N,  then player I 
will choose action 2 with probability 1 at decision epoch 
n + 1, which moves the system to state 2 where we can 
consider the game to be finished. Therefore k n >1-N as 
long as the game has survived. 
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Lemma 7. For any realisatz'on o f  the stochastic process 
associated to nN and lr 2, for which player I never 
chooses action 2, it holds that the corresponding total 
reward is at least zero. 

Proof. Since in this case k n > - N  for every n E N,  we 
have ~T= t Y:n = I rn > - 2 N  for every T E N from which 

1 
follows that lim inf ~ ~;f= 1 ~ t n  = 1 rn ) O. [] 

T.--~  oo 1 

Let X(m):=PN(X<m and bx+ 1 = 1) and /~(m):= 
P N ( X < m  and bx+ 1 = 2). Since X(m) and g(m), 
m = 1, 2 . . . . .  are bounded monotone increasing sequences 
we can define X = lim X(m) and/.t = lim #(m). The 

m --~ eo m .--> oo 

1 
next lemma states that 7r~ is N +'----i" - g o o d  against zr 2, 

when the probability that player I never chooses action 2 
is positive. 

Lemma8 .  I f  lim PN(X>>-rn)>O, then v(~V, Tr2) 
N ---~ ~ 

~ > - I / ( N  + 1). 

Proof. The probability that player I will ever choose 
action 2 equals X + # and 1 - X -  # is the probability 
that the system never reaches state 2. Then by Lemma 7 
and the definitions of  X and/a: 

v(TrNl,lr2)t> X- 1 +/a " ( -1 )  + ( 1 - X - p ) ' O  = X - # .  

If  we prove X- /~/>  - 1 / ( N  + 1) the proof  is done. 
Now for m E N define strategy lr~ n for player II by:  

use 7r 2 up to decision epoch m, choose action 1 with 
probability 1/2 and action 2 with probability 1/2 at 
each decision epoch thereafter. 
Observe that 7r~ n will give rise to sequences (bl,  b 2 . . . .  ) 
such that with probability 1 k n = - N  for some n. Then 
the condition of  Lemma 6 applies (where PN now refers 
to 7rl N and 7r~n). Hence v(lrN, zr~)>~-l / (N+ 1) fo r  all 
m E N. On the other hand: stopping before m con- 
tributes X(m) - 1 + #(m) �9 ( -1 )  to the total reward and 
stopping on m or thereafter contributes ( 1 - X ( m )  
- /a(m))  �9 0 (cf. Lemma 1). Summing up leads to X(m) 
- i ~ ( m ) > ~ - l / ( N + l )  for each m E N .  So X- / a  
>1 - 1/(N + 1), which finishes the pro of. [] 

An immediate consequence of  the Lemma's 6 and 8 is 
the following: 

Corollary 9. sup inf v(Trt, 7r2)/> 0. 
rr 1 7r 2 

Now we have enough tools to prove our main theorem, 
stated in Sect. 4. 

Proof. Part (i) follows from the Corollaries 2 and 9. 

Part (ii) follows from Lemma 1. 

Part (iii) follows from the Lemma's 6 and 8. 

Part (iv) follows from Lemma 3. 

We now prove (v). Let 7r 1 be any strategy for player I. 

Case 1. Suppose there is some strategy 7r 2 for player II 
such that for some decision epoch n a history h n_l  up 
to stage n occurs with positive probability, say qn, such 
that for this history 7r 1 prescribes player I to choose his 
second action with positive probability. Let, for this 7r2, 
m be the first decision epoch for which player I's second 
action can occur with positive probability, say e > 0. 
Now, define rr~ n as: up to decision epoch m, rr~ n equals 
7r 2, at decision epoch m choose action 2 and always after 
decision epoch m choose action 1 with probability 1/2. 
It can be verified that v(~rl, 7r~ n)  = -eqrn < O. 

Case 2. If  such a strategy 7r 2 does not exist, then ap- 
parently player I always chooses action 1. I f  ~72 is the 
strategy for player II defined by always choosing action 
1, then v(rrl, ~2) = - 1 .  [] 
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