International Game Theory Review, Vol. 1, No. 1 (1999) 9-31
© World Scientific Publishing Company
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We examine the use of stationary and Markov strategies in zero-sum stochastic games
with finite state and action spaces. It is natural to evaluate a strategy for the maximis-
ing player, player 1, by the highest reward guaranteed to him against any strategy of
the opponent. The highest rewards guaranteed by stationary strategies or by Markov
strategies are called the stationary utility or the Markov utility, respectively. Since all
stationary strategies are Markov strategies, the Markov utility is always larger or equal
to the stationary utility. However, in all presently known subclasses of stochastic games,
these utilities turn out to be equal. In this paper, we provide a colourful example in
which the Markov utility is strictly larger than the stationary utility and we present
several conditions under which the utilities are equal. We also show that each stochastic
game has at least one initial state for which the two utilities are equal. Several examples
clarify these issues.

1. Introduction

A zero-sum stochastic game I' can be described by a state space S := {1,...,2}
and a corresponding collection {Mj,..., M.} of matrices, where matrix M; has
size m} x m? for iy € I, := {1,...,ml} and j; € J, := {1,...,m2}, entry (s, js)
of M, consists of a payoff r(s,is,js) € R and a probability vector p(s,%s,js) =
(p(t|s,is,js))tes- The elements of S are called states and for each state s € S
the elements of I, and J, are called (pure) actions of player 1 and player 2 in
state s. The game is to be played at stages in N = {1,2,3,...} in the following
way. The play starts at stage 1 in an initial state, say in state s! € 8, where,
simultaneously and independently, both players are to choose an action: player 1
chooses an i, € I i, while player 2 chooses a j;l € Jga. These choices induce an
immediate payoff r(s!, i;l, jsll) from player 2 to player 1. Next, the play moves to
a new state according to the probability vector p(s',il;,jL), say to state s>. At
stage 2, new actions i2, € I,z and j% € J,2 are to be chosen by the players in state
s2. Then, player 1 receives payoff r(s?,42,,j%) from player 2 and the play moves
to some state s° according to the probability vector p(s?, iiz, j&??) and so on.

The sequence ™ = (s',il,jL;...;8™, i, jT, s"T1) is called the history up to
stage n. The players are assumed to have complete information and perfect recall.

A mixed action for a player in state s is a probability distribution on the set of
his actions in state s. Mixed actions in state s will be denoted by z, for player 1 and
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by y, for player 2 and the sets of mixed actions in state s by X, and Y respectively.
A strategy is a decision rule that prescribes a mixed action for any past history
of the play. Such general strategies, so-called behaviour strategies, will be denoted
by m for player 1 and by o for player 2. We use the notations II and ¥ for the
respective behaviour strategy spaces of the players. A strategy is called pure if it
specifies one pure action for each possible history. We denote the respective pure
strategy spaces by II” and ¥P. If for all past histories, the mixed actions prescribed
by a strategy depend only on the current stage and state, then the strategy is called
Markov, while if they only depend on the current state, then the strategy is called
stationary. Thus, the stationary strategy spaces are X := X5 X, for player 1 and
Y := x,es5Y; for player 2; while the Markov strategy spaces are F' := X ey X for
player 1 and G := x,enY for player 2. We will use the respective notations x and
y for stationary strategies and f and g for Markov strategies for players 1 and 2.

We will distinguish absorbing and non-absorbing states in the state space. A
state is called absorbing, if the probability of leaving the state is zero for all available
pairs of actions, otherwise the state is called non-absorbing.

Let H; denote the set of infinite histories with initial state s. If h is an infinite
history then h™ will denote the head of history, h up to stage n, while A° is sometimes
used for the initial state. Likewise, if U, is a non-empty subset of Hy, then U is
the set of histories A™ where h € U;. As a special case, HI' is the set of all histories
up to stage n with initial state s. For a given pair of strategies (m, o) and an initial
state s, we use the notation H,(w,o) for the set of histories h € H, which are
consistent with (7,0), i.e., h™ has a positive probability with respect to (m, o) for
any n € N.

For an infinite history h = (s™,40, ji= Jnen € Hs, we will evaluate the sequence
of payoffs by the limiting average reward, defined by

N
N | non an
v(h) := liminf N Z (8", ign, Jgn) -

N-oxo
n=1

A pair of strategies (7, o) together with an initial state s € S, by Kolmogorov’s
existence theorem [Kolmogorov (1933)], determines a probability measure Py, on
the sigma-field of subsets of H,. For (m,0) and initial state s, the sequences of
payoffs are evaluated by the expected limiting average reward

7(87 Le U) = Lsnro 7(0) ?

where 6 denotes the random variable for the infinite history. We will also use the
vector notation

’Y(ﬂ-’ J) = (’Y(Sa T U))SES .
Mertens and Neyman (1981) showed that

sup inf (s, m,0) = inf sup v(s, 7, 0) =: v, VseS. (1.1)
rcll 0€EX 0EX reTl
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Here v := (v;)scs is called the limiting average value. A strategy = of player 1 is
called optimal for initial state s € S if

v(s,m,0) > vy Voek,
and e-optimal for initial state s € S, ¢ > 0, if
Y(s,m,0) >vs—e Vo€X.

If a strategy of player 1 is optimal or e-optimal for all initial states in .S, then the
strategy is respectively called optimal or e-optimal. Optimality for strategies of
player 2 is analogously defined. Although for all € > 0, by (1.1), there exist e-
optimal strategies for both players, the famous example of Gillette (1957), the Big
Match, examined by Blackwell and Ferguson (1968), demonstrated that in general
the players need not have optimal strategies and that in the achieving of e-optimality
behaviour strategies are indispensable.

Against a fixed strategy of player 2, for all € > 0, there always exists pure e-best
replies for player 1, i.e.,

YVoeX¥ Ve>0 dnfecll?: ~(s,n%,0)>(s,m,0)—¢ VseS, Vmell.
(1.2)
Obviously, a similar statement holds for the best replies of player 2 as well.
It is in the spirit of the game to evaluate a strategy = of player 1 by the highest
reward ¢s(n) that m guarantees when starting in state s € S, so let

¢s(m) = inf v(s,m0), () = (ds(m))ses:-
For an initial state s € S, we will call the highest reward that can be guaranteed by
stationary strategies, the stationary utility, denoted by a; and the highest reward
that can be guaranteed by Markov strategies, the Markov utility, denoted by 3,.
Formally,

Qg 1= sup ¢s($)7 /Bs ‘= sup ¢s(f)a = (as)5637 6 = (ﬂs)sGS .
z€X feF

The fact that all stationary strategies are Markov strategies and the definition of
the value yield
a<g<uw. (1.3)

Although the class of Markov strategies is much richer than the class of sta-
tionary strategies, so far no substantial difference has been found in the use of
stationary and Markov strategies in zero-sum stochastic games with finite state and
action spaces. Most classes of stochastic games, examined so far, have the property
that both players have stationary c-optimal strategies for all € > 0. Thus, in view of
(1.3), in those classes Markov strategies do not yield higher rewards than stationary
strategies. These classes are the following ones: irreducible or unichain stochastic
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games [Rogers (1969) and Sobel (1971)], perfect information games [Liggett and
Lippman (1969)], switching control games [Filar (1981)], ARAT games [Raghavan
et al. (1985)], (SER-)SIT games [Parthasarathy et al. (1984) and Thuijsman (1992)]
and recursive games [Everett (1957)]. The only class in which stationary e-optimal
strategies are not available is the class of repeated games with absorbing states. In
Sec. 3, we show that the equality o = 3 holds for this class as well. Thus, the goal
of this paper is to explore if Markov strategies can be more efficient than stationary
strategies, as well as to find sufficient conditions under which these two classes of
strategies are equally good.

The organisation of the paper is as follows. In the next section, a colourful
example illustrates that 3 can be strictly larger than « for some initial states.
Moreover, in this game there are e-optimal strategies for player 1 in terms of Markov
strategies, for all € > 0, even though player 1 has no stationary ¢-optimal strategies
at all. However, in Sec. 3, we give a short proof that in each zero-sum stochastic
game, there is at least one initial state s for which a; = §,. Finally, we present
several sufficient conditions for & = 3. After recalling some of the most important
classes of games in which oo = 3 is already known, we will show that a = 8 (i)
for repeated games with absorbing states (stochastic games where there is only one
non-absorbing state), (ii) for games where a or 3 is constant, (iii) for games where
player 1 has an optimal or a so-called best-Markov strategy. Several examples will
be given to clarify these issues.

2. An Example Where a < 3 for Some Initial States

This section is devoted to an example demonstrating that 3 may be strictly larger
than « for some initial states. Consider the following game I:

Ly R, Lo Ry
1 0 1 0
T1 T2
1 1 1 2
1 1 0 1
Bl BZ
2 3 4 3

3 4

Here player 1 chooses rows and player 2 chooses columns. In each entry, the cor-
responding payoff is placed in the top-left corner, while the transition is placed in
the bottom-right corner. In this game, each transition is represented by the state
to which transition should occur with probability 1. The interesting initial states
are obviously states 1 and 2, because states 3 and 4 are absorbing.
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The main result of this section is the next theorem, which will follow from
Lemmas 2.1 and 2.9 below.

Theorem 2.1. In the game [, we have 0 = oy < B = 1 = v, for initial states
t=1,2.

This theorem states that, for initial states 1 and 2 in the game I, player 1 can get
at most 0 by using stationary strategies, while he can get as close to 1 as he likes
by using Markov strategies.

Since there are two actions for each player in both non-trivial states, we may
represent each mixed action in state 1 and in state 2 by the probability assigned to
the first action, which makes the stationary and Markov strategy spaces

X=Y=[0,1] x [0,1], F =G = xpen ([0,1] x [0,1]).

First, we intuitively discuss the main steps of the proof. We will start with an easy
proof that a; = 0 for initial states ¢ = 1,2 (Lemma 2.1). Since the largest payoff
in the game is 1, in view of (1.3), it remains to show that §; = 1 for initial states
t = 1,2. However, for this step we need to analyse the game in detail. We define a
Markov strategy fX for player 1 where K € N: let

uK(n) = % /nj_ - forallneN, fX:= ("), u"(n)en € F.

Observe that the Markov strategy f¥ is symmetric in the sense that the prescribed
mixed actions in state 1 and state 2 are the same for any stage. Note that the
sequence X (n) converges to 1 as n — 00, so fX assigns less and less probability
to actions By, Bs.

We will show that, for all € > 0, for initial states 1 and 2, player 1 can guarantee
a reward of at least 1 — ¢ by playing the Markov strategy f¥ with a large K € N.
Now the question is how player 2 can reply to the strategy f%. Intuitively, player 2
has two hopes to decrease player 1’s reward. The first one is achieving absorption
in state 4 with payoff 0, but apparently player 2 can only achieve absorption in
state 4 with probability at most ¢ (Lemma 2.6). Player 2’s best candidate would
be playing actions L; and Ly whenever the play is in state 1 or in state 2. But
in fact, whenever the play is in state 2 a transition occurs to state 1 with a large
probability and from state 1 it takes a long time (for large stages an even longer
time), before the play returns to state 2 again. Thus, using that the strategy K
assigns less and less probability to Bz, the probability of absorption in state 4 turns
out to be at most €. On the other hand, using that the payofls in entries (T, R1)
and (T%, R2) equal 0, player 2 could try to play actions R; and Ry “often enough”
and hope that the play will not absorb. But in that case, it will appear that the
play will eventually absorb with probability 1 (Lemma 2.7) and the zero payoffs in
entries (71, R1) and (T%, R2) will have no influence on the reward then.
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First, we show that by playing stationary strategies, player 1 can get at most 0

for initial states 1 and 2.

Lemma 2.1. o; =0 for initial statest = 1,2 in the game T

Proof. For each strategy « = (21, 2), we define a strategy y* = (y¥,y%) for player

2. Let

1 ifz; <1 1 ifxz<l1
i i
0 a1 BT

1:

Notice that, for ¢t = 1,2, we have y(t,z,34*) = 0 for all z € X, so
oy = sup ¢¢(z) = sup inf (¢, z,0) < sup v(t,z,y") =0
z€X zeX 0€T zeX

Since the smallest payoff in the game is 0, the proof is complete.

0 ifazx=1.

vVt =1,2.

O

For the analysis of f¥ defined above, we need two important properties about
the speed of convergence when u¥(n) tends to 1 as n goes to infinity. The first
property says that the convergence is fast in the sense that, intuitively, for any
e > 0, if K € N is sufficiently large then the probability of ever playing action
B; or action B; at stages 2°71, n € N, is at most ¢/2. However, on the other
hand, the second property tells us that in a “dense” set of stages, one of bottom
actions By and By will eventually be chosen, so the convergence of u* (n) is not too

fast.

Lemma 2.2. The sequences (u®(n))nen, where K € N, have the following

properties:

(1) For any e > 0, if K € N is sufficiently large then
o €
II »*e>1-=.
2
n=1
(2) If A C N satisfies
1
w(A) :=limsup = -#[AN{1,...,N}] >0
N—-oo N
then for any K € N

H uK(n) =0.

ne€A
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Proof.
Part 1. Let € > 0. For any sequence (w"),en in [0, 1], we have
H w' =1-[(1—w!)+ w1 -w?) + w1 -w)+--],
neN
thus
oo
H uK(2n—1) _
n=1
n )
Notice that
1 11 121 11
di=1-|+=-+-== S ) =
<2+23+235 58 " ) 0

Since d is positive, there exists a K € N such that for all K > K
b €
II %@ = Vd= 1-3,
n=1

so the proof of the first part is complete.

Part 2. By the definition of w(A), there exists an increasing sequence (ng)ren in A

such that . )
— #[AN{L,...,nt}] > zw(A) Vk € N.
Nk 2

As w(A) > 0, by taking a subsequence, we may assume without loss of generality

that .
g MNe+1 * (U(A) > Ng vk € N

Then (2.1) and (2.2) imply

#AN e +1,...,np ] = #AN{L, .. e }] — 1

1
5 Nk+1 w(A) — N

v

v

1
Z Ng+1 - OJ(A)

(2.1)

(2.2)
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Since the left-hand-side is a natural number, we obtain
1
#AN e+ 1 men}] 2 | k- w(4)|

where [r] denotes min{n € Njr < n}. Using that u®(n) is increasing in n and
applying (2.2) yield

Ne+1
H uf(n) < H u®(n)
n€AN{ng+1,...,nkr1} nzn,ﬁ_l—[% nk+1~w(A)_]+l

kMgt — [ e - w(A)] +1
g1+ 1

Kl Ner1 — %nk.H -w(d) +1
Nk+1

1 1
= ¥/1--w(A)+
\/ 39+
< 5= Ly
< 3 .
Therefore,
H uK(n) = H u¥(n) - H H u¥(n)
neA neAn{l,...,n1} keN | ne(An{ng+1,...,nk41})
< H K\/l—lw(A)=0
— 8 )
keN
so the proof is complete. O

The next lemma says that for initial states 1 and 2, if player 2 chooses actions
L, and Ly whenever the play is in state 1 or in state 2, then the strategy fX with
a large K € N, guarantees that the frequency of visits to state 2 rapidly decreases
during the play. At first sight, the reason seems to be absorption in state 4, but as
it will turn out in Lemma 2.6, absorption in state 4 does not play an important role
here. The reason is that the lengths of periods of stay in state 1 increase during
the play, which is due to the gradually decreasing probabilities for playing B in
state 1.

Lemma 2.3. Lete>0,t € {1,2} and let y = (1,1) € Y. For a history h € H;,
let m(h) be the number of stages at which the play is in state 2 during h. Let
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M(h) := {n € N|n < m(h)}. Let (a™(h))nem(n) denote the sequence of stages when
state 2 is visited. Then, for large K € N,

Pypry(a™(@) > 271 Vne M) >1- -g-

where 0 denotes the random variable for the infinite history.

Proof. We only show the statement for initial state 2, for initial state 1 a sim-
ilar proof can be given. So suppose that the initial state is state 2. Then, no-
tice that al(h) = 1, m(h) > 1 and M(h) # 0 for all h € Hy (similarly, for
initial state 1, if M(h) # @ then a'(h) > 2, which would only slightly mod-
ify the rest of the proof). For all h € Hy, whenever m(h) < oo, we define
inductively

a™(h) := max{2"71, 8a""1(h)} Vn=m(h)+1,m(h)+2,... (2.3)
In view of (2.3), we have to show that for large K € N,

Posry(a™(@) =27 VneN)>1- (2.4)

IRy}

Let n° := 0 and for n € N let

"(h) 7" Y(h)+1 if a"(h) > 8a™(h)
7 " 19" Yh)—1 otherwise.

Observe that if the play is in state 2 at stage w and w € M(h) for the history h,
then the probability with respect to (2, f¥,y) that the play does not return to state
2 before stage 8w, is at least the probability that the play moves to state 1 and it
stays there till stage 8w — 1; so at least

8w—2 8w—2
uf (w) - H uf(n) = H u®(n).
n=w+1 n=w

Hence, for any w, k € N, if Pasr,(a*(0) = w, k € M()) > 0, then
8w—2

Pysry(aFt1(9) > 8a*(9)|a* =w, ke M(8)) > [ v*(n). (2.5)

n=w

On the other hand, if Pyx,(a®(8) = w, k ¢ M(6)) > 0, then by (2.3), we have

Posry(abt(8) > 8a*(0)| o =w, k ¢ M(9)) = 1. (2.6)
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Therefore, for all w € N and for all K € N satisfying Py, (a¥(6) = w) > 0, by
(2.5) and (2.6) we have

8w—2
Pasry(a*tH(60) > 8a*(8)|a*(0) = w) = [] v*(n)
= K w
Bw-2)+1
8w—1
1
> X/=. 2.
> i (2.7
We now show that for large K € N
Poprey*(0) >1 WneN)>1- -;- (2.8)

For simplicity, let £¥ := ’{/g . On the set of integers, for any K € N, we define a

birth and death process 7%, n = 0,1,2,..., as follows. Let 7% := 0 and for n € N
let

=Tt

7'+ 1  with probability £
Mk =

A% 1 =1  with probability 1 — ¢X .

Since £X converges to 1 as K tends to infinity, for the birth and death process M,
n=0,1,2,..., we clearly have that for large K ¢ N

Pk >1 YneNy>1-

o m

Hence, by the definitions of ™ and 7% for n = 0,1,2,... and by (2.7), we have for
large K € N that

Pogry(n™(0) 21 VneN) > P(iix >1VneN) > 1-

’

N ™

which completes the proof of (2.8).

Let v° := 0 and let ™(h) be the number of jumps with +1 in °(h),n!(h),...,
n™{h). Since for all n € N,

7" (h) = (+1) - v™(h) + (=1) - (n = v"(h)) = 2v"™(h) — 7,

(2.8) implies

. (2.9)

N,



Markov Strategies are Better Than Stationary Strategies 19

Recall that a'(h) = 1 for all h € H> and notice that if v (h) > 24} for some n € N,
h € Hs, then

hence (2.9) implies (2.4), which completes the proof. O

The next lemma, which is not specific for this game I' at all, provides useful
lower- and upper-bounds for the probability that the infinite history belongs to a
set V; of infinite histories, on the condition that it belongs to some other set U;.
For the rather technical proof of this lemma, we refer to Flesch et al. (1997b).

Lemma 2.4. Lett € S, # € Il and 0 € X. Let V;,U; C Hy(m, o) such that
0 £V, C U;. Assume that

Pino(8 € Up) >0,

where 0 denotes the random variable for the infinite history. Then

inf Ztmr,Vt(Ut (h’) < tha(a S ‘/t| 8c Ut) < sup Ztﬂ'U,thUt (h)a
heVy heVvy

where

Zing v, (h) =[] Pino(6¥! € V168 =R*, 0€U)) - VheV;.
k=0

The next lemma, which will follow from the previous result, intuitively states
that the set of infinite histories in which absorption should occur with probability
1, but in which no absorption does occur, has probability zero.

Lemma 2.5. Lette {1,2}, K€ N, 0 € ¥P. Let

H; := {h € Hi(f¥,0)| no absorption occurs in h}

H,:={heH, H uf(n) =03,
neC(h)

where C(h) is the set of stages n, when player 2 plays actions Ry, Ra, or L2 after
history h™~1, according to the pure strategy o. Let 8 denote the random variable for
the infinite history. Then,

Ptha(e S .FIt) =0.
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Proof. Let Z;¢x, g, n,(sx ) be defined as in Lemma 2.4. By the definition of Hj,
we have for all h € H,

thKnylt|Ht(fK;U')(h = H Pth (0k+1 (S Hf+1|9k = hk)
k=0
H Prxa (05! € HFV| 6F = RF)
H uf(m)
€C(h
hence, Lemma 2.4 yields

Pisro(0 € Hy) = Pypro (0 € Hy 0 € H(f%,0)) < sup Zipicy 11, (5% 0y (R) <
h€H,

which completes the proof. il

It turns out that the strategy f%, with a large K € N, keeps the probability of
absorption in state 4 small. In fact, the absorption probability in state 4 is maximal
when player 2 always chooses actions L; and Lo whenever the play is in state 1 or
in state 2, but even then, in view of Lemma 2.3, the play does not visit state 2
“frequently enough”, so using that f¥ assigns less and less probability to action
Bs, the probability of absorption in state 4 turns out to be small indeed.

Lemma 2.6. Let ¢ > 0. If K € N is sufficiently large, then for initial states
t = 1,2 in the game I', the probability of absorption in state 4 is at most € with
respect to (t, %, o) for any o € .

Proof. It is easy to see that the stationary strategy y = (1,1) maximises the
probability of absorption in state 4 against f¥ with any K € N. Therefore, it is
sufficient to show the statement for y.

We only show the statement for initial state 2. Then for initial state 1, the
statement becomes immediate, since from that stage on when the play moves to
state 2, the strategy fX assigns even less probabilities to actions By and By than
when starting from stage 1. So, assume the initial state to be state 2.

Let

H, : = {h € Ho(f¥,y)| no absorption occurs in h}
Hy:={he Hy(f¥,y) a™(h) > 2" Vne M(h)},

where a™(h) and M(h) are defined as in Lemma 2.3. Observe that for large K € N,
by Lemma 2.3, we have

Pagrey(0 € Hy) > 1 (2.10)

€
27
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Now, for b € HyNHy, let Zytxcy, faniis i1, (R) De defined as in Lemma 2.4. By, using
Lemma 2.2, if K € N is sufficiently large, then for any h € HyN Hy

o0
Zysrey franiy ity = [ Pasrey (05! € HET1 0 HY 68 = ¥, 0 € Hp)
k=0

oo
=[] Pesry (6" € A 6% = 1F, 0 € Hy)
k=0

= IT «*@"®)

neM(h)

> H uK (2n-—1)

neM(h)

H uK(Qn—l)
n=1

€
>1—-.
- 2

Hence, by applying (2.10) and Lemma 2.4 for large K € N, we get

%

'ngxy(e (= fIg) > 'PQny(@ € f{z ﬂffg)
= ngxy(e € ﬂg N ﬁzl XS IA{Q) . ’szxy(G S I;[z)

> ngxy(g S .E[Q ﬁﬁzle S f.{z) . (1 - g—)

> 'ngxy(g < f{Q ﬂﬁ2|0 S ﬁg) - %

> inf Zyex moeg g (B) — =

T hefn, TR
e €

>1-2_¢

- 2 2

s 1 —_ g,

which means that if K € N is large, then with respect to (2, f%,y), the probability
of absorption in state 4 is at most €. O

Now, we show that when player 1 uses f¥ with any K € N for initial states 1
or 2 and if player 2 chooses actions Ry and Ry “too frequently”, absorption occurs
with probability 1.

Lemma 2.7. Lett € {1,2}, K€N, o€ XP. Let

H, = {h e Hy(f%,0)| no absorption occurs in h}.
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For ACN, let

w(A) := limsup S -#[ANn{1,...,N}].
N-ooo N

For a history h € Hy, let A(h) denote the set of stages n, when player 2 chooses
actions Ry or Ry after history h™~1, according to the pure strategy o. If

Ptha.(e c f{t) >0,

then
Pisxo(w(AB) =018 € Hy) =1,

where § denotes the random variable for the infinite history.

Proof. Suppose that w(A(h)) > 0 for some history h € H;. Then clearly, no
absorption occurs in h, thus A € H;. By Lemma 2.2, we have

H uf(n) =0,

ncA(h)

therefore
{hGHt(fK,U)|w(A(h))>0}CI:It ={hecH H uK(n)zo ,
neA(h)UB(R)

where B(h) is the set of stages n when player 2 plays action Ls after history A"~ 1,
according to the pure strategy o. Now, Lemma 2.5 yields

Pirxq(w(A(8)) > 0) < Pyyx,(0 € H) =0,
which implies the statement. g
The next result tells us that when player 1 uses fX with any K € N for ini-

tial states 1 and 2 and given that no absorption occurs (and this has a positive
probability), the reward equals 1 almost surely.

Lemma 2.8. Lett e {1,2}, K€ N ando € XP. Let
H, := {h € H(f¥,0)| no absorption occurs in h}.

If
Pipxo(0 € Hy) >0,

then 3
'PthU(’Y(e) = ].| g c Ht) =1,

where § denotes the random variable for the infinite history.
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Proof. Let w(A) for A C N and A(h) be defined as in Lemma 2.7. Let Rr(h)
denote the payoff at stage k according to the history h. Then for any h € Hy,

N
v(h) = lim inf &_:_1&51("}2

n—oo N2n

#1{ke{1,..., N} Ri(h) =1}

— b i Yo #EE{L. . N} Ri(h) =0}
n—oo N>n N
= lim inf N—#[A(h)N{L,...,N}]
n—oo N>n N
“ 1+ lim g AW V)]
n—oo N>n N

[A(h) N {1,...,N}]

=1— lim sup #

n—oQ NZ’IL N
=1-w(A(h)),
hence, Lemma, 2.7 implies the result. O

Now, we are ready to prove that 8; = 1 for initial states t = 1,2 and also that
the Markov strategy f¥ is e-optimal for large K € N. More specifically, K can be
any number that satisfies Lemma 2.6.

Lemma 2.9. For allt = 1,2 in the game T, we have B; = v+ = 1 and also for any
e >0 if K €N is sufficiently large, then ¢:(f¥)>1—e.

Proof. Let t € {1,2} and let € > 0. We only need to show that ¢;(f¥) >1—¢ for
large K € N, because then 5; = v; = 1 follows from (1.3) and from the fact that the
largest payoff in the game is 1. Let # denote the random variable for the infinite
history. By Lemma 2.8, we have for any K € N and for any o € P that

7(t7 fK’ 0) = Etha' 7(9)
0 if absorption occurs in state 4 in 6
= EthU

1 otherwise.

This intuitively means that player 2 can only try to maximise the probability of
absorption in state 4. Take K € N as in Lemma 2.6. Then, the probability of
absorption in state 4 is at most & with respect to (t, fX, o), for any o € TP, hence

Yt fE o) >1—e VoexP.
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Since, in view of (1.2), it suffices to consider pure replies from player 2, we obtain

¢t(fK)21-Ev

which completes the proof. |

3. Sufficient Conditions for a = 3

The example of the previous section demonstrated that 8 may be strictly larger
than o« for some initial states. However, this cannot hold for all initial states, as
stated in the next theorem.

Theorem 3.1. In every zero-sum stochastic game, a; = B (= vs) for all states
s € S™Mn = [t ¢ S|vy = minges Vw}-

Proof. Let s € S™". Then by the results of Thuijsman and Vrieze (1993), for any
€ > 0, player 1 has a stationary e-optimal strategy z° for initial state s. Hence,
Qs = s, thus (1.3) yields a; = 35 (= vs). |

We presented an example in Sec. 2 where « is smaller than § for some initial
states. We also know from the previous section that o equals 3 for at least one
initial state in every zero-sum game. Now, the question is what conditions would
guarantee that o equals 3 for all initial states. We will present several sufficient
conditions, however, first we would like to recall some of the more important classes
of zero-sum games in which a = 3 is already known.

Clearly, we have a = 3(= v) for any class of games where player 1 has stationary
g-optimal strategies, for all £ > 0. The existence of stationary (e-)optimal strategies
is known, for example in irreducible or unichain stochastic games [Rogers (1969)
and Sobel (1971)], in perfect information games [Liggett and Lippman (1969)], in
games with switching control [Filar (1981)], in games with additively decomposable
reward and transition structure [ARAT, Raghavan et ol. (1985)], in (SER-)SIT
games [Parthasarathy et ol. (1984) and Thuijsman (1992)], or in recursive games
[Everett (1957)]. Moreover, the condition that the value is constant (v, = vy for
all s,t € S) is also sufficient for the existence of stationary e-optimal strategies
[Thuijsman and Vrieze (1993), Theorem 3.1]. In such games, both players actually
have Markov optimal strategies as well.

3.1. Repeated games with absorbing states

Repeated games with absorbing states are stochastic games where there is only
one non-absorbing state. Kohlberg (1974) showed that these games have a value.
However, to achieve this value, history dependent strategies are indispensable. We
will show for these games that o = 3. First, consider the following example, known
as the Big Match [Gillette (1957), Blackwell and Ferguson (1968)]:
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L R

2 3 2 3
1 2 3

We use the same notation as in the example in Sec. 2. Each mixed action in state
1 and each stationary strategy can be represented by the probability assigned to
the first action in state 1 (T and L respectively). Thus, the stationary and Markov
strategy spaces have the following form:

X=Y=[01, F=G=xpenl01].

We simply use I and J for the respective action spaces in state 1. Since state 2 and
state 3 are absorbing, the only interesting initial state is state 1.
It is easy to check that a; = 0. For x € X, let

. 1 ifzxl
v 0 ifz=1.

We have y(1,z,34%) = 0 for all x € X, thus, as the lowest payoff is 0, we obtain
o] = 0.

Now, we show that 3; = 0 holds as well by showing that ¢1(f) = 0 for all
Markov strategies f of player 1. Take a Markov strategy f € F. Let £ denote the
random variable for the stage when absorption occurs. If no absorption occurs at
all, then let £ = 0. Let g1 be the strategy for player 2 which prescribes action L for
each stage. For V € N, let

pY =Pise, (€ > N),

so pV is the probability that the play will absorb after stage N with respect to
(1, f,g1). Take an arbitrary € > 0. Since pV converges to 0 as N tends to infinity,
there exists a stage N with p"7 < . Let g2 be the strategy that prescribes action L
up to stage N and action R afterwards. Since

PN =Pip (6> N)=Pi,(E>N) VYNEN,

the probability of absorption in state 3, with respect to (1, f, g2), is at most ¢, thus
v(1, f,92) < . Because ¢ was arbitrary, we obtain ¢;(f) = 0, hence 3; = 0.

Therefore, we have shown that « = 3 in the Big Match. In fact, this argument
can be generalised to all repeated games with absorbing states. We will not discuss
all the technical details in the proof, but only give a brief sketch. In fact, the result
also follows from Coulomb (1992).
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Theorem 3.2. In every zero-sum repeated game with absorbing states, o = f3.

Proof. Take a zero-sum repeated game with absorbing states. We may suppose
without loss of generality that, in each absorbing state, both players have only one
action (otherwise we may replace the state by another absorbing state containing
only the value of the corresponding one-shot game as payoff). Suppose that state 1
is the non-absorbing state. We assume that state 1 is the initial state; for the sake
of simplicity we sometimes suppress state 1 in the notations. Any action of player 1
or player 2 in state 1 will also denote the stationary strategy which prescribes this
action for each stage. It is well known that, against any stationary strategy r € X
of player 1, there exists a best reply j* € J [Hordijk et al. (1983)]. Hence, we have
v(z,5*) < a. This means that, for initial state 1, either (x,j*) is absorbing and
the expected absorption payoff is at most «, or (z,j*) is non-absorbing and the
expected one-shot payoff r(1, z, %) is at most « (a stationary strategy pair (z,y) is
called absorbing if p(1|1, z,y) < 1).

Let € > 0. Take an arbitrary Markov strategy f = (2")nen € F. It suffices to
show that there exists a Markov strategy g € G such that v(f,g) < a +¢.

Step 1. Let fi := f and 7} := z" for all n € N. Let g; = (*7 )nen. Let & denote
the random variable for the stage when absorption occurs. If no absorption occurs
at all, then let £ = 0. For N € N, let

pjzlv = Pf191(§ > N),

so p¥ is the absorption probability after stage N with respect to (f1,g1). Since pi/
converges to 0, there exists, for some small § > 0, a stage N; such that p{v < p*d,
where p* is the smallest positive absorption probability in state 1:

pi= ier}}i]%J{ijlp?j =1-p(1]1,4,7) and pj; > 0};
(we may assume that there exist an ¢ € I and j € J such that p(1|1,4,5) < 1,
otherwise the game is trivial).

If pzlv1 = 0, then we have v(f,91) = 7(f1,41) < a, because with respect to
(f1,91), the expected absorption payoff is at most « at each stage n < Nj; the
probability of absorption after stage Ny is zero; and the expected one-shot payoff
is at most o at each stage n > Nj.

Assume now that p{v ! > (. By the definition of Ny, the probability of absorption
after stage Ny for (f1,g1) is at most p* - 6. Now, let I7 := {i € I} (i,5*7) be non-
absorbing}. Thus, the probability that, with respect to (f1,91), player 1 will ever
choose an action outside I at stages n > N7 is at most 4.

Step 2. Let «7 = ¥ for n < Nj and let z¥ be the normalisation of =7 on I for
n> Ni:
21 (7)

- forall ¢ € IT, zy(i):=0 forallieI\IT.
werp 11 (4)

x5 (i) == 5
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Let fo := (23 )nen. Intuitively, fo coincides with f; up to stage N7 and after stage
Ny, the strategy f» equals the strategy fi on condition that no action outside IT
will ever be chosen at stages n > Ni. Let ga := (§%2 )nen, S0 by the definitions, g;
and g9 are the same for the first Ny stages. One can show, using the properties of
the construction, that with respect to (f, g2), the probability of absorption outside
IT at stages n > Nj is at most §. Choose an Ny > Nj such that

P2* = Prg(§ > N2) <6 -p".

Assume first that p}? = 0. Then we have v(f, g2) < a + ¢ for small §, because
with respect to (f, g2), the expected absorption payoff at each stage in n < Nj is at
most ¢; the probability of absorption outside IT at stagesn = N; +1,...,Nais at
most §; the expected absorption payoff in IT at each stagein n = Ny +1,..., N
is at most «; the probability of absorption after stage N2 is zero; and the expected
one-shot payoff at each stage in n > N3 is at most a.

Assume now that p? > 0. Let I := {i € I|(4,j%%) be non-absorbing} and
repeat the above steps, in such a way that N1 > Ni for all k, until at some
step K we have p%" = 0. This results in a strategy gx for player 2. Note that
for pX* = 0 it is sufficient that Iz = I%_, holds for all n > N. Hence, we only
need at most K < #I steps, because for any stage n > Ny, either I, , becomes
smaller than I}, or If} = I, , and then nothing changes at further steps for stage
n. Using similar arguments as before, one can now show that p%" = 0 implies that
v(f,9x) < a+¢if § > 0 is small enough. O

3.2. Games with constant o or 3

In this section, we show that o = 3 in games where a or 3 is constant. We will
need the following result. ‘

Theorem 3.3. In every zero-sum stochastic game,

min oy = min G, = min v max s = max G5 = max vs.
ses © ses ' ses % s€s ° sed €S °

Proof. It is known that, for any ¢ > 0, player 1 has a stationary strategy z*
satisfying

$e(zf) >minwv, —e  VEES;
s€eS

[for example Flesch et al. (1996)]. Hence,

min o, > min v,
s€S sES

which in view of (1.3) implies the first part of the statement.
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By the results of Thuijsman and Vrieze (1991), there is always a state ¢ in
Smex .= {s € S|vy, = maxyes Uy} for which player 1 has a stationary optimal
strategy x. Hence,

max o, > oy > ¢(T) > vy = max vs,
scS ses

thus (1.3) yields the second part of the statement. O

We have already discussed that if v is constant then o = 3(= v) is also constant.
Hence, the above theorem has the following corollary.

Corollary 3.1. In every zero-sum stochastic game where either a or 3 is constant,
a = B(=v) is constant.

Notice that, in view of this corollary, «, 3, or v is constant if and only if each
of them is constant and they are equal. The following theorem provides a more
relaxed view on constant values.

Theorem 3.4. In every zero-sum stochastic game where for all s,t € S, either
as =y or B, = B¢, we have that o = 3(= v) is constant.

Proof. Using the inequality o < 8 and Theorem 3.3, it is clear that if state s has
the property that 8; = minyes Bw, then a5 = minyes ay. Similarly, if state ¢
has the property that a; = max,es Qq, then 3; = max,ecs Bw. By this condition,
we have either a, = o4 or By = B;. Therefore, by Theorem 3.3, either a or 3 is
constant and Corollary 3.1 completes the proof. 1

An interesting equivalent formulation of Theorem 3.4 is the following: if a # 3,
then there must exist two states s and ¢ such that as # «; and G # ;.

3.3. Games with optimal strategies or best-Markov strategies

A best-Markov strategy means a Markov strategy f with the property that ¢(f) >
#(f) for all f € F, or equivalently ¢(f) = 8. Optimal and best-Markov strategies
do not necessarily exist, but if they do then their existence surprisingly implies
o = 3, as stated in the next theorem.

Theorem 3.5. In every zero-sum stochastic game, if player 1 has an optimal strat-
egy or a best-Markov strategy, then o = (.
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Proof. Suppose first that player 1 has an optimal strategy. Then by Flesch et al.
(1997a), player 1 has stationary e-optimal strategies for all € > 0 as well. Hence,
a = v, so (1.3) yields the result.

Assume now that player 1 has a best-Markov strategy f, so ¢(f) = 8. Using the
results on so-called non-improving strategies in Flesch et al. (1997a), for all £ > 0,
player 1 has stationary strategies guaranteeing ¢{f) — ¢ = 3, — € for all initial
states s. Hence, a = 3 in this case as well. d

Note that in the game presented in Sec. 2 player 1 has neither optimal nor best-
Markov strategies for initial states 1 and 2. We only show it for initial state 2. One
can argue as follows. Since 82 = v9 = 1 in that game, it suffices to show that player
1 has no strategy guaranteeing 1 for initial state 2. Assume by way of contradiction
that a strategy m guarantees 1 for initial state 2. As the largest payoff in the game
is 1, m has to prescribe action T» with probability 1 whenever the play is in state 2
(otherwise the probability of absorption in state 4 with payoff 0 would be positive,
if player 2 chooses action Lo). Thus, if player 2 always plays action Ry in state
2, then the reward is 0, which is a contradiction. Therefore, player 1 has neither
optimal nor best-Markov strategies for initial state 2.

4. Concluding Remarks

Alternative rewards. It is worthwhile to mention that the limiting average reward
is sometimes defined as
Esno (limsup Ry ), liminf Eqqp (Ry), limsup Esro (Ry),
N—oo N—oo N—ooo

where Ry denotes the random variable for the average payoff up to stage NV € N.
All these reward functions are known to be equal for stationary strategy pairs (the
limits exist). It is also known that the value is the same for these rewards [Mertens
and Neyman (1981)]. As the reward function we used so far is always smaller or
equal to any of the above rewards, with slight modifications in the proofs, all the
results hold for these alternative rewards as well.

On alternative definitions of o« and 3. By the definition of o, for each s € S and
for any & > 0, player 1 has a stationary strategy z°® € X such that ¢, (z%%) > a,—4.
In this finite state model, it can be shown however that for any é > 0, we can take
z*% independent of the initial state. Thus, for all § > 0, there exists a 0 eX
such that ¢4(z®) > a, — 6 for all s € S. This means that the following equality for
stationary strategies makes sense:

a = sup ¢(z).
zeX

Therefore, we could have used this state independent equality as the definition of
o as well. Note that for games with countable state space, this equivalence of defi-
nitions is not valid. Nowak and Raghavan (1991) presented a game with countable
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state space, where even though player 1 has stationary e-optimal strategies for each
initial state, he has no stationary strategies that are e-optimal for all initial states.

Finally, we wish to remark that it is not known to us whether 3 can be defined
state independently or not.
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