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Abstract This paper deals with 2-player zero-sum repeated games in which player 1
receives a bonus at stage t if he repeats the action he played at stage t − 1. We inves-
tigate the optimality of simple strategies for player 1. A simple strategy for player 1
consists of playing the same mixed action at every stage, irrespective of past play.
Furthermore, for games in which player 1 has a simple optimal strategy, we charac-
terize the set of stationary optimal strategies for player 2.

Keywords Noncooperative games · Repeated games · Stochastic games · Optimal
strategies

1 Introduction

Consider the following little story: Someone is learning to play a card or a board
game. In the beginning he is a fanatical player, trying to reach the height of his pow-
ers. He plays the game frequently, investing every hour of his spare time practicing.
As a result his skills improve dramatically and within a few years he manages to beat
all the opponents that beat him in the beginning, thereby becoming the champion.
Having reached the ultimate goal, the player is unable to find any new challenges in
the game and consequently it starts losing its appeal to him. Our player loses interest
in the game and he does not (want to) make time to play and/or practice the game on
a regular basis anymore. As a result he gradually starts to lose some of the skills that
he obtained, which affects his play and thereby his results. This little story provides
a classical example of how people can learn and unlearn certain skills, purely based
on exercising or ceasing to exercise them.
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These phenomena may be called learning by doing and unlearning by not doing
respectively. From the seminal paper of Arrow [1] on, where learning is considered
a by-product of doing, rather than an objective, learning (by doing) has become a
very popular subject of research in economics and in game-theory. However, on the
unlearning side of the story, although very prominent present in real life, very little
research has been done, perhaps due to the fact that people often unlearn, or forget,
things that are no longer relevant to them. In 1995 Joosten et al. [2] introduced a
model of unlearning for infinitely repeated zero-sum games, which was generalized
by Schoenmakers [3] to nonzero-sum games. In this paper we discuss a model that
deals with learning and unlearning in infinitely repeated games in a slightly different
way: We will insert a skill-improvement and -deterioration component into the model
of zero-sum repeated games. Suppose that player 1 played action i at stage t . Now
at stage t player 1 has learned “right how to handle action i” and action i becomes
a high-skill action at the next stage. Now if player 1 decides to play action i again
at stage t + 1, then he receives from player 2 a bonus ξ ≥ 0. However, if at stage
t + 1 player 1 decides to play action ı̂ �= i, then he will not receive a bonus and he
will forget how to take advantage of action i, which we will call the unlearning of
action i, and action i becomes low-skill. At the same time player 1 learns action ı̂

that thereby becomes high-skill, so if player 1 decides to play action ı̂ again at stage
t +2, then he receives from player 2 the bonus ξ , whereas if he plays action i at stage
t + 2, then, having unlearned it at stage t + 1, he does not receive a bonus.

A realistic interpretation of a zero-sum repeated game with a bonus, in which only
player 1 can get the bonus, is considering player 2 to be a computer that always plays
the game at a certain fixed level. Hence a player gets a higher reward (i.e. improves
his results against the computer) by playing better himself, which is expressed as a
bonus on top of the normal payoff. Notice that if ξ = 0, i.e. there is no bonus, then
the game reduces to an ordinary zero-sum repeated game.

In Sect. 2 the model of the (zero-sum) repeated game with bonus ξ is presented in
more detail. In Sect. 3 some results concerning the value of the game are presented. In
Sect. 4 we characterize the set of stationary optimal strategies of the generalizations
of 2 × 2-matrix games. Furthermore we present conditions for a specific stationary
strategy to be optimal, namely one that prescribes to play, at each stage, a mixed
action that is optimal in the underlying matrix game. Such a strategy will be called
a simple strategy. Section 5 deals with 2 × n-games and in Sect. 6 we take a look at
games of arbitrary size.

2 Model

A zero-sum repeated game is characterized by a payoff-matrix M ; the corresponding
repeated game with bonus ξ is characterized by the same payoff matrix M in combi-
nation with the bonus ξ and it proceeds as follows: Take an (m × n)-matrix M and
consider the corresponding matrix game M with action sets {1, . . . ,m} and {1, . . . , n}
for players 1 and 2 respectively that is played repeatedly. At each stage the players are
assumed to choose actions independently and simultaneously and if player 1 chooses
action i and player 2 chooses action j , then player 1 receives an amount of mij from
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player 2, where mij is the (i, j)-th entry of M . However, if player 1 also selected
action i at the previous stage, then he receives mij + ξ .

Definition 2.1 The repeated game with bonus ξ corresponding to the matrix game
M ∈ R

m×n can be reformulated as a zero-sum stochastic game with finite state and
action spaces with the following properties:

(i) The set of states is {1, . . . ,m}; state s relates to player 1’s action s in M .
(ii) In each state, players 1 and 2 have action sets {1, . . . ,m} and {1, . . . , n}.

(iii) The payoffs in state s relate in the following way to the payoffs in M : The
payoffs in row r �= s are equal to the corresponding payoffs in M , whereas the
payoffs in row s are increased by ξ .

(iv) The state transition structure is straightforward: Play can start in each of the m

states. If, at a certain stage, play is in state s and player 1 plays action s′, then
with probability 1 play moves to state s′.

Notation 2.1 Both the repeated game with bonus ξ corresponding to the matrix game
M and the stochastic game representation of Definition 2.1 are called Mξ .

Stochastic games were introduced by Shapley [4] in a more general fashion. For
basic results we refer to Thuijsman [5] and Filar and Vrieze [6].

A mixed action as (bs ) for player 1 (2) in state s of Mξ is a probability distrib-
ution over {1, . . . ,m} ({1, . . . , n}). Each pure action is a mixed action where one of
the actions is chosen with probability 1. A strategy for player 1 (2) is a map π (σ )
that assigns a mixed action in any present state for any history (the collection of all
visited states and chosen actions pairs in the past). A strategy is called stationary if it
prescribes to play the same mixed action each time state s is visited. We denote such a
strategy by x := (a1, a2, . . . , am) for player 1 and y := (b1, b2, . . . , bm) for player 2.
Furthermore a pure strategy is a strategy that prescribes to play a pure action at each
stage. As evaluation criterion for the stream of payoffs generated by the strategy pair
(π,σ ), we will use the limiting average reward, i.e.

γ s
ξ (π,σ ) = lim inf

T →∞ (1/T )

T∑

t=1

Es
π,σ (Rt ),

where Es
π,σ (Rt ) denotes the expected payoff to player 1 at stage t given that (π,σ ) is

being played and that the initial state is state s ∈ {1, . . . ,m}. Player 1 wants to max-
imize γ s

ξ (π,σ ), whereas player 2 wants to minimize the same reward. The limiting
average reward was introduced by Gillette [7].

3 General Results

Notation 3.1 The unit simplex in Rz is denoted by �z.
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Theorem 3.1 (See Von Neumann [8]) Each matrix game M has a value v ∈ R, for
which

v := min
b∈�n

max
a∈�m

aT Mb = max
a∈�m

min
b∈�n

aT Mb.

This implies that there exist (mixed) actions a∗ ∈ �m and b∗ ∈ �n such that
a∗T Mb ≥ v ≥ aT Mb∗ for all mixed actions a and b of players 1 and 2 respectively.
Such actions a∗ and b∗ are called optimal.

Mertens and Neyman [9] proved that each zero-sum stochastic games has a value
v = (v1, v2, . . . , vm), which may depend on the initial state. In zero-sum stochastic
games a strategy π∗ for player 1 is called optimal if γ s(π∗, σ ) ≥ vs for all player
2’s strategies σ and for each initial state s. Analogously for player 2,σ ∗ is optimal
if γ s(π,σ ∗) ≤ vs for all π and for all s. In general, optimal strategies fail to exist,
a famous example of which is the so-called Big Match by Gillette [7]. For Mξ how-
ever, not only do optimal strategies exist, but as Theorem 3.2 shows, even stationary
optimal strategies exist.

Theorem 3.2 The game Mξ has a state-independent value and players 1 and 2 have
stationary optimal strategies x∗ and y∗ respectively.

Proof According to point (iv) of the model description, the zero-sum game Mξ has
state independent transitions and these are controlled by player 1. For games with
these properties it is known that both players possess stationary optimal strategies
(cf. Filar [10]). Furthermore Thuijsman [5] proved that for zero-sum games with state
independent transitions the average reward value is independent of the initial state. �

The state independent value of Mξ will be called vξ and, by Theorem 3.2, we
have

γ s
ξ (x∗, y∗) = vξ (1)

for each pair of stationary optimal strategies and for each initial state s.
We are especially interested in a specific type of stationary strategies of player 1,

the so-called simple strategies, which are defined as follows.

Definition 3.1 A stationary strategy x = (a1, a2, . . . , am) is called simple, if ai = aj

for all i, j ∈ {1, . . . ,m}. The simple strategy that prescribes to play the mixed action
a ∈ �m in each state and stage is denoted by a′.

Notice that, for each simple strategy a′ of player 1 and each stationary strategy y

of player 2, as a consequence of the fact that there is only one ergodic class, we have

γ s
ξ (a′, y) = γ s′

ξ (a′, y), for all s, s′ ∈ {1, . . . ,m}. (2)

Therefore w.l.o.g. if player 1 uses a simple strategy, we shall write γξ instead of γ s
ξ .
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Definition 3.2 The carrier of a mixed action a is defined as follows: car(a) =
{i ∈ {1, . . . ,m} | ai > 0}. For the stationary strategy x = (a1, a2, . . . , am) let car(x)

denote the Cartesian product car(a1) × car(a2) × · · · × car(am).

Notation 3.2 The variable s will denote an action of player 1, a state or even both
at once. The line “state s ∈ car(a)” should be interpreted as the state s that is visited
after player 1 plays action s ∈ car(a), when player 1 uses the simple strategy a′.
Furthermore, a superscript refers to a state, whereas a subscript refers to an action.
So as is a component of the stationary strategy x, a probability vector prescribing
a mixed action in state s, whereas as is a component of the mixed action a ∈ �m,
denoting the probability to play action s.

Notation 3.3 Let B(a) denote the set of best replies of player 2 against the (mixed)
action a in M and, similarly, let Bξ (x) denote the set of stationary best replies of
player 2 against the stationary strategy x of player 1 in Mξ . Both sets are clearly
nonempty.

Since player 1 controls the transitions, player 2 essentially plays a one-shot game
each stage. Therefore in order to determine Bξ (x) it suffices to consider the sets of
one-shot best replies per state. The payoffs in state s of Mξ only differ from the
payoffs in M in row s; in state s of Mξ they are exactly an amount ξ higher than
in M . Now let ej be the j th unit vector. Then,

min
j∈J

{aT Mej + ξ · as} = min
j∈J

{aT Mej } + ξ · as for all s ∈ {1, . . . ,m},

for each mixed action a and therefore player 2’s set of one-shot best replies against
as in state s of Mξ is the same as his set of best replies against as in M .

Consider the simple strategy a′. Notice that a′ induces a Markov-chain over the
set of states, in which state s is visited with frequency as . Therefore each state s ∈
car(a) will be visited infinitely often, whereas each state outside car(a) will not be
visited at all, except if it happens to be the initial state. Now a stationary strategy y =
(b1, b2, . . . , bm) is a best reply against a′ if and only if for each state s ∈ car(a) we
have: bs ∈ B(a). Furthermore, each state s /∈ car(a) will not be visited and it makes
no difference what player 2 would have played in that state. Hence each bs ∈ �n

suffices. The set Bξ (a
′) is the Cartesian product of the sets the bs ’s have to belong to.

Hence, for the mixed action a, we have

Bξ (a
′) = {(b1, . . . , bm) | bs ∈ B(a) for all s ∈ car(a), bs ∈ �n for all s /∈ car(a)}.

(3)

Notation 3.4 The reward that player 1 can guarantee himself by playing the sta-
tionary strategy x, is denoted by ϕξ (x), which may depend on the initial state. So
ϕs

ξ (x) = miny γ s
ξ (x, y). Notice that for each simple strategy a′ we have that ϕξ (a

′)
is independent of the initial state (cf. (2)). Notice furthermore that, by (1), for any
stationary optimal strategy x∗ also ϕξ (x

∗) = vξ is independent of the initial state.
Further, let ϕ0(a

′) = minb∈B aT Mb.
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From (3), we derive the next lemma.

Lemma 3.1 For each y = (b1, b2, . . . , bm) ∈ Bξ (a
′) and s ∈ car(a′), we have

aT Mbs = ϕ0(a
′).

Notice that for any optimal mixed action a∗ in M we have ϕ0(a
∗′) = v.

Given the strategy pair (a′, y), with y ∈ Bξ (a
′), if, at a certain stage, state s ∈

car(a′) is visited, then the expected immediate payoff to player 1 is ϕ0(a
′) + ξ · as .

State s is visited with frequency as , so

ϕξ (a
′) =

m∑

s=1

as · (ϕ0(a
′) + ξ · as) = ϕ0(a

′) + ξ ·
m∑

s=1

a2
s . (4)

Since a∗′ might not be optimal in Mξ , for the optimal mixed action a∗ in M we have

vξ ≥ ϕξ (a
∗′) = v + ξ ·

m∑

s=1

(a∗
s )2. (5)

However, if a′ would be a simple optimal strategy, then by definition

vξ = ϕξ (a
′) = ϕ0(a

′) + ξ ·
m∑

s=1

a2
s . (6)

Suppose that in M the (mixed) action y is optimal for player 2 and consider the
simple strategy y′ of player 2 in Mξ . Then γ s

ξ (x, y′) ≤ v + ξ for all initial states
s and for all strategies x of player 1, since at each stage the expected immediate
payoff to player 1 in Mξ is at most ξ higher than the expected payoff to player 1 in
M , which is at most v. Furthermore by using a pure simple strategy ı̂′ such that ı̂ =
arg maxi∈I minj∈J mij +ξ player 1 can guarantee a reward of maxi∈I minj∈J mij +ξ .
Combining these observations with (5), we find the following lemma.

Lemma 3.2 For each Mξ , we have

max

{
v + ξ ·

m∑

s=1

(a∗
s )2, max

i∈I
min
j∈J

mij + ξ

}
≤ vξ ≤ v + ξ.

Notice that, if a∗ is pure, then
∑m

s=1(a
∗
s )2 = 1 and maxi∈I minj∈J mij +ξ = v and

hence vξ = v + ξ and a∗′ is optimal in Mξ . This means that the following theorem
holds.

Theorem 3.3 If a∗ is a pure optimal action of player 1 in M , then a∗′ is a simple
optimal strategy for player 1 in Mξ and vξ = v + ξ .

This theorem solves the case of pure optimal actions in M . In the following sec-
tions we only consider games Mξ for which player 1 has no pure optimal action
in M .
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4 2 × 2 Games

In this section we consider repeated games with bonuses, in which the size of the
underlying matrix game M is 2 × 2. Theorem 3.3 shows what happens if player 1 has
a pure optimal action in M . Consequently in this section we only have to consider
the case, in which player 1 does not have a pure optimal action in M . Since the size
of the game is 2 × 2, this means that player 1 has a unique completely mixed optimal
action in M . This fact can, without loss of generality, be modelled as follows:

M =
(

a b

c d

)
∈ R

2×2, (7)

with min{a,d} > max{b, c}. We use the following representation of Mξ :

a + ξ b + ξ

1 1
c d

2 2
state 1

a b

1 1
c + ξ d + ξ

2 2
state 2

(8)

In each cell the number in the upper-left corner denotes the payoff to player 1,
whereas the number in the lower-right corner denotes the state number that will be
visited next when this particular cell is selected. Notice that, with respect to M , in
state 1 respectively state 2 the payoffs in row 1 respectively row 2 are increased with
the bonus ξ .

Notation 4.1 In Sect. 4 in M player 1’s unique optimal mixed action is a∗ = (a∗
1 , a∗

2)

with a∗
1 = (d − c)/(a − b + d − c) and a∗

2 = (a − b)/(a − b + d − c). Furthermore,
v = (ad − bc)/(a − b + d − c) and

max{b, c} < v < min{a,d}. (9)

We have B(a∗) = �2 and, by (3), Bξ (a
∗′) = B(a∗) × B(a∗) = �2 × �2. So,

ϕξ (a
∗′) = γξ (a

∗′, y), for all strategies y of player 2. (10)

Now, we present a necessary and sufficient condition for a∗′ to be optimal in Mξ .

Theorem 4.1 The following two statements are equivalent:

(i) a∗′ is optimal in Mξ for player 1.
(ii) ϕξ (a

∗′) ≥ max{b, c} + ξ .

Proof (i) ⇒ (ii): If a∗′ is optimal, then, in Mξ , it will yield at least as much as (1,0)′
and (0,1)′, which in turn yield at least b + ξ and c + ξ respectively.

(ii) ⇒ (i): Let y := (b1, b2) with

b1
1 := (v − 2ξa∗

1a∗
2 − b)/(a − b), b1

2 := 1 − b1
1,

b2
1 := (d + 2ξa∗

1a∗
2 − v)/(d − c), b2

2 := 1 − b2
1.
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Given ϕξ (a
∗′) ≥ max{b, c} + ξ , it follows easily that 0 ≤ b1

1, b
2
1 ≤ 1.

We show that γ s
ξ (π, y) = ϕξ (a

∗′) for all strategies π of player 1 and each initial
state s. For this purpose, we first prove that, for any pure stationary strategy x of
player 1, it holds that

γ s
ξ (x, y) = ϕξ (a

∗′).

Some elementary calculations show that

(a + ξ)b1
1 + (b + ξ)(1 − b1

1) = (c + ξ)b2
1 + (d + ξ)(1 − b2

1)

= v + ξ · ((a∗
1 )2 + (a∗

2)2)

= ϕξ (a
∗′)

(cf. (5)). This shows the result for pure stationary strategies ((1,0), (1,0)), ((1,0),
(0,1)) and ((0,1), (0,1)). Some more calculations also show that

1/2 · (cb1
1 + d(1 − b1

1)) + 1/2 · (ab2
1 + b(1 − b2

1)) = ϕξ (a
∗′),

which proves the result for the remaining pure strategy ((0,1), (1,0)). So all pure
stationary strategies yield exactly the same reward against y. Since y is stationary,
it is well-known that player 1 has a pure stationary best reply against y (cf. Hordijk,
Vrieze and Wanrooij [11]). This holds for a minimizing player 1 as well as for a max-
imizing player 1 and consequently γ s

ξ (π, y) = ϕξ (a
∗′) for all strategies π of player 1

and each initial state s. This means that a∗′, guaranteeing a reward of at least ϕξ (a
∗′)

to player 1, is optimal. �

Theorem 4.2 Player 1 has a pure simple optimal strategy in Mξ if and only if
ϕξ (a

∗′) ≤ max{b, c} + ξ .

Proof The only if-part of the proof is trivial: a∗′ guarantees ϕξ (a
∗′) and any pure

stationary strategies at most max{b, c} + ξ .
For the “if-part”, suppose without loss of generality that c ≥ b. It can easily be

verified that the assumption ϕξ (a
∗′) ≤ c + ξ is equivalent to

ξ ≥ (v − c)/(2a∗
1a∗

2) = (a − c)/(2a∗
2).

Consider the stationary strategy y = (((c − b)/(a − b), (a − c)/(a − b)), (1,0)) for
player 2. It can straightforwardly be verified that: (i) the absorbing first action in
state 1 for player 1 yields b + ξ , (ii) the absorbing second action in state 2 for player
1 yields c + ξ , and (iii) the jumping strategy ((0,1), (1,0)) yields

1/2[(c(c − b))/(a − b) + d(a − c)/(a − b)] + 1/2 · a = c + (a − c)/(2a∗
2) ≤ c + ξ.

Hence, the value of Mξ is at most c + ξ . Since the simple strategy (0,1)′ yields
at least c + ξ against any strategy of player 2, it follows that c + ξ is the value of the
game and that (0,1)′ is optimal for player 1. �
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The following corollary follows directly from Theorems 4.1 and 4.2.

Corollary 4.1 For any M ∈ R
2×2 and ξ > 0, player 1 has a simple optimal strategy

in Mξ .

5 2 × n Games

Let M be a 2×n-matrix game with n ≥ 3. As in the previous section we only consider
the case, in which player 1 does not have a pure optimal action in M; that case has
been taken care of in Theorem 3.3.

From the viewpoint of player 2, he only will use columns that are not dominated
by any other column. Column j1 dominates column j2 whenever m1j1 < m1j2 and
m2j1 < m2j2 . And without loss of generality we can state that player 2 only needs to
use columns that are not weakly dominated, where the inequality signs may be equal-
ity signs. So, without loss of generality we may suppose that none of the columns of
M are weakly dominated by any other one which means that the payoffs in M can be
ordered in the following way:

M =
(

a > · · · > · · · > b

∨ ∧
c < · · · < · · · < d

)
. (11)

If either a > c or d > b would not be the case, player 1 would have a pure optimal
strategy in M , which was excluded.

Let as before a∗ = (a∗
1 , a∗

2) be an optimal mixed action for player 1 in M. For the
simple strategy a∗′ we have, according to (3), that Bξ (a

∗′) = B(a∗) × B(a∗). Define

j1 := min{j ; ej ∈ B(a∗)} and j2 := max{j ; ej ∈ B(a∗)}.
The next theorem is the generalization of Theorem 4.1.

Theorem 5.1 The following two statements are equivalent:

(i) a∗′ is optimal in Mξ for player 1.
(ii) ϕξ (a

∗′) ≥ max{m1j2,m2j1} + ξ .

Proof (i) ⇒ (ii): If a∗′ is optimal for player 1 and y is optimal for player 2, then
obviously y ∈ Bξ (a

∗′) and

vξ = ϕξ (a
∗′) = γξ (a

∗′, y) ≥ γ (x, y),

for all stationary strategies x. Suppose that the second statement of the theorem is
not true and without loss of generality let ϕξ (a∗′) < m2j1 + ξ. The definition of j1
and the representation (11) imply that m2j ≥ m2j1 for each j such that ej ∈ Bξ (a

∗′).
Hence, for any y ∈ Bξ (a

∗′),

γξ ((0,1)′, y) ≥ m2j1 + ξ > ϕξ (a
∗′) = vξ .
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So, y can not be optimal for player 2 and since y ∈ Bξ (a
∗′) was arbitrary we have

reached a contradiction.
(ii) ⇒ (i): This proof is equal to the proof of Theorem 4.1 with a few notational

adjustments: a,b, c and d are replaced by m1j1 ,m1j2 ,m2j1 and m2j2 respectively and
player 2’s strategy y = (b1, b2) that takes care that all pure strategies of player 1 yield
exactly v + ξ((a∗

1 )2 + (a∗
2)2), consists of the following entries:

b1
j1

= (v + ξa∗
1a∗

2 − m1j2)/(m1j1 − m1j2), b1
j2

= 1 − b1
j1

,

b2
j1

= (m2j2 + 2ξa∗
1a∗

2 − v)/(m2j2 − m2j1), b2
j2

= 1 − b2
j1

,

while all other entries are zero. �

In the 2 × 2-case we had that failure of the characterizing condition for the ex-
istence of a∗

1 to be simple optimal, implied the existence of a pure simple optimal
strategy. This property is no longer true for the (2 ×n)-case as the following example
shows:

Example 5.1 Take M = ( 10 1.99 0.39
0 0.89 1.29

)
and ξ = 1. Then, the (unique) optimal mixed

action a∗ of player 1 in M is (0.2,0.8). M1 equals

11 2.99 1.39
1 1 1

0 0.89 1.29
2 2 2

state 1

10 1.99 0.39
1 1 1

1 1.89 2.29
2 2 2

state 2

and ϕξ (a
∗′) = 1.11 + 0.04 + 0.64 = 1.79. However, in M1 for player 1 the unique

stationary optimal strategy is to play x = ((0.2,0.8), (0.1,0.9)). The reward corre-
sponding to this strategy is ϕξ (x) = 16.51/9 > 1.79.

However, it is possible to characterize the existence of a pure simple optimal strat-
egy. For this purpose, consider the matrices

M̃1 :=
(

1/2(eT
1 M + a1T ) − ξ1T

eT
2 M

)
and M̃2 :=

(
eT

1 M

1/2(eT
2 M + a1T ) − ξ1T

)
.

Theorem 5.2 In Mξ the simple strategy (1,0)′ is optimal for player 1 if and only
if the value of M̃1 does not exceed b: v(M̃1) ≤ b. Furthermore the simple strategy
(0,1)′ is optimal for player 1 if and only if v(M̃2) ≤ c.

Proof We prove only the first statement.
“⇒”: Suppose (1,0)′ is optimal and suppose that (b1, b2) is an optimal strategy

for player 2. Obviously b1 must be en, i.e. all weight on his last column and we
see that (1,0)′ assures player 1 an average payoff b + ξ . Now (1,0)′ can only be
optimal when the other pure strategies of player 1 give, against (b1, b2), an average
payoff that is at most b + ξ. The average payoff of ((0,1), (1,0)) against (b1, b2)

is 1/2(eT
1 Mb2 + d), so 1/2(eT

1 Mb2 + d) ≤ b + ξ or 1/2(eT
1 Mb2 + d) − ξ ≤ b. The
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average payoff of (0,1)′ against (b1, b2) is eT
2 Mb2 + ξ, so eT

2 Mb2 + ξ ≤ b + ξ or
eT

2 Mb2 ≤ b. Hence we see that the action b2 of player 2 guarantees player 1 a payoff
at most b in M̃1, which shows the “only if” part.

“⇐”: Let v(M̃1) ≤ b, let b2 be optimal for player 2 in M̃1 and consider (en, b
2)

for player 2 in Mξ . One can easily check that against any pure strategy of player 1 the
average payoff is at most b + ξ , while (1,0)′ gives exactly b + ξ . Hence vξ = b + ξ

and (1,0)′ is optimal. �

6 m × n Games

In this section, we look at games in which player 1 has more than 2 actions. These
games are more complex, since the number of states is now m > 2 and player 1
has m actions in each of these states. Examples can be constructed that even in the
3 × 2-case player 1 does not necessarily have a simple optimal strategy (see Schoen-
makers [3]).

As in the preceding sections, a∗ will denote an optimal action in M and a∗′
the associated simple strategy. For a number of cases we will provide necessary and
sufficient conditions for a∗′ to be optimal.

First, we consider a square matrix game M , for which we assume that both player 1
and player 2 have a unique optimal completely mixed action and without loss of gen-
erality we assume that the value of M is unequal to zero. We will give a characteriza-
tion for the associated strategy a∗′ of player 1 to be simple optimal. For that purpose,
define for each s ∈ S an action bs for player 2,

bs := b + ξM−1[(a∗T a∗ + a∗
s )̃1 − a∗ − es], (12)

where b = (M−1̃1)/(̃1T M−1̃1), es is the sth unit vector and 1̃ = (1, . . . ,1) ∈ R
m.

Observe by the Shapley-Snow theorem for matrix games [12] that, as a con-
sequence of the uniqueness of optimal strategies, M is the only kernel and that
the optimal actions can be written as a∗T = (̃1T M−1)/(̃1T M−1̃1) respectively b =
(M−1̃1)/(̃1T M−1̃1) while v = 1/(̃1T M−1̃1).

Theorem 6.1 Let M be a square matrix with value unequal to zero for which both
players have a unique optimal completely mixed action. Then, a∗′ is a simple optimal
strategy in Mξ if and only if bs as defined in (12) is a mixed action for each s ∈ S.
Moreover, whenever bs is a mixed action, ∀s ∈ S, then (b1, . . . , bn) is a stationary
optimal strategy for player 2.

Proof First, observe that the entries of each bs sum up to 1,

1̃T bs = 1̃T b + ξ [(a∗T a∗ + a∗
s )̃1T M−1̃1 − 1̃T M−1a∗ − 1̃T M−1es]

= 1 + ξ [(a∗T a∗ + a∗
s ) − (̃1T M−1)/(̃1T M−1̃1) · (a∗ − es)]̃1T M−1̃1 = 1.

Hence, the condition in the theorem states that bs is nonnegative.
“⇐”: Suppose that player 2 plays (b1, . . . , bm) as defined in (12). Since Mbs =

Mb, the immediate expected payoffs in state s of Mξ are
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v + ξ(a∗T a∗), for row s, (13)

v + ξ(a∗T a∗) + ξ(a∗
s − a∗

s′), for row s′ �= s. (14)

If a pure stationary strategy for player 1 is absorbing, obviously the absorbing pay-
off is v + ξ(a∗T a∗). If a pure stationary strategy is nonabsorbing, then the recur-
rent part must be cyclic and along one cycle the average is v + ξ(a∗T a∗), since the
terms ξ(a∗

s − a∗
s′) cancel out along a cycle. Hence, player 1 can not get more than

v + ξ(a∗T a∗) and since a∗′ guarantees this amount it must be optimal. Obviously
(b1, . . . , bm) is optimal in this case.

“⇒”: When a∗′ is supposed to be simple optimal and since a∗ uses all compo-
nents with positive probability it must be that any pure stationary strategy of player 1
is a best reply against optimal stationary strategies of player 2 and give exactly
v + ξ(a∗T a∗) as average reward. So, let (b1, b2, . . . , bm) be optimal for player 2 in
Mξ . From the mentioned requirement it follows that the immediate expected payoffs
in state s, when player 2 uses (b1, b2, . . . , bm) in Mξ must be

v + ξ(a∗T a∗), for row s, (15)

v + ξ(a∗T a∗) + λs
s′ , for row s′ �= s, (16)

for some λs
s′ ∈ R and set λs

s = 0. Moreover it is required that, for all k ∈ {1, . . . ,m}
and any set {s1, s2, s3, . . . , sk} ⊂ {1,2, . . . ,m}, it holds that

k−1∑

i=1

λsi
si+1

+ λsk
s1

= 0. (17)

Compare the similarity of (15), (16) with (13), (14).
Hence, in vector notation, with λs = (λs

1, λ
s
2, . . . , λ

s
m) (recall that λs

s = 0), we have
that Mbs = ṽ1 + ξ [(a∗T a∗)̃1 − es] + λs or

bs = vM−1̃1 + ξM−1[(a∗T a∗)̃1 − es] + λs. (18)

Since bs is a mixed action the sum of its components must be one,

1 = 1̃T bs = ṽ1T M−1̃1 + ξ(a∗T a∗)̃1T M−1̃1 − ξ 1̃T M−1es + 1̃T M−1λs.

Since ṽ1T M−1̃1 = 1, it follows, after division by 1̃T M−1̃1 that

ξ(a∗T a∗) − ξa∗
s + a∗T λs = 0, ∀s ∈ S.

Summarizing, we have the following system of equations in the m2 variables
(λs

1, λ
s
2, . . . , λ

s
m), s ∈ {1,2, . . . ,m}:

ξ(a∗T a∗) − ξa∗
s + a∗T λs = 0, s ∈ {1,2, . . . ,m},

(19)
k−1∑

i=1

λsi
si+1

+ λsk
s1

= 0, {s1, s2, . . . , sk} ⊂ {1,2, . . . ,m}.
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If we substitute λs = (a∗
s 1̃ − a∗ + xs)ξ , we derive

a∗T xs = 0, s ∈ {1,2, . . . ,m}, (20)

k−1∑

i=1

xsi
si+1

+ xsk
s1

= 0, {s1, s2, . . . , sk} ⊂ {1,2, . . . ,m}. (21)

At first glance, the system of (20) and (21) appears to be overdetermined since we
have m+2m−1 equations for m2 variables. However, (23) are completely determined
by the 1-term, 2-term and certain 3-term equations in the following way:

xs
s = 0, s ∈ {1,2, . . . ,m}, (22)

xs2
s1

= −xs1
s2

, s1 �= s2, (23)

x1
s1

+ xs1

s2
+ x

s2
1 = 0, 1 �= s1 < s2 �= 1. (24)

It can easily be checked that (22), (23) and (24) are independent and imply all the
equations (21). In total (22), (23) and (24) are m+m(m−1)/2+ (m−1)(m−2)/2 =
m2 −m+1 equations. Further, (20) delivers m equations, so there is still one equation
too much. If we multiply the equation a∗T xs = 0 by a∗

s a∗
m for s = 1,2, . . . ,m−1 and

invoke (22) and (23), it can be checked that we derive the last equation a∗T xm = 0,

hence this last equation is linearly dependent of the other ones and can therefore be
deleted.

Hence we have a system of m2 linearly independent equations (namely (20) for s ∈
{1, . . . ,m − 1}, (22), (23) and (24)) in the m2 variables (xs

1, . . . , x
s
m), s ∈ {1, . . . ,m}

for which all the right-hand sides are zero. Thus, the unique solution is xs
s′ = 0 for all

s, s′ ∈ {1,2, . . . ,m} and so λs = a∗
s 1̃ − a∗ is the unique solution that satisfies (19).

Hence bs is unique and by (18) equals expression (12). �

The following corollary is an easy consequence of Theorem 6.1, as bs is a mixed
action for ξ small enough, whenever b is completely mixed.

Corollary 6.1 If the square matrix M is such that v �= 0 and if both players have
a unique optimal completely mixed action in M , then there exists a ξ̃ > 0 such that
a∗′ is a simple optimal strategy in the repeated game with bonus ξ for all ξ ∈ [0, ξ̃ ].
Moreover if a∗′ happens to be a simple optimal strategy for a certain ξ̃ , then it is
optimal for all ξ ∈ [0, ξ̃ ].

An interesting question concerns the number of simple optimal strategies. It turns
out that there can only be a finite number of different simple optimal strategies.

Theorem 6.2 For the repeated game Mξ , with ξ > 0, if a1′ and a2′ are both simple
optimal strategies with car(a1) = car(a2), then a1 = a2.

Proof Without loss of generality we assume car(a1) = {1,2, . . . ,m}, otherwise we
can take an appropriate subgame. Since all states are recurrent with respect to both
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a1′ and a2′ it can easily be seen that (λa1 + (1 − λ)a2)′ is optimal as well for all
λ ∈ [0,1]. Let (b1, b2, . . . , bm) be an optimal strategy for player 2. Then, this strategy
applied to respectively a1′, a2′ and (λa1 + (1 − λ)a2)′ yields

vξ = ϕo(a
1) + ξa1T a1 = ϕo(a

2) + ξa2T a2

= ϕo(λa1 + (1 − λ)a2) + ξ(λa1 + (1 − λ)a2)T (λa1 + (1 − λ)a2).

On the other hand, by a straightforward calculation,

ϕo(λa1 + (1 − λ)a2) + ξ(λa1 + (1 − λ)a2)T (λa1 + (1 − λ)a2)

= λ(ϕo(a
1) + ξ(a1T a1)) + (1 − λ)(ϕo(a

2) + ξ(a2T a2))

− ξ(1 − λ)(a1T − a2T )(a1 − a2)

= vξ − ξλ(1 − λ)(a1T − a2T )(a1 − a2).

Since (a1 − a2)T (a1 − a2) is strictly positive unless a1 = a2, the result follows. �

Combination of Corollary 6.1 and Theorem 6.2 shows

Corollary 6.2 If M is such that v �= 0 and both players have a unique optimal com-
pletely mixed action in M , then a∗′ is the only candidate for a completely mixed
simple optimal strategy for the repeated game with bonus ξ for all ξ .

We conclude this section with a theorem that shows that for large ξ player 1 always
has a simple optimal strategy in the repeated game that moreover is even pure.

Theorem 6.3 For each matrix game M , there exists ξ̃ ≥ 0 such that both players
have a pure simple optimal strategy for the repeated game with bonus ξ for all ξ ≥ ξ .

Proof Let j s be the column such that msjs = minj {msj } and let s∗ be such that
ms∗js∗ = maxs msjs . Take ξ̃ such that msjs + ξ̃ ≥ mijs ,∀i �= s,∀s. Now if player 2

plays the pure strategy (j1, j2, . . . , jm), then all possible immediate payoffs, for any
ξ ≥ ξ̃ , are smaller than or equal to ms∗js∗ + ξ which implies that player 1 can never
get more against this strategy. Hence vξ ≤ ms∗js∗ + ξ . On the other hand, the pure
simple strategy s∗′ guarantees player 1 a payoff of at least ms∗js∗ + ξ. Thus vξ =
ms∗js∗ + ξ and s∗′ is optimal. �

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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