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We deal with n-player coordination games with vanishing actions, which are repeated
games where all non-diagonal entries yield zero-payoffs, and where, moreover, at any
stage beyond ri any player i loses any action that she has not used during the previous
ri stages of play. For these games we examine the set of equilibrium rewards, where we
treat the two-player case and the more player case separately. Folk-theorem like results
are established.
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1. Introduction

An n-player coordination game is a repeated game where all players have the same

number of actions, and where all non-diagonal payoffs are 0. Moreover we shall

assume that all diagonal payoffs are strictly positive. Since these games are just a

special type of repeated games, the Folk-theorem applies, i.e., the set of equilibrium

rewards is the set of all feasible and individually rational rewards [cf. e.g., Aumann

(1981) or Sorin (1992)]. Here a player’s reward is to be interpreted as the limiting

average of her stage payoffs.

In this paper we generalize upon the idea of vanishing actions introduced by

Joosten, Peters and Thuijsman (1995) for zero-sum repeated games. The idea be-

hind vanishing actions is forgetfulness or unlearning of those actions that have not

been used for a specified number of stages. One can think of a surgeon who unlearns

certain surgical skills when not exercised at some, more or less, regular basis. More

precisely, a number r is specified which is to be interpreted as follows: at any stage

beyond r, a player’s action a will vanish from her action set, when this player has

not played a at any of the previous r stages. Actions that are vanished are no longer

available in the remainder of the play. Thus, at any stage of play, players have to

balance their interest between achieving a high payoff and keeping the right actions

available. Thus we get an r-restricted coordination game.

This type of games can also be interpreted as a special class of stochastic games

with finite state and action spaces. Such games were introduced by Shapley (1953),
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but for the general n-player case the existence of equilibria is still unknown, although

for certain specially structured classes they have been shown to exist. A survey of

the state of the art can be found in Neyman and Sorin (2001).

In Sec. 2 we will present the model in more detail and examine a first example,

where r ≤ 2. Next we focus on games with r ≥ 3. In Sec. 3 we show that for

two-player games of this type any convex combination of the diagonal payoffs can

be obtained as an equilibrium reward. We also show that a Folk-theorem like result

does not apply for this class of games, since there may be feasible and individually

rational rewards outside this diagonal hull which cannot be achieved as equilibrium

rewards. In Sec. 4 an extension to multiplayer coordination games is made and it

is exhibited that all feasible rewards can be obtained as equilibrium rewards. In

Sec. 5 we extend the results to the case where each player i is allowed to have her

own level of unlearning ri.

2. The Model

An n-player r-restricted coordination game is determined by the following

parameters:

(1) I = {1, 2, . . . , n} is the set of players, with n ≥ 2;

(2) Ai = {1, 2, . . . ,m} is the initial set of pure actions for player i, with m ≥ 2;

(3) ui : ×ni=1A
i → R is the payoff function for player i; we assume that ui(a1,

a2, . . . , an) > 0 if a1 = a2 = · · · = an and ui(a1, a2, . . . , an) = 0 otherwise;

(4) r is the level of unlearning for the players.

The game is played at stages 1, 2, . . . , where each time simultaneously and inde-

pendently each player i has to choose one of her available actions ai. The action

choices are announced and each player i receives a payoff ui(a1, a2, . . . , an). Then

play moves to the next stage, where actions have to be chosen again. However,

actions may disappear according to the following rule: At any stage beyond r, a

player’s action a will vanish from her action set, when this player has not played a

at any of the previous r stages. Thus the number of available actions may decrease

during the course of play. Therefore we shall use Ait to denote the set of feasible or

not (yet) unlearned pure actions of player i at stage t and we define ht to be the

history of play up to stage t. At any stage t any player i is allowed to randomize

over the available actions in Ait, which yields a so called mixed action denoted xit for

player i at stage t, and this choice obviously may depend on ht. Each pure action

is a mixed action as well. A sequence xi = (xit)
∞
t=1 is called a strategy for player i.

Each player i is assumed to maximize her limiting average reward, i.e.,

γi(x1, x2, . . . , xn) = lim inf
T→∞

1

T

T∑
t=1

E(U it ) ,

where E(U it ) denotes the expected payoff to player i at stage t given that

(x1, x2, . . . , xn) is being played. A joint strategy (x1, x2, . . . , xn) is an equilibrium if
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for each player i it holds that γi(x1, . . . , x′, . . . , xn) ≤ γi(x1, . . . , xi, . . . , xn) for all

x′, i.e., each player is playing a best reply against the strategies of the others.

We would like to remark that a 1-restriction implies that the game is essentially

a one-shot game, and therefore, every equilibrium in the one-shot game is an equi-

librium in the 1-restricted game and vice versa. The following example discusses

the 2-restricted case.

Example 2.1. Consider the following 2-player 2-restricted coordination game:

L R

T

B

(
2, 1 0, 0

0, 0 1, 3

)
.

Player 1 chooses rows, player 2 chooses columns. Let E∗ denote the set of equilib-

rium rewards for this game. Clearly (2, 1), (1, 3) ∈ E∗, since playing (T,L) forever is

an equilibrium that yields (2,1) and playing (B,R) is an equilibrium that gives (1,3).

Given the 2-restriction, the only equilibrium where none of the actions vanishes,

is the one where (T,L) and (B,R) are played in turns resulting in a (3
2 , 2) equi-

librium reward. Since, with certainty, each player has both actions available after

stage 1, we can use the first stage to decide which of these equilibria to play for the

remaining stages. One could decide, for example, to play at stage 1 a mixed action

according to an equilibrium in the one-shot game
(2,1 1,3

1,3 3
2 ,2

)
and to continue on any

equilibrium in the coordination game for the entry selected. There are still some

other ways of generating equilibrium rewards, but we do not have the intention to

characterize the set E∗ at this point. We note, however, that not all rewards in the

diagonal hull, i.e., the convex hull of the diagonal payoffs, can be obtained. Take

for example (1.9, 1.2) = 0.9 · (2, 1) + 0.1 · (1, 3). This can be seen by observing that,

if we wish to obtain a diagonal reward, then the players can randomize their action

at most once, for otherwise a (0, 0) reward results with positive probability which

implies an off-diagonal average reward. Also, this randomization should be done at

stage 1. There are only finitely many rewards that correspond to pure equilibria

and after stage 1 play will evolve to one of those. Therefore there are essentially

only finitely many ways to play an equilibrium right from the beginning.

We will show that for r ≥ 3 the situation is very much different and we shall

concentrate on that case from now on. We examine one more example to introduce

some concepts.

Example 2.2. Consider the following 2-player 3-restricted game.4, 1 0, 0 0, 0

0, 0 2, 2 0, 0

0, 0 0, 0 1, 4

 .

The diagonal hull is the triangle with extreme points (4, 1), (2, 2) and (1, 4). Clearly,

each diagonal entry corresponds to a pure equilibrium. We shall use the name point
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agreement to address such equilibria. Any reward on a line segment between two

diagonal payoffs can also be obtained as an equilibrium reward. We shall use the

name line agreement to address equilibria of this type. Take for example (26
9 ,

14
9 ) =

4
9 · (4, 1) + 5

9 · (2, 2). A line agreement that yields this reward is for example the one

where each player plays the sequence of actions:

1, 2, 1, 1, 2, 2, 1, 2, 2

repeatedly. More generally, one can take any series

1, 2, a1, 1, 2, a2, 1, 2, a3, 1, 2, a4, 1, 2, a5, . . . ,

where ak ∈ {1, 2} for all k can be chosen arbitrarily. In doing so an equilibrium

reward λ ·(4, 1)+(1−λ) ·(2, 2) can be obtained for any λ ∈ [1
3 ,

2
3 ]. Convex combina-

tions for other λ can be obtained as equilibrium rewards by randomization as will

be explained in the next section. Using randomization we can also achieve convex

combinations of more than two payoffs as equilibrium rewards.

3. 2-Player 3-Restricted Games

In this section we show that in the 2-player case every convex combination of

diagonal payoffs can be obtained as an equilibrium reward. We proceed in two

steps: first we show it for convex combinations of only two diagonal payoffs by

means of a line agreement, next we extend the result to the general case.

Lemma 3.1. Consider a 2-player 3-restricted coordination game of the form(
y1, z1 0, 0

0, 0 y2, z2

)
(with y1, y2, z1, z2 > 0). Then every convex combination of (y1, z1) and (y2, z2) can

be obtained as an equilibrium reward.

Proof. For each λ ∈ [0, 1] define f(λ) := λ(y1, z1) + (1 − λ)(y2, z2). In four steps

we will show that f(λ) is an equilibrium reward for each λ ∈ [0, 1].

Step 1: f(1) = (y1, z1) and f(0) = (y2, z2) can be obtained as equilibrium rewards.

Take x1
1 = x2

1 = (1, 0)∞ and x1
0 = x2

0 = (0, 1)∞. Then γ(x1
1, x

2
1) = f(1) =

(y1, z1) and γ(x1
0, x

2
0) = f(0) = (y2, z2) and both pairs are equilibria.

Step 2: For any λ ∈ [1
3 ,

2
3 ] the reward f(λ) can be obtained by a line agreement.

Take λ ∈ [1
3 ,

2
3 ]. Define the pure strategies x1

λ = x2
λ = (1, 2, a1, 1, 2, a2,

1, 2, a3, . . .) where for all i the actions ai ∈ {1, 2} are such that the long run

frequency of action 1 is λ. Then γ(x1
λ, x

2
λ) = λ(y1, z1)+(1−λ)(y2, z2) = f(λ)

and obviously neither player can make a profitable unilateral deviation.

Step 3: For any λ ∈ [1
6 ,

1
3 ] ∪ [2

3 ,
5
6 ] the reward f(λ) can be obtained by a line

agreement. Without loss of generality we take λ ∈ [1
6 ,

1
3 ]. Note that f(λ) =

1
2f(0)+ 1

2f(2λ). From step 1 we know that (x1
0, x

2
0) leads to a reward of f(0)
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and from step 2 we know the existence of a line agreement (x1
2λ, x

2
2λ) with

reward f(2λ). We will now define strategies that result in playing either

(x1
0, x

2
0) or (x1

2λ, x
2
2λ), each with probability 1

2 from stage 2 onwards: Define

(L1
λ, L

2
λ) by playing ((1

2 ,
1
2 ), (1

2 ,
1
2 )) at stage 1, followed by playing (x1

0, x
2
0)

if the first stage actions are the same, and followed by (x1
2λ, x

2
2λ) otherwise.

Then (L1
λ, L

2
λ) is an equilibrium as required.

Step 4: For any λ ∈ [0, 1] the reward f(λ) can be obtained by a line agreement.

Take λ ∈ [ 1
12 ,

1
6 ] and suppose that (L1

2λ, L
2
2λ) is an equilibrium as in the

proof of step 3. We will now introduce strategies that result in playing

either (x1
0, x

2
0) or (L1

2λ, L
2
2λ), each with probability 1

2 from stage 3 onwards:

Define (L1
λ, L

2
λ) by playing (1

2 ,
1
2 ) at stage 1, followed by playing (x1

0, x
2
0) if

the first stage actions are the same, and followed by the alternative action at

stage 2 and from stage 3 onwards start playing (L1
2λ, L

2
2λ), otherwise. When

the latter is done stage 3 acts as if it were the initial stage. Then (L1
λ, L

2
λ) is

an equilibrium as required. The alternative actions at stage 2 are necessary

in order not to lose any action in the selection process. Thus we have

established equilibria for all rewards f(λ) with λ ∈ [ 1
12 ,

1
6 ]. By repeating

this very same procedure as often as we like we obtain the statement of the

lemma.

Theorem 3.1. Consider a 2-player 3-restricted coordination game. Then every

convex combination of the diagonal payoffs can be obtained as an equilibrium reward.

Proof. If (u1, u2) is in the diagonal hull, then (u1, u2) is a convex combination of at

most three diagonal payoffs Di, Dj and Dk (because any two-dimensional polytope

can be subdivided in triangles with the same set of extreme points). Without loss of

generality, suppose that (u1, u2) = α1 ·Di+α2 ·Dj+α3·Dk, where α = (α1, α2, α3) ∈
∆3, the unit simplex in R3, and suppose that α1 ≥ α2 ≥ α3.

Let µ = (3
2 (α1 +α3)− 1

2 ,
3
2α2, 0) ∈ ∆3 and ξ = (1−3α3, 0, 3α3) ∈ ∆3, and write

D = (Di, Dj , Dk). Then

(u1, u2) =

(
2

3
µ+

1

3
ξ

)
·D .

Since both µ and ξ only put positive weight on at most two diagonal payoffs, we

can use line agreements Lµ and Lξ to support µ · D and ξ · D as equilibrium

rewards respectively. We will now define strategies that result in playing either Lµ
or Lξ with probability 2

3 and 1
3 respectively, from stage 2 onwards. We can do so

by having the players play actions i, j and k each with probability 1
3 at stage 1,

followed by playing Lξ if the first stage actions are the same, and followed by Lµ
otherwise.

We close this section by an example which shows that in the 2-player case

of restricted coordination games it may be possible to have feasible individually

rational rewards that cannot be obtained as equilibrium rewards.
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Example 3.1. Consider the following 3-restricted coordination game:

L R

T

B

(
2, 1 0, 0

0, 0 1, 1

)
.

From Joosten, Peters and Thuijsman (1995) it can be derived that for this game

any payoff greater or equal to (3
4 ,

1
2 ) is individually rational. Thus (3

4 ,
3
4 ) is a feasible

and individually rational payoff. However, it can be seen that this payoff cannot be

obtained as an equilibrium reward using the following arguments. Suppose, by way

of contradiction that we have an equilibrium for this reward. Then the long run

frequency of diagonal payoff (2, 1) should be 0, because one can only obtain (3
4 ,

3
4 ) as

a convex combination of the form 3
4 (1, 1)+ 1

4 (0, 0). Thus, we distinguish three cases:

(1) If both players keep both actions available throughout play, then the frequency

of the payoff (0, 0) should be at least 2
3 . But then, player 1 receives less than 3

4

although he could always achieve 3
4 . Therefore this contradicts the equilibrium

condition. (2) If at any stage exactly one player has both actions available, then

the (0, 0) payoff should have a frequency of 0, since this player would go for the

positive payoff. (3) If both players keep only one action, then the remaining entry

can not be a (0, 0) entry for the following reason. Suppose that entry (B,L) would

remain, then this can only happen if at some stage (B,L) has been played twice

consecutively, while all actions are still available (for otherwise we would be in case

(2)). If at this stage entry (T,R) is played with positive probability, then player 2

will loose action R with positive probability and player 1 could continue by playing

T for the remaining play. However, then payoff (2, 1) has a positive frequency, which

is a contradiction. If player 2 plays action R with probability 1, then we do not get

absorption in entry (B,L). Finally, if player 1 plays action B with probability 1,

then player 2 would play R with probability 1. Summarizing, payoff (0, 0) always

ends up with frequency 0. This completes the argument.

4. Multiplayer 3-Restricted Games

Although not true for the 2-player case (cf. Example 3.1), we now show that for

the n-player case with n ≥ 3 the set of equilibrium rewards in 3-restricted coor-

dination games equals the set of feasible individually rational rewards. The proof

uses Lemmas 4.1 and 4.2 below.

Lemma 4.1. Let k ≥ 2. For any z ∈ ∆k there exist y1, y2, . . . , yk−1 ∈ ∆k such

that z = 1
k−1

∑k−1
i=1 yi and for any yi at most two coordinates are nonzero.

Proof. We prove the result by induction. If k = 2, then z has at most two nonzero

coordinates, so we can take y1 = z. Suppose the result is true for k. We now show

that it is also true for k + 1. Take z = (z1, z2, . . . , zk+1) ∈ ∆k+1 and suppose,

without loss of generality, that z1 ≥ z2 ≥ · · · ≥ zk ≥ zk+1. Notice that kz1 +zk+1 ≥
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z1 + z2 + · · · zk+1 = 1, so z1 − 1
k

+ zk+1 ≥ 0. Then by letting w := ( k
k−1 (z1 − 1

k
+

zk+1, z2, . . . , zk)) ∈ ∆k and yk := (1− kzk+1, 0, . . . , 0, kzk+1) ∈ ∆k+1 we have

z = (z1, z2, . . . , zk, zk+1) =
k − 1

k
· (w, 0) +

1

k
· yk .

By induction there are w1, w2, . . . , wk−1 ∈ ∆k, such that w = 1
k−1

∑k−1
l=1 wl, while

each wl has at most two nonzero coordinates. Then, by letting yl = (wl, 0) for

l = 1, 2, . . . , k − 1, we get

z =
1

k

k∑
l=1

yl

which completes the proof.

Lemma 4.2. Let n ≥ 3. In any n-player 3-restricted coordination game (0, 0, . . . , 0)

can be obtained as an equilibrium reward.

Proof. Recall that each player has at least 2 actions. Let player 1 play (1, 2, 1, 2, . . .)

and let player 2 play (2, 1, 2, 1, . . .), and let all other players play (1, 1, 1, 1, . . .), while

in addition if player 2 does not play according to this plan, then player 1 continues

by playing action 2 exclusively and similarly, if player 1 does not play according to

this plan, then player 2 continues by playing action 2 exclusively. Then, clearly, the

rewards are 0 and none of the players has a profitable deviation.

Theorem 4.1. Let n ≥ 3. In any n-player 3-restricted coordination game all points

inside the payoff hull can be obtained as limiting average equilibrium rewards.

Proof. The proof proceeds in a number of steps. In step 1 we prove that any

convex combination of two payoffs can be obtained as an equilibrium reward by a

line agreement. In step 2 we fill the space between the lines.

Step 1: Any convex combination of two diagonal payoffs can be obtained in a similar

way as this was done for the 2-player case in Lemma 3.1. Now take a

convex combination of 0 and a diagonal payoff, let’s say D1 corresponding

to action 1 for all players. So we can write this convex combination as

λD1. Then, similarly to the 2-player case we can get λD1 by focussing

on entries (1, 1, . . . , 1) giving D1 and (2, 2, 1, 1, . . . , 1) giving 0. Almost the

same strategies can be used as in the 2-player case; the only difference is

that in case n = 3 players 1 and 2 should prevent player 3 from playing

action 2 along with them; this can be done by using the threat that players 1

and 2 will play actions 1 and 2 respectively from that moment onwards.

As far as the randomizations are concerned, it is only players 1 and 2 who

may need to randomize and they only randomize on actions 1 and 2. Thus

every “linepayoff”, i.e., every convex combination of two payoffs, can be

obtained by a line agreement.
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Step 2: If all players have m actions then there are at most m + 1 different

payoffs. Let u be an arbitrary convex combination of these m + 1 payoffs

D0, D1, . . . , Dm, where D0 = 0 ∈ Rn. So u =
∑m
l=0 αlDl, where α ∈ ∆m+1.

By Lemma 4.1 there are β1, β2, . . . , βm ∈ ∆m+1 such that each βj has at

most 2 nonzero coordinates and α = 1
m

∑m
j=1 βj . Then, each βj corresponds

to a line agreement Lj, since for each of them at most 2 payoffs are involved.

Moreover

u =
m∑
l=0

αlDl =
1

m

m∑
j=1

m∑
l=0

βj(l)Dl =
1

m

m∑
j=1

γ(Lj)

where γ(Lj) is the reward corresponding to Lj . At stage 1 suppose players 1

and 2 both play ( 1
m
, 1
m
, . . . , 1

m
), while all other players play action 1. If

(a, b, 1, 1, . . . , 1) is the entry selected at stage 1, then from stage 2 onwards

the players play the line agreement that corresponds to Lj , where j =

(a+b) modm+1. This yields an equilibrium with reward u which completes

the proof.

5. Concluding Remarks

Although in the previous sections we have discussed the restricted coordination

games in a symmetric setting, i.e., all players having r = 3 as level of unlearning,

all results can be generalized. More specifically, if each player i has her own level

of unlearning ri, then we obtain the following results.

Theorem 5.1. Consider a 2-player (r1, r2)-restricted coordination game with

r1, r2 ≥ 3. Then every convex combination of the diagonal payoffs can be obtained

as an equilibrium reward.

Theorem 5.2. Let n ≥ 3. In any n-player (r1, r2, . . . , rn)-restricted coordination

game, with r1, r2, . . . , rn ≥ 3, all points inside the payoff hull can be obtained as

limiting average equilibrium rewards.
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