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Abstract. We present a complete picture of the relationship between the exis-
tence of 0-optimal strategies and e-optimal strategies, e > 0, in the classes of
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1 Introduction

A zero-sum stochastic game G can be described by a state space S :¼
f1; . . . ; zg, and a corresponding collection fM1; . . . ;Mzg of matrices, where
matrix Ms has size m1

s � m2
s and, for i A Is :¼ f1; . . . ;m1

s g and j A Js :¼
f1; . . . ;m2

s g, entry ði; jÞ of Ms consists of a payo¤ rsði; jÞ A R and a probabil-
ity vector psði; jÞ ¼ ðpsðtji; jÞÞt AS. The elements of S are called states and for
each state s A S the elements of Is and Js are called (pure) actions of player 1
and player 2 in state s. The game is to be played at stages in N in the following
way. The play starts at stage 1 in an initial state, say in state s1 A S, where,
simultaneously and independently, both players are to choose an action:
player 1 chooses a row i1 A Is1 , while player 2 chooses a column j1 A Js1 .
These choices induce an immediate payo¤ rs1ði1; j1Þ from player 2 to player
1. Next, the play moves to a new state according to the probability vector
ps1ði1; j1Þ, say to state s2. At stage 2 new actions i2 A Is2 and j2 A Js2 are to be
chosen by the players in state s2. Then player 1 receives payo¤ rs2ði2; j2Þ from
player 2 and the play moves to some state s3 according to the probability
vector ps2ði2; j2Þ, and so on.

The sequence hn ¼ ðs1; i1; j1; . . . ; sn; i n; j nÞ is called the history upto stage
n. The players are assumed to have complete information and perfect recall.

A mixed action for a player in state s is a probability distribution on the



set of his actions in state s. Mixed actions in state s will be denoted by xs for
player 1 and by ys for player 2, and the sets of mixed actions in state s by Xs

and Ys respectively. A (history dependent) strategy p for player 1 is a decision
rule that prescribes a mixed action psðhÞ in the present state s for any past
history h of the play. For player 2, (history dependent) strategies s are defined
similarly. We use the notations P and S for the respective (history dependent)
strategy spaces of the players. If the mixed actions prescribed by a strategy
only depend on the current stage and state then the strategy is called Markov,
while if they only depend on the current state then the strategy is called
stationary. Thus the stationary strategy spaces are X :¼ Us AS Xs for player
1 and Y :¼ Us AS Ys for player 2; while the Markov strategy spaces are
F :¼ Un AN X for player 1 and G :¼ Un AN Y for player 2. We will use the
respective notations x and y for stationary strategies and f and g for Markov
strategies for players 1 and 2.

A pair of strategies ðp; sÞ together with an initial state s A S determine a
stochastic process on the payo¤s. The sequences of payo¤s are evaluated by
the average reward, given by

gsðp; sÞ :¼ lim inf
N!y

Esps
1

N

XN
n¼1

rn

 !
;

where rn denotes the random variable for the payo¤ at stage n.
For any initial state s A S, it is in the spirit of the game to evaluate a

strategy p of player 1 or a strategy s of player 2 by the rewards fsðpÞ and
csðsÞ, respectively, that p and s guarantee when starting in s; so let

fsðpÞ :¼ inf
s AS

gsðp; sÞ; csðsÞ :¼ sup
p AP

gsðp; sÞ:

Mertens and Neyman (1981) showed that

sup
p AP

fsðpÞ ¼ inf
s AS

csðsÞ ¼: vs Es A S:

Here v :¼ ðvsÞs AS is called the average value of the game. A strategy p of player
1 is called e-optimal eb 0, if

fsðpÞb vs 	 e Es A S:

Similarly, a strategy s of player 2 is called e-optimal eb 0, if

csðsÞa vs þ e Es A S:

Because of the definition of the value v, both players have e-optimal strategies
for all e > 0, but, generally, 0-optimal strategies need not exist. This is com-
pletely di¤erent from the situation in finite state Markov decision problems,
where stationary 0-optimal strategies allways exist. In stochastic games even
stationary e-optimal strategies may fail to exist and history dependent strat-
egies, where players have to respond to the behavior of the opponent, are
generally indispensable for achieving e-optimality.
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2 The relationship

The goal of this paper is to present a complete picture of the relationship be-
tween the existence of 0-optimal strategies and e-optimal strategies, e > 0, in
the classes of stationary, Markov and history dependent strategies. More pre-
cisely, we present the following relationship, which shall be proven in sections
2.1 and 2.2.

Theorem 1. Between the existence of 0-optimal and e-optimal strategies, e > 0,
in the classes of stationary (S), Markov (M) and history dependent (H) strat-
egies, the following relations apply:

S0 ) M0 , H0 ) Se ) Me ) He

and none of the one-sided implications can be reversed.

So for example, H0 ) Se means that the existence of history dependent
0-optimal strategies implies the existence of stationary e-optimal strategies for
all e > 0, but it also means that the existence of stationary e-optimal strate-
gies does not imply the existence of history dependent 0-optimal strategies in
general.

Thus, in the above picture, implications always hold from left to right,
but never from right to left except for H0 ) M0. For example, S0 ) He or
H0 ) Me are both true (by transitivity), but Se ) M0 or Me ) S0 are both
generally false.

Despite the simple structure of the picture above, some implications are far
from straightforward (for instance H0 ) SeÞ and some counterexamples are
fairly subtle (especially He 6) Me, but also Me 6) Se).

2.1 The implications

The implications

S0 ) M0; M0 ) H0; Se ) Me; Me ) He

follow from the inclusions of the strategy classes. The other implications

H0 ) M0; H0 ) Se

are far from straightforward and have been shown in Flesch et al. (1998).

2.2 The counterexamples

In the examples below, we will only indicate the non-absorbing states (states
which the play can leave for at least one pair of actions). Moreover, we will
assume that, in each absorbing state, each player has only one action. Note
that if the play moves to an absorbing state s (absorption occurs in state s)
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then the play is strategically over and the average reward will equal the payo¤
in state s. Since the absorbing states are trivial, we will always assume that the
initial state is one of the non-absorbing ones.

� Example 1: M0 6) S0

L R

T
0 1

�

B
1 0

1

This is a game with one non-absorbing state, state 1. The actions of player 1
are the rows (T for Top and B for Bottom) and the actions of player 2 are the
columns (L for Left and R for Right). The payo¤s are placed in the upper-left
corners of the entries. If one of the entries ðT ;LÞ, ðB;LÞ or ðB;RÞ is chosen
then the play remains in state 1, while entry ðT ;RÞ yields absorption (indicated
by �) with absorbing payo¤ 1.

One can check that the value for initial state 1 is v1 ¼ 1. Indeed, the sta-
tionary strategy xe ¼ ð1	 e; eÞ of player 1 guarantees 1	 e for initial state 1,
namely f1ðxeÞ ¼ 1	 e. Since the highest payo¤ of the game is 1, we must have
v1 ¼ 1.

Note that player 1 has no stationary optimal strategy for initial state 1 in
this game. One can argue as follows. If a stationary strategy x prescribes ac-
tion T with a positive probability then x only gives a reward strictly less than 1
if player 2 always chooses action L. On the other hand, if x chooses action B
with probability 1, then if player 2 always takes action R then the reward is 0.
Thus no stationary strategy can guarantee v1 ¼ 1.

Nevertheless, a Markov optimal strategy can be constructed as follows:
let f be the Markov strategy that, at stage n, chooses action T with probabil-
ity 1=n and action B with probability 1	 1=n. One can verify that f is opti-
mal. We only give an intuitive argument. If player 2 chooses action R with
a ‘‘positive frequency’’ then absorption occurs with probability 1 due to the
slowly decreasing probabilities on action T; while almost always choosing ac-
tion L yields reward 1 since the probabilities on action B converge to 1.

� Example 2: Se 6) H0

L R

T
1 0

�

B
0 1

� �

1

The notation is similar to that of example 1.
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Here the value for initial state 1 is v1 ¼ 1, and the stationary strategy x ¼
ð1	 e; eÞ for player 1, which prescribes action T with probability 1	 e and
action B with probability e, is e-optimal for all e > 0.

However, we show that player 1 does not have optimal strategies for initial
state 1. Take an arbitrary strategy p. We show that player 2 can make sure
that player 1’s reward is strictly less than 1. Indeed, player 2 has to choose
action R as long as p prescribes action T with probability 1 and to play action
L at the first stage when p prescribes action B with a positive probability.
Then either entry ðT ;RÞ is played forever or absorption occurs in entry ðB;LÞ
with payo¤ zero with a positive probability, thus player 1’s reward is strictly
less than 1 indeed.

� Example 3: Me 6) Se

L1 R1 L2 R2

T1
1 0

T2
1 0

1

B1
1 1

B2
0 1

2 � � �

1 2

The notation is similar to that of example 1. Here entries ðB1;L1Þ and ðT2;L2Þ
lead to the other non-absorbing state.

This game, which has been analyzed in Flesch et al. (1997), has the fol-
lowing properties for initial states 1 and 2:

(a) The value is v1 ¼ v2 ¼ 1.
(b) Player 1 has Markov e-optimal strategies for initial states 1 and 2, for all

e > 0. Indeed, define a Markov strategy f K for player 1, where K A N, as
follows:

uKðnÞ :¼
ffiffiffiffiffiffiffiffiffiffiffi

n

n þ 1
K

r
for all n A N;

f K :¼ ½ðuKðnÞ; 1	 uKðnÞÞ; ðuKðnÞ; 1	 uKðnÞÞ�n AN:

Observe that the Markov strategy f K is symmetric in the sense that the
prescribed mixed actions in state 1 and state 2 are the same for any stage
n. Note that the sequence uKðnÞ ‘‘slowly’’ converges to 1 as n tends to in-
finity, so f K assigns less and less probabilities to actions B1 and B2.

For initial states 1 and 2, for all e > 0, if K A N is large then player 1
can guarantee a reward at least 1	 e by playing the Markov strategy f K ,
namely

f1ð f KÞb 1	 e; f2ð f KÞb 1	 e:

(c) Player 1 has no stationary e-optimal strategy for initial states 1 and 2, if
e A ½0; 1Þ. In fact, player 1 can get at most 0 for initial states 1 and 2 by
playing stationary strategies, namely
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f1ðxÞ ¼ f2ðxÞ ¼ 0 Ex:

Note that (b) implies (a), because the highest payo¤ in the game is 1.
Now we briefly explain (b). The question here is how player 2 can reply

to the strategy f K . Intuitively, player 2 has two hopes to decrease player 1’s
reward. The first one is achieving absorption in entry ðB2;L2Þ with payo¤ 0.
Player 2’s best candidate would be playing actions L1 and L2 whenever the
play is in state 1 or in state 2. But then whenever the play is in state 2 a tran-
sition occurs to state 1 with a large probability, and it takes a long time until
the play comes back to state 2 again. Because the strategy f K assigns decreas-
ing probabilities to action B1, the lengths of stay in state 1 will increase fast
during the play and the frequency of visits to state 2 will tend to zero. As a
consequence, the frequency of stages when absorption could occur is zero
(in the limit) and the probabilities on action B2 at those stages will decrease
‘‘rapidly’’. Therefore, the overall probability of absorption in entry ðB2;L2Þ
will be small. In conclusion, playing L1 and L2 gives player 2 little hope.

On the other hand, since the payo¤s in entries ðT1;R1Þ and ðT2;R2Þ equal
0, player 2 could try to play actions R1 and R2 with a ‘‘positive’’ frequency
and hope that the play will not absorb. But in that case, the frequency of
stages when absorption could occur is positive and the probabilities on B1 and
B2 at those stages decrease ‘‘slowly’’. Hence, it will appear that the play must
eventually absorb with probability 1, and then the zero payo¤s in entries
ðT1;R1Þ and ðT2;R2Þ will have no influence on the reward.

Finally, we discuss (c). For each stationary strategy x ¼ ðx1; x2Þ of player
1, we define a strategy yx ¼ ðyx

1 ; yx
2 Þ for player 2: let

yx
1 :¼ ð0; 1Þ if x1 ¼ ð1; 0Þ

ð1; 0Þ otherwise

�
; yx

2 :¼ ð0; 1Þ if x2 ¼ ð1; 0Þ
ð1; 0Þ otherwise.

�

Notice that, for s ¼ 1; 2, we have gsðx; yxÞ ¼ 0 for all x, so the proof of (c) is
complete.

� Example 4: He 6) Me

L R

T
0 1

B
1

*

0

*

1

The notation is similar to that of example 1.
This game is the famous Big Match introduced in Gillette (1957), which

was only solved 11 years later by Blackwell & Ferguson (1968). The beauty of
the Big Match is that the structure of the game is so simple. Action T keeps
the play in state 1 with probability 1, while action B leads to an absorbing
state, so it ends the game in a strategic sense. Player 1’s trouble is that if he
uses action B then the entry of absorption fully depends on the action chosen
by player 2.
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The Big Match has the following properties:

(a) The value for initial state 1 equals v1 ¼ 1=2.
(b) Player 2 has a stationary optimal strategy y ¼ ð1=2; 1=2Þ.
(c) ForN A N, let pN be the strategy for player 1 which, for present state 1 and

any past history h, prescribes action T with probability 1	 ðkðhÞ þ NÞ	2
and action B with probability ðkðhÞ þ NÞ	2, where kðhÞ denotes the num-
ber of stages where player 2 has chosen action R minus the number of
stages where player 2 has chosen action L with respect to the history h.

Then for any e > 0, if N A N is at least 1
2e, then the strategy pN is an e-

optimal strategy for player 1.
(d) Player 1 has no Markov e-optimal strategy for initial state 1, if e A

�
0; 12
�
. In

fact, player 1 can only guarantee reward 0 by Markov strategies, namely

f1ð f Þ ¼ 0 Ef :

The proofs of (a), (b), and (c) can be done by showing that, for initial state 1,
player 2 can guarantee 1=2 by playing y ¼ ð1=2; 1=2Þ, and player 1 can guar-
antee 1=2	 e by the strategies in (c) for any e > 0.

It is easy to verify that, for initial state 1, the strategy y ¼ ð1=2; 1=2Þ guar-
antees 1=2 for player 2. In fact, regardless of the strategy that player 1 uses
against y, the reward always equals 1=2, since the expected payo¤ equals 1=2
for each stage.

For any e > 0, the strategies in (c) have been found and have been shown
to guarantee 1=2	 e for initial state 1, by Blackwell & Ferguson (1968). Notice
that this strategy is rather complex and player 1 has to make use of the whole
past history of the play when choosing his actions.

Finally, we explain (d). Take an arbitrary Markov strategy f for player
1. Let rnð f Þ denote the overall probability that absorption occurs at any of
the stages n þ 1; n þ 2; n þ 3; . . . with respect to f when the initial state is state
1 (clearly, this probability is indepedent of the strategy used by player 2, due
to the fact that f is a Markov strategy and the transition structure of the
game). Since the probability that absorption occurs up to stage n converges to
r0ð f Þ as n tends to infinity, we have r0ð f Þ ¼ limn!yðr0ð f Þ 	 rnð f ÞÞ, hence
limn!y rnð f Þ ¼ 0. Let e > 0 be arbitrary. Then there exists a stage N such
that rNð f Þa e. Now consider the Markov strategy g for player 2 which pre-
scribes action R up to stage N and action L for all further stages. Then, with
respect to the ð f ; gÞ, the following 3 events can occur:

(i) Absorption takes place in entry ðB;RÞ at some stage in 1; . . . ;N;
(ii) Absorption takes place in entry ðB;LÞ at some stage in N þ 1;N þ 2; . . . ;
(iii) No absorption occurs at all, and entry ðT ;LÞ is played at all stages in

N þ 1;N þ 2; . . .

By the choice of N, event (ii) has probability at most e, therefore g1ð f ; gÞa e.
As e > 0 was arbitrary, we have shown (d).

3 Concluding Remarks

Instead of examining optimality for the infinite horizon game, one could alter-
natively study optimality for games with a (possibly unknown) finite, but suf-
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ficiently long, horizon. This yields uniform (e-)optimality, i.e., for player 1 a
strategy p is uniform optimal for state s A S if

Ed > 0 bN d : Esps
1

N

XN
n¼1

rn

 !
b vs 	 d EN b N d; Es A S:

The definition of uniform e-optimality is similar. The result of Mertens &
Neyman (1981) also applies for the existence of uniform e-optimal strategies.
Also, any stationary (e-)optimal strategy is necessarilly uniform (e-)optimal as
is shown by Bewley & Kohlberg (1978). We would like to emphasize that The-
orem 1 is also valid for uniform (e-)optimality; all proofs and counterexamples
still apply.

Bewley & Kohlberg (1978) give necessary and su‰cient conditions for the
existence of stationary optimal strategies by using Puiseux expansions for the
l-discounted value. The l-discounted reward (l A ð0; 1Þ) is defined by

gls ðp; sÞ :¼ Esps

Xy
n¼1

lð1	 lÞn	1
rn

 !
:

For l close to 0, the l-discounted value can be expanded as a Puiseux series,
i.e. a Laurent series with fractional powers of l.

A characterization for the existence of stationary (e-)optimal strategies in
terms of mathematical programming is provided by Filar et al. (1991).

For (e-)optimality in terms of Markov strategies we refer to Flesch et al.
(1997).
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