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Abstract

In a zero-sum limiting average stochastic game, we

evaluate a strategy T for the maximizing player, player

1, by the reward @~(T) that m guarantees to him

when starting in state s. A strategy T is called non-

improving if 48 (T) ~ q5~(m[h] ) for any state s and for

any finite history h, where ~[h] is the strategy T con-

ditional on the history h; otherwise the strategy is

called improving, We investigate the use of improv-

ing and non-improving strategies, and explore the rela-

tion between (non-) improvingness and (s-)optimality.

Improving strategies appear to play a very important

role for obtaining e-optimalit y, while O-optimal strate-

gies are always non-improving. Several examples will

clarify all these issues.

1 Introduction

We deal with zero-sum stochastic games with finite
state and action spaces. These games model conflict

situations in which two players are involved with com-

pletely opposite interests. such a game 17can be de

scribed by a state space S := {1, . . . . z}, and a corre-

sponding collection {iM1, . . ., M.} of matrices, where

matrix MS has size m: x m: and, for is G IS :=
{1,..., m~} and js c Js := {l,... ,m~}, entry (is,js)

of M$ consists of a payoff r~ (i$, j~ ) E R and a proba-

bility vector p, (is, j.) = (P. (tli,,j~))tw. The elements

of S are called states and for each state s E S the el-

ements of Is and J* are called actions of player 1 and

player 2 in state s. The game is to be played at stages

in N in the following way. The play starts at stage 1

in an initial state, say in state S1 6 S, where, simulta-

neously and independently, both players are to choose

an action: player 1 chooses an i~l E 181,while player 2

chooses a j~l c J. 1. These choices induce an immedi-

ate payoff T$l (i~l, j~l ) from player 2 to player 1. Next,

the play moves to a new state according to the prob-

ability vector p~l (Z~l, j~l ), say to state S2. At stage 2

new actions i~~ G 1.2and j~~ G J8Z are to be chosen by
the players in state S2. Then player 1 receives payoff
r~z (i:,, j~, ) from player 2 and the play moves to some
state S3according to the probability vector p+ (i~~, j~~ ),

etc,

The sequence (sl, Zjl, j~l; . . . ; Sn, i~~, j~~ ) is called the

history up to stage n. The players are assumed to have

complete information and perfect recall,

A mixed action for a player in state s is a probability

distribution on the set of his actions in state s. A strat-

egy is a decision rule that prescribes a mixed action for

any history of play. such general strategies, so-called

history dependent strategies, will be denoted by T for

player 1 and by a for player 2, and 7r~(h) and u, (h) will

denote the mixed actions for present states and history

h. If the mixed actions prescribed by a strategy only

depend on the current stage and state then the strat-

egy is called Markov, while if they only depend on the

current stat e then the strategy is called stationary. We

will use the respective notations z and y for stationary

strategies and ~ and g for Markov strategies for players

1 and 2.

For a strategy T and a history h, we can also define the

strategy r[h] wh~ch prescribes a mixed action 7rs[h] (i)

for each history h and present state ~, as if h had hap-

pened before fi, i.e., m. [h](k) = m, (hh), where h~ is the

history consisting of h concatenated with 6.

A pair of strategies (m, a) with initial state s c S de-

termines a stochastic process on the payoffs. The se-

quences of payoffs are evaluated by the limiting average

reward, given by

where rn is the random variable for the payoff at stage

n G N, and RN for the average payoff up to stage N.

In [4] it is shown that

where v := (08)S~Siscalled the limiting average value.

A strategy m of player 1 is called optimal for initial

state s G S if y. (T, a) > VS for all a, and is called
e-optimal for initial state s G S, s >0, if ~~ (fi, 0) ~
v. — s for all a. If a strategy of player 1 is optimal or

s-optimal for all initial states in S then the strategy is

called opt imal or s-opt imal respectively. Opt imalit y for
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strategies of player 2 is analogously defined. Although

for all c >0, by the definition of the value, there exist

c-optimal strategies for both players, the Big Match,

a famous example introduced in [3] and analyzed in

[1], demonstrates that in general the players need not

have optimal strategies and for achieving e-optimality

history dependent strategies are indispensable.

An alternative, well known, evaluation criterion is that

of @discounted rewards, with ~ E [0, 1), defined for a

pair of strategies (T, a) with initial state s G S by:

(
cc

)7p.(~>d= ~sm (1 –P) ~pn-%n,
‘n= 1

where rm is as above. The ~-discounted value and ~-

discounted optimality are defined as for limiting aver-

age rewards, and in [5] the ~-discounted value up and

stat ionar y /?-discounted optimal strategies are shown

to exist.

2 Preliminaries

In zero-sum games the players have completely oppo-

site interests, so it is natural to evaluate a strategy fl of

player 1 by the reward ~(fi) it guarantees against any

strategy of the opponent, For a strategy T let

Using this evaluation @ we may naturally define the

relation “s-better” between strategies of player 1. A
strategy # is called e-better than n2, where s 2 0,

if ~~ (T1) ~ ~~(m2) — s holds for all s ~ S. O-better

strategies will be simply called better. We will call a

strategy K non-improving if for any state s E S and for

any history h with final state s we have

otherwise T is called improving. Intuitively, a non-

improving strategy, for any stat e, cannot guarantee a

larger reward conditional on any past history than ini-

tially, On the other hand, improving strategiw may

become better during the play than initially.

For example, all stationary strategies are clearly

non-improving strategies, because z = z [h] for any

history h. In the following simple example we show an

instance of an improving strategy.

Example 1:

1 2

Here player 1 chooses rows and player 2 chooses

columns. Not ice that player 2 has nc) influence on the

play at all, as he has only one action in both states. In

each entry, the corresponding payoff is placed in the up-

left corner, while the transition is placed in the bottom-

right corner. In this game each transition is represented

by the number of the state to which transition should

occur with probability 1, Notice that state 2 is absorb-

ing, i.e,, if the play visits state 2 then it stays there

forever. since player 1 has only one action in state 2,

strategies for player 1 only need to be defined in state

1. Consider the Markov strategy ~ for player 1 which

prescribes to play action T with probability 1/2 and ac-

tion B with probability 1/2 at stage 1, and if the play

does not absorb then to play action T at all further

stages. Clearly, ~ yields reward 1/2, hence we obtain

41(~) = 1/2. However, if h* denot~ the history UP to
stage 1 when player 1 chooses action T at stage 1, then

the strategy ~ [h”] prescribes action T for each stage,

hence ~l(~[h”]) = 1. Thus @l (~) < ~l(~[h”]), which

means that ~ is improving.

3 Results

In this paper the main result is given in theorem 5,

which, verbally and less detailed, can be presented as:

Main Theorem In any zero-sum stochastic game, for
any non-improving strategy, there ezists an E-better
stationary .strategy, for any E > 0, and there exists a
better Markov strategy as well.

The above theorem says, that, ~surprisingly, non-

improving strategies are not more effective than sta-

tionary strategies or Markov strategies, This also

means that, instead of using a complex history depen-

dent non-improving strategy, the pli~yer could also use

a simple stationary strategy which guarantees at least

the same reward up to some arbitrarily small E >0, or

he could even achieve t he same reward by employing a

Markov strategy.

Notice that optimal strategies are always non-

improving, since they guarantee the value and no

higher reward can be guaranteed by the definition of
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the value. Using this observation the above result can

be seen as a generalization of the following theorem,

which is proved in [2]:

Theorem 1 In any zero-sum stochastic game, if
player 1 has an optimal strategy, then he also has a
stationary E-optimal strategy, for any E > 0, and a

Markov optimal strategy as well.

The above theorem and the Main Theorem together

have the following corollary. This shows the insuffi-

ciency of the class of non-improving strategies as well as

the indispensability of improving strategies for achiev-

ing s-optimality, for small E >0.

Corollary 2 In a zero-sum stochastic game, if a

player has no stationary c-optimal strategies for small
E >0, then he neither has optimal strategies and all his
E-optimal strategies, with small c >0, are improving.

The next example, the Big Match (cf. [I]), provides

an illustration for the above corollary.

Example 2:

L R

EEa
o 1

T
1 1

B
1 0

* *

1

The notation is the same as in example 1. In fact,

this example is a 3-state game in which states 2 and

3 are absorbing, i.e. once play reaches such a state,

play remains there forever. State 2 has a payoff 1 to

player 1 and is reached (with transition probability 1)

from state 1 by playing (B, L); state 3 has payoff O

for player 1 and is reached from state 1 by playing

(B, R). For initial state 1, the limiting average value is

VI = ~ and player 1 is known to have neither optimal
strategies nor stationary E-optimal strategies for small

s > 0. But for any N E N player 1 can guarantee

4— h by playing the following strategy 7rN: for

any history h without absorption, if k(h) denotes the

number of stages where player 2 has chosen action R
minus the number of stages where player 2 has chosen

action L, player 1 has to play the mixed action:

(7r~(h) := 1 – )(k(h) +lN + 1)2‘(k(h) +lN + 1)2 “

Three results can all be found in [I]. Clearly, the latter

strategy nN is improving, since for the history h =
(1, T, R) we have 7rN[h] = mN+l.

4 Proof

First we introduce some more notaticms. Let n denote

a fixed non-improving strategy and let

a :==f#J(7r).

where

PS(%,YS) = ~ G(L) Ys(js)Ps(tl&, js).
L ,L

For~GXandy CY let

A(z, y) := (AS(%,YS)).CS -

For all s ~ S let

so X* is the set of mixed actions of player 1 in state

s which assure that after transition a,will not decrease

in expectation.

Lemma 3 The sets -%., s c S, are nonempty poly-

topes.

Proofi Let s G S. One can verify that the lin~rity

of A8 in both components implies that the set X8 is

a polytope. Now we- prove that ~, is nonempty by

showing that r, G X., where w. dlenotas the mixed

action prescribed by m for stage 1 if the initial state is

state s. By the definition of @$(T)

“$4(d%&,~sl),

hence using the definition of a and the non-

improvingness of n we have
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so the proof is complete. ❑

If Z is a polytope then Relint (Z) denotes the relative

interior of the polytope Z, which is defined as the set

of points in Z which can be written as a convex combi-

nation of all t he extreme points of Z with only strictly

positive coefficients.

The following technical lemma is needed later for the

construct ion of a restricted game. Here, on condition

that player 1 uses a strategy z ~ Relint (X), we are

looking for the largest set S’ of states which can be

made recurrent and the largest sets Y8’, s ~ S’, of mixed

actions which keep all the states in S’ recurrent.

Lemma 4 There exist a nonempty S’ c S and a non-

empty Y’ = x~cst Y:, where Y; c Y8 are polytopes for
all s G S’, such that for any z G Relint(X)

(a) for any y G Y, ifs E S is recurrent with respect to
(z, y) then s G S’ and y. c Y;;

(b) for any y G Y with YS G Relint(~’) tor all s G

S’, all states s E S’ are recurrent with respect to
(Z,y).

Proofi Take an arbitrary z ~ Relint (~). For j ~ J,
let R(j) denote the set of recurrent states with respect

to (z, j). Now let

s’:=uj&l R(j).

For s G S’ let

Y; := conv {J~} , Y’ := X.CSI y:,

where conv stands for the convex hull of a set. Note

that these sets are independent of the choice of

z G Relint (X), because all z & Relint (X) put positive

probability ies on the same actions in any state. It is

not hard to check that S’ and Y’ satisfy the required

properties. ❑

By the finiteness of the state and action spaces,

there exists a countable subset of discount factors

B C (O, 1) such that 1 is a limit point of 2? and

there are stationary ~-discounted optimal strategies

xp G X’ in the restricted game P such that the sets
{i. G 1,1Z@~(Z8) > O}, s E S, are independent of

~ G B. In the sequel each time thak we are dealing

wit h discount factors, discounted optimal strategies,

or with limits when the discount factors converge to 1,

we will have such a subset of discount factors 1?in mind.

Theorem 5 Let n- G II be a non-improving strategy in
a zero-sum stochastic game. By using the strategy T,
define S’, X’, Y’, and the restricted game l? as above.

(a) For any ~ G B, let X@ G X’ be a /3-discounted
optimal strategy in the restricted game I?( and let
z c Relint(X), Then, for any .s >0, if/3 c l?,
T c (O,1) are suficzently large then the stationary
strategy x; E X, given for state s G S by

{

T.L-up.+(l-’ T).x. zfs Es’x;.:=
z~ ifs Es\s’ ‘

is E-better than x in l?.

(b) Let en, n E N, be an arbitrary monotonously de-
creasing sequence converging to O. Let the sta-
tionary strategy xn c X’ be Em-better than n for
all n ~ N. Then there exists a sequence Kfi in II
such that the Markov strategy jfwhich prescribes
to play xl for the first K1 stages, then to play X2
for the next K2 stages, etc., is better than T.

A similar statement holds for player .2 as well.

To illustrate this theorem we present the following

example in which we focus on optimal strat gies as

non-improving strategies.

Example 3:

L R

Recall that we have fixed a non-improving strategy n

for player 1. Let X be as above, let S’ and Y’ be

as in lemma 4, and let X’ := x S=S X$. In view of

lemma 4, we may define a restricted stochastic game

r’ in the following way. Let I“ be the game, derived

from 17,where the state space is S’ and the players are

restricted to use strategim that only prescribe mixed
actions in X: and Y: if the play is in any state s G S’.

Clearly, X’ and Y’ are respective stationary strategy

spaces in I“ for the players.

1

The value for the only non-trivial initial state 1 k

vl = 1. It is not hard to show that there are optimal

strategies for player 1 (later we will construct optimal
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Markov strategies). Therefore we have S’ = S for this

game.

Following the construction for stationary s-optimal

strategies, we have X’ = X, Y’ = {(1, O)}. Now the

unique /3-discounted optimal strategy of player 1 in 1?

is Zp = (O, 1) for all ~ ~ (O, 1). The role of Z~ is to play

well as long as player 2 plays in the restricted game I“,

namely to guarantee the value v as long as player 2

chooses action L in state 1. However, an enforcement

is needed to make sure that player 2 is not better off

by playing outside Y’, namely by choosing. action R.
Therefore we take a strategy z ● Relint (X), for ex-

ample z = (1/2, 1/2), which will force player 2 not to

choose action R, since then R leads to absorption with

payoff 2. Now for -r,~ ~ (O, 1) we have

zj=T. zp+(l– T). z=(l/2– T/2,1 /2+ T/2).

The strategy Z$ is e-optimal for large -r and ~ indeed,

as the stationary strategies (p, 1 —p) are e-optimal for

all p G (0, s].

Note that player 1 has no stationary optimal strategy

in this game. One can argue as follows. If a stationary

strategy x prescribes action T with a positive proba-

bility then z only gives a reward strictly less then 1 if

player 2 always chooses action L. On the other hand,

if z chooses action B with probabilityy 1, then if player

2 always takes action R then the reward is O. Thus no

stationary strategy can guarantee v = 1.

A Markov optimal strategy can be constructed as

above. The idea is to increase ~ and -r simultaneously

during the play so that player 1 plays better and better

in the restricted game. However, 7-must be increased

sufficiently slowly so that player 2 cannot choose

action R “too often” wit bout absorption. Formally, let

en = l/n and take the stationary en-optimal strategy

zn = (sn, l — cm) G X’ for all n e N. Let Km = 1 for

all n c N. Let ~ be the Markov strategy as in theorem

5. So at stage n, the strategy ~ chooses action T with

probability I/n and action B with probability 1– l/n.

One can verify that f is optimal. VVe only give an

intuitive argument. If player 2 chooses action R with
a “positive frequency” then absorption occurs with

probabilityy 1 due to the slowly decreasing probabilities

on action ~ while almost always choosing action L
yields reward 1 since the probabilities on action B
converge to 1.

We now provide a proof for theorem 5. Recall that

we have fixed a non-improving strategy T. In the re-

stricted game r’, let H’ denote the set of finite histories,
III and Z’ the sets of history dependent strategies, y’
the limitingavarage reward, vi the f7-discounted value

for all @ G (O, 1). Let v’ := ~impTl vj (here “limit” is

understood to be taken for a sequence of ~’s). Also, let

~:={cr~qa.(h) GY; for all s G S’ and h G H’};

so ~ and ~ are the set of strategies in the original game

r with the property that, as long as the play is in the

restricted game I“, they behave as strategies in II’ and

z’.

By using the definition of ~, the following lemma is

straightforward.

Lemma 6 Let x G X and y G Y. Suppose E is an
ergodic set with respect to (x, y). Z5en as = at for all
s,t CE,

Next, we show an important prop,erty of the sets

x:,Y;,s E s’.

Lemma 7 For any s c S’, we have that A,(x,, YS) =
a, for all XS ~ X; and y, G Y.’.

Proofi Take a~bitrary s G S’, z. c X:, and y. 6 Y;.

Let 2 G Relint (X) and y G Y with yt ~ Relint (Y;) for

all t G S’. In view of lemma 4-(b), state s belon~ to an

ergodic set E with regard to (2, ~), hence by lemma 6,

we obtain at = a~ for all t, w ~ E. As p.(tf%, y,) >0

implies t G E, we must have p~(t]zs, y$) > 0 also
implies t G E, which completes the proof. ❑

Lemma 8 Let s E S’ be an arbitrary initial state and
let H, be the set of histories starting in s. Also, let

Us := {(h, t) E Hs x S[ P.=a (h) >0 and

where P*=V(t Ih) is the probability that, with respect to
(z, CJ), the new state becomes state t after history h.
Then xt(h) c X; for all (h, t) G U8.

Proofi Suppose the opposite, Then there exists a

shortest history &n c Ha, say up to stage n, and a

state t such that P~To (in) >0 and ~P~=o(tlfin) >0 for

some a c ~ and fit (fin) @ Xi. Since mt(in) @ X; there

exists a ~t ~ Yt such that

For any present state z t S’ and past history h e

H’, we define a mixed action &(h) G Yz as follows: if
~Z (h) c X: then let &Z(h) G Y;; while if m. (h) G xx \
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X: then let ~Z(h) & YZ such that Az(Tz(h), &z(h)) < az.
By lemma 7, we have in both cases that

AZ(~.(h), C.(h)) < a.-

Let

6 e (o, Psfla(fin) “ Tsmo(tlin) oT) .

Let S1 := s, and let sm , m ~ 2, denote the random

variable for the state at stage m, and let 8m denote

random variable for the history up to stage m ~ N.

Let IS8 c Z be the strategy that prescribes to play as

follows: play u during the first n stages; at stage n + 1,

if Q%= hn and Sn+l = t then play yt while if On # ~m

or Sn+l # t then play the mixed action ~~.+, (On); and

finally, play a &best reply against fl[@n+l] from stage

n -t 2 on. Note that

P.in.8 (fin) = P.lfla(ir) >0.

Since we have chosen a shortest history &n with the

above property, the play up to stage n has been going

in the restricted game l?. By lema 4(b), we must

have Sn ~ S’, and by the definitions of

obtain in expectation

:$lna$ (a,m+l ) = a~,.

The choices of the used mixed actions

imply

t~,fic, (a~~+2) ~ f.lna, (a~m+l) –

X’ and Y’, we

at stage n + 1

P.lmaa(lv) - P.lma(tp) . ‘i-.

Since from stage n+ 2 player 2 plays a &best reply and

T is non-improving, the choice of 6 yields

‘y,,(7r,d) < E P.1fla6(hn+1)P.lno(zlh~+l)
~n+l•~n+l

ZES

‘yz(7r[hn+l],178[hn+1])

<
x T$l=O.(WI) P.1fia(2p+l)

hn+l~HTZ+l
Zes

(az+ 6)

= ~SITu.(a..+2)+ 8

~ Z81mmt(a$n+,)

–P.,*O.(m) P.l=o(tp) T + 8

= a.1– P.lfi.(m) T.lma(tp)‘r+ 6

< asl,

which contradicts the definition of a. ❑

The next result follows similarly to lemma 2.3 in [2].

Lemma 9 We have

Proof of theorem 5: By usingthe above lemmas, the

proof is almost the same as the proof of theorem 1 in

[2]. Note that lemma 4-(a) is needed for achieving the

following crucial property: if a pure stationary strategy

j c J is a best reply to some x;, then, in any ergodic

set with respect to (xL, j ), the play is in fact taking

place in the restricted game I“. ❑
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