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Stationary equilibria in discounted and limiting average finite s tate/act ion space stochastic games are 
shown to be equivalent to global optima of certain nonlinear  programs. For zero sum limiting average 
games, this formulation reduces to a linear objective, nonlinear  constraints program, which finds 
the "best"  stationary strategies, even when e-optimal stationary strategies do not exist, for arbitrarily 
small e. 
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Introduction 

In 1964 Mangasarian and Stone [12] showed an interesting connection between 
quadratic programming and bimatrix games. In particular, they constructed a quad- 
ratic program which has a global maximum of zero, and showed that the optima 
of this program form Nash equilibria of the bimatrix game in question. Despite 
encouraging numerical results reported in [12], this mathematical programming 
approach to the computation of Nash equilibria of non-cooperative games appears 
to be all but forgotten. Of course, in the context of bimatrix games, the results of 
[12] were superseded by the finite algorithm of Lemke and Howson [11]. The latter 
algorithm, however, is not easily extended to general N-person games (see [14, 20] 
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for such an extension), whereas the method of Mangasarian and Stone [12] can be 
extended to the N-person case, at the cost of only increasing the order of the 
polynomials in the objective function and the constraints. 

In this paper we demonstrate that the basic conceptual approach of [12] can 
further be extended to infinite horizon stochastic games with either the discounted 
or the limiting average payoff criteria. In particular, by combining appropriate 
properties of Markov chains with a nonlinear program in the spirit of  Mangasarian 
and Stone [12], we are able to characterize all stationary Nash equilibria of these 
games (when they exist) as global minima of that program. In doing so we solve 
one of the main open problems of stochastic games, as stated by Bewley and 
Kohlberg [1]. In the process, we clarify a characterization due to Sobel [17] of 

stationary equilibria in the average reward stochastic games. 
Our results strengthen and supersede earlier attempts at characterization of 

stationary equilibria (see, e.g., [2, 6, 16, 19]). 
For the zero sum case we also demonstrate that even when stationary optimal 

strategies fail to exist, the global optima of our nonlinear programs supply the 

"best" stationary strategies. 
Finally, it ought to be mentioned that, perhaps, the first nonlinear programming 

formulation of  stochastic games was due to Rothblum [15]. 

1. Preliminaries and notation 

A stochastic game F is defined by the 5-tuple (S, K, A, R, Q), where S is a finite set 

of states, K is a finite set of  players, A = {ASk ] k ~ K, s c S} consists of finite sets of 
actions for each player k in each state s, and R and Q, described below, respectively 

denote a reward and transition law. Given a starting state s ~ S, play proceeds 
through stages t = 0, 1, 2 , . . . ,  and based on the choices of actions by the players, 
rewards (according to R) are received at each stage, and transitions (according to 
Q) among the states take place. The players control the course of the game through 
strategies, and a relatively simple class of strategies are the stationary strategies. 
A stationary strategy for player k ~ K, denoted fk  C F k = {fsk(a)ls c S, a c Ak}, 
describes the probability with which player k ~ K chooses action a c As k whenever 
the game is in state s ~ S. When each player k ~ K fixes a stationary strategy f k ~ Fks, 
a (joint) stationary strategyf c FI~ = {fk I k c K, f k  ~ Fks} is defined. For a joint station- 

~' K ary strategy f c  F s ,  and for some player k c K and stationary strategy f ~  F k, the 
joint stationary strategy f<k,s,y> denotes the strategy where all players choose actions 
dictated by f,  except that player k, when the game is in state s 6 S, chooses actions 
dictated by f Similarly, f<k,y> denotes the strategy where player k plays according 
to f in all states, and the other players according to f. For a player k ~ K, state s c S, 
and action a ~ ASk, the joint stationary strategy j~k,s,a> indicates that player k chooses 
action a with probability 1 when the game is in state s, and that otherwise all players 
choose actions dictated by f. 
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The reward law R = { r k ( f ) I f e  F'~, k c K, s ~ S} denotes the (immediate or one- 

stage) expected payoff to player k c K if the game is in state s ~ S. Similarly, the 

transition law Q = {q(s'ls, f)lYe F~, s, s'e S} denotes the probability that a transi- 
tion occurs from state s c S to state s ' c  S when the s t ra tegyf~  Fs  K is used. It should 

be clear from these definitions that 

rk ( f )  = 2 f~ (a ) r~( f  (k's'~>) 
aeAks 

and 

V k c K ,  s e S ,  f e F ~ ,  (1.1) 

q(s'[ s , f )  = a~a~f~(a)q(s'[ s , f  (k'~'a>) V k c  K, s c S, f c  F g .  (1.2) 

Further, it should be clear that in order to define the reward (or transition) law, it 
is sufficient to define rewards to each player (or transitions to each state) in a state 
s~  S for "joint actions" in the finite set Xk~K Ask; the terms rk( f )  (or q(s'ls, f ) )  
are weighted averages of these pure rewards (or transitions). 

In order to evaluate the game's total return, the players aggregate the stream of 
stage-by-stage rewards. Specifically, given a fixed joint stationary strategy f ~  Fs  K 
and a starting state s ~ S, let Ek(f ,  t) denote the expected payoff to player k ~ K in 
the tth stage when the starting state is s and the joint strategy f is followed. The 
~3-discounted (game) payoff to player k c K when the game starts in state s 6 S is 

defined as (for/3 ~ [0, 1)) 

co 

thk(/3;f) = • /3'E~(f, t) (1.3) 
t=0 

and the limiting average (game) payoff is defined as 

1 r 
th~(f) = lim E E~(f, t). (1.4) 

T~'co ~ t =0 

For non-stationary strategies, the limit in (1.4) may not exist; in this case it is 
customary to take the lira inf. 

A joint strategy f c  F s  K forms a ~3-discounted (stationary) equilibrium with equili- 
brium payoffs ~ c { vk [ k C K, s c S} if 

^k V s = g a k ( f l ; f ) ~ ¢ k ( / 3 ; f  ~k'f>) V k ~ K , s ~ S ,  S c F  k, 

and forms a limiting average (stationary) equilibrium if 

~k = c k ( f )  >1 (ak(f(k.y>) Vk  ~ K, s c S, f c  F k. 

A one player game is equivalent to the well-known Markov Decision Process (MDP), 
and we make use of the considerable literature for MDPs. It can be easily verified 
that for an equilibrium f c F ~ ,  each f k  C F k for k ~ K forms an optimal maximizing 
strategy in the MDP obtained from the game where all the remaining players 1 c K, 
l ~ k, fix their strategies at f '  (see, e.g., [5, 10]). For MDPs it is known that f is an 
optimal stationary strategy (usually called a policy) for the single player (usually 
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called the decision maker) in the fl-discounted MDP, and ~ s = ~ s ( f l ; f )  V s e S  
(dropping the superscript k) is the optimal fl-discounted payoff starting in state s, 
if and only if 

~ , = r s ( f ) + / ~  Y~ ~s,q(s'ls, f )  V s ~ S ,  (1.5) 
s ' E S  

v~>~r,(f"">)+fl ~. #s,q(s'ls, f <~'~>) V s c S ,  a e A , ,  (1.6) 
s ' c S  

where f~'~> indicates that whenever in state s e S, the decision maker chooses action 
A 

a e As with probability 1. A strategy f is an optimal stationary policy in the limiting 
average MDP, and ~s = 4~( f )  Vs e S is the optimal limiting average payoff starting 
in state s if and only if (i) and (ii) hold: 

(i) ~s= ~. ~s,q(s'[s,f) V s e S  (1.7) 
s '  ~ S  

>I Z Vs'q(s'ls, f (s'a)) V s e S ,  a e A s .  (1.8) 
s t E S  

(ii) There exist vectors ~, ~'e R s such that (cf. [3] and [9]) 

V s + ~ s = r ~ ( f ) +  ~. ~s,q(s'ls, f )  V s e S  (1.9) 
s'6S 

and 

V s + t s > ~ r s ( / ( s ' a ) ) - t  - ~ ~s,q(s'ls, f <S'a>) VseS, aeA,. (1.10) 
s ' c S  

2. Discounted games 

For non-zero sum fl-discounted stochastic games, it is known that stationary equili- 
bria exist. This result was independently discovered by Fink [7], Takahashi [18], 
Rogers [13] and Sobel [17]. 

The theorem presented below characterizes all stationary equilibria as global 
optima of a suitably constructed mathematical program. 

Theorem 2.1. Let F = ( S , K , A , R ,  Q) be a stochastic game, and let ~e 
{Vskl k ~ K, s e S}, and f c Fs  be given. The joint strategy f forms a fl-discounted 
( Nash ) equilibrium with equilibrium payoffs ~ i f  and only i f  the variables ( ~, f )  are a 
global minimum (objective value will be zero) in the following nonlinear program N L P  
2.2. 

NLP 2.2. Variables v e {v~,lk c K, s ~ S}, f e  { f~(a) lk  c K, s c S, a ~ Ak}; 

minimize Y. ~ [vk- -r• ( f ) - - f l  ~. vk, q(s'is, f ) ]  
k e K  s o S  s ' e S  
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subject to 
k k ( k , s , a )  (i) vs>~r~(f )+fl ~ vk, q(s'Is, f ~k'~'~)) 

s ' E S  

(ii) Y~ fk(a)----1 V k ~ K , s ~ S ,  
a ~ A  k 

(iii) fk(a) >! 0 Vk E K, s ~ S, a E A~. 

V k e K ,  s~S,  a E A  k, 

Proof of Theorem 2.1. First notice that by constraints (i), the global optimum of 
NLP 2.2 is at least zero. Let f be/3-discounted stationary equilibrium with equili- 
brium payoffs 9. Since f is a stationary strategy, constraints (ii) and (iii) of NLP 
2.2 are satisfied. At equilibrium, each player k ~ K solves a/3-discounted MDP, so 
relations (1.5) and (1.6) hold for each player kEK,  which implies that 03,f)  is 
feasible with objective value zero. Hence (13,f) is optimal. 

Now, assume (~3, f )  is a global minimum to NLP 2.2. The zero objective (by the 
first part of this proof) and the constraints (i), (ii) and (iii) imply that (1.5) and 
(1.6) hold for each player k~ K, ~3 k, and fk. Hence, fk  is optimal for player k in 
the MOP obtained when all the other players fix if, I c K, l ~ k. Therefore, f is an 
equilibrium. [] 

From a practical standpoint, an interesting feature of NLP 2.2 is that reduction 
of the objective to near zero implies that a near equilibrium has been found. To 
make this precise, for an e > 0, a stationary strategy f c  Fs  K forms a ~3-discounted 
e-equilibrium if 

6)(/3;f)+e>-4~)(/3;f  <k'y>) V k c K ,  s~S,  f c F ~ .  

The notion here is that each player k c K gains no more than e by a unilateral 
deviation from the strategy fk. 

Corollary 2.3. I f  variables (*3, f )  are feasible in NLP 2.2, and the NLP 2.2 objective 
has value 31 > O, then florins an e-equilibrium with some e no greater than 3'/(1 - /3) .  

Proof. 
NLP 2.2 objective to be non-negative term-by-term, 

*' ,k  A - ' , k  t " v s - r ~ ( f ) - / 3  Y. Vs,q(s [s,f)<~3" V k e K ,  seS ,  
s ' E S  

which by applying a standard iteration of inequalities argument, implies 
A k  vs-4)~(/3;f)<~ y / (1- /3)  VkEK,  scS ,  

or, equivalently 
k ^ ~3k~4~s(/3;f)+e V k e K ,  s~S,  w h e r e e = 3 ' / ( 1 - / 3 ) .  

The constraints (i) of NLP 2.2 provide the relations 
^ k  Vs>-gpk(/3;f <k'f>) V k ~ K , s ~ S ,  feFsK,  

and (2.1) combined with (2.2) provide the result. [] 

Since the NLP 2.2 objective is 3,, and since the constraints (i) force the 

(2.1) 

(2.2) 
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3. Limiting average games 

The issue of existence of equilibria in limiting average games is of greater order of 
difficulty than in discounted games. The examples of [4] and [8] demonstrate that 
stationary limiting average equilibria do not always exist. Sobel [17] attempted the 
first explicit characterization of limiting average games which possess stationary 
equilibria, and in Theorem 4 of [17] claims that the existence of such equilibria is 
equivalent to feasibility of a set of linear and nonlinear constraints. While this 
theorem holds in the important irreducible case, the following example demonstrates 
that it fails even in the "unichain" case where transient states occur. 

Example 3.1. Consider the following 1-player game (MDP): 

K={1} ,  S={1,2} ,  AI={1,2},  A~={1}. 

Recall that a stationary strategy f ~ {fks ( a ) l k ~ K, s ~ S, a ~ a~} = F g  has the form 
f =  ( ( f l (1) , f ] (2)) ,  (fl(1))).  Let f and f c  F ~  be defined by f =  ((1, 0), (1)) and 
f =  ((0, 1), (1)). The reward and transition laws are defined as 

r l l ~ )  = 1, r l ( f )  = r~(/) = r~(f) -- 0, 

and, for all f ~ Ff and s c S, 

{01 i f s ' = l ,  
q(s'ls, f ) =  if s '=2 .  

Of course, this means that state 2 is absorbing. Clearly, f =  ((0.5, 0.5), (1)) forms a 
limiting average equilibrium with equilibrium payoffs zS~ = 151 = 0, but this equilibrium 
strategy and payoff do not satisfy conditions 4.6 and 4.7 simultaneously of Theorem 
4 in [17]. 

The following theorem gives a complete characterization of all stationary equilibria 
for limiting average stochastic games, without any restrictions on the ergodic struc- 
ture of the process. 

Theorem 3.2. Let F = ( S , K , A , R , Q )  be a stochastic game, and let ~ 
{ v ~ l k ~ K, s ~ S}, a n d r e  F~ be given. The strategy f forms a limiting average ( Nash ) 
equilibrium with equilibrium payoffs ~ if and only if there exist f c {t~l k ~ K, s ~ S} 

A A A 
and ~ c {w~] k c K, s ~ S} such that the variables (v, f, t, ~) are a global minimum 
with objective of  zero in the following N L P  3.3. 

NLP 3.3. Variables 

v c { v ~ [ k ~ K , s ~ S } ,  f ~ { f k s ( a ) l k c K ,  s ~ S , a ~ A ~ } ,  

t e { t ~ l k ~ K ,  s c S } ,  w c { w ~ [ k ~ K , s ~ S } ;  

minimize 2 2 I v Y -  ~ Vks'q(s'ls, f ) ]  
k ~ K  s E S  s ' ~ S  



subject to 

k (i) V s >1 ~, 
S ' E S  

(ii) 

(iii) 

(iv) 

(v) 
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vk, q(s']s,f (k's'a)) V k • K , s • S ,  aeA~, 

v~+ t~>~ r~(f(k'~'~))+ 2 t~'q(s'ls, f <k'~'~>) 
s'ES 

g+wk=rk(f)+ ~ wk, q(s'ls, f )  VseS, Vs 
s~ES 

Z f ~ ( a ) = l  VkeK,  seS, 
a~Aks 

f(a)>-O VkeK,  seS, a e A  k. 

VkcK,  seS,  aeA~, 

233 

Proof  of  Theorem 3.2. First notice that by constraint (i), for a global optimum (if 
it exists) of  NLP 3.3, the objective is at least zero. Let f be a limiting average 
stationary equilibrium strategy with equilibrium payoff ~. Since f is a stationary 
strategy, constraints (iv) and (v) of NLP 3.3 are satisfied. At equilibrium, each player 
k e  K solves a limiting average MDP, so relations (1.7) to (1.10) hold for each 
player k • K, and suitable i "k and ~k. This implies that (~,f, ~', ~) is feasible with 

objective zero, and hence that we have an optimal solution. 

Now, assume (~,f, ~', ~) are a global minimum to NLP 3.3 with objective value 
of zero. The zero objective along with constraint (iii) implies that Ak Vs is exactly the 
limiting average payoff to player k when the game starts in state s and stationary 
strategies f are followed. Then the constraints (i) and (ii) of NLP 3.3 provide the 
conclusion that f is a limiting average equilibrium with equilibrium payoffs ~. [] 

If  a global minimum is found in a formulation of NLP 3.3 without a constraint 
similar to (iii) above, it is possible to derive the relations 

Ak v~>~d~(f <k''f>) VkeK,  seS, feFI~, (3.1) 

but 6 (f)l may not be zero or even small Vk • K, s • S. Both (3.1) and equality 
(closeness) of  ~ and ~b(f) are needed to conclude that a limiting average equilibrium 
(near-equilibrium) has been found. Also, a feasible point in NLP 3.3 with a small 
objective does not necessarily imply a near-equilibrium has been found, and a result 
analogous to Corollary 2.3 cannot be presented here. 

4. Limiting average two-person, zero sum games 

The characterization developed in Section 3 also includes the important two person, 
zero sum games (where K = {1, 2}, and r l ( f )  = - r 2 ( f )  V f e  Fsn), but for these games 
a simpler, more powerful formulation can be derived. The zero sum reward law 
implies that ~b~(f) = -~b~(f) Vs e S, f e  F ~ ,  and f = (fa,f2) e F~ forms a limiting 
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average equilibrium (called an optimum or optimal strategies) with optimal payoffs 
13 e {v k ] k e {1, 2}, s e S} if  the following condition is satisfied: 

~ ( f , ,  f 2 )~  4'~(f)  = ~ = -~3~ = -4b~( f )~  -4b~( f ' , f  2) 

for all s e S, f l  e Fls, f2 e F2s, and forms an e-optimum if 

q$ a(/,, ]2) ~ ,;b~(]) + e (4.1) 

and 

2 A _ _ l ~ 2 ( f l  - ( a s ( f )  - e <~ fa) (4.2) 

for all s e S, f~ • F~, f2 • F~. Of course, e-optimality with e = 0 is equivalent to 
optimality, since q~s( f )=-4~2(f )  V f e  F ~ .  

Given the fact that stationary optimal strategies need not exist, it is useful to 
develop a measure of the "distance" from optimality for an arbitrary pair of 
stationary strategies. We propose the following natural measure of  such distance: 

Let f =  ( f l , f 2 ) e  Fs  K be arbitrary and fixed, and define 

6 ( f ) = Y ~  [ max ' ~ s ~ s  s ~2 • ] Cks(f , f  ) - l n l n  41s(f~,f 2) . (4.3) 

Note that every term in (4.3) is non-negative, and 6 ( f )  = 0 if and only i f f  is optimal. 
Further, when 0 <  6 ( f ) ,  then f is e-optimal for an e no greater than 6 ( f ) .  

The following theorem shows that the nonlinear program NLP 4.2 below character- 
izes games with stationary optimal and e-optimal strategies, and finds the "best" 
stationary strategies with respect to the measure 6 ( f )  defined above. As such, it 
represents a generalization and an improvement of Theorem 2.1 in [6]. It should 
be noted that for f e F s  K where K = {1, 2}, the terms r ( f  (k's'a)) and q(s ' is  , f(k,~,o)) 
are linear in f. 

Theorem 4.1. Let F = (S, K, A, R, Q) be a two person, zero sum, stochastic game, 
and let f c  F~ be given. I f  there exist ~ ~ {vkslk e K, s e S} and t e  { tk lk  e K, s e S} 
such that the variables ( 3,f, ~) are feasible in the following N L P  4.2 and the N L P  
objective has value ore or less, then strategy f is e-optimal. Conversely, if f is e-optimal, 
then there exist ~ and ~ such that (~,f, ~') are feasible in N L P  4.2, and the N L P  4.2 
objective value is 2Isle or less. 

NLP 4.2. Variables 

v e { v k l k e K ,  s ~ S } ,  f e { f k ( a ) l k e K ,  s e S ,  a e A k } ,  

t e { t ~ l k e K ,  s e S } ;  

[vs+v,] minimize Y. 1 2 
s E S  
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subject to 

(i) vls>~ Y. @q(s'ls, f ~1"~'~) Vs~S ,a~A~ ,  
s'ES 

(ii) Vlsq-tls>~rls(f(x's'a))q- ~ t~,q(s'ls, f (l's'~>) 
s'ES 

(iii) 2 >_ Vs~ E vE'q(s'ls, f <2,~'a>) Vs~S ,a~A~  
s 'cS  

(iv) V2s+t~>~r~(f<2""">)+ Y, t2~,q(s'ls, f <2"~'~>) 
s'ES 

(v) Y~ ffs(a)=l V k = l , 2 ,  scS ,  
a ~ A  k 

(vi) fk(a)>~O V k = l , 2 ,  seS ,  aeA~.  

VseS ,  aeA~, 

VseS ,  aeA~,  

235 

Proof. 

The constraints (i) and (ii) of NLP 4.2 imply 

v,~> max ~b](fl ,? 2) V s E S ,  

f l ~ F 1  

while the constraints (iii) and (iv) of NLP 4.2 imply 
~,2 v,~>max ¢ ~ ( f ~ , f 2 ) = - m i n  qS~(fl,f 2) VsES. 

f2~ F2 fZE F2 

A 

Let 2 = (v,f , / ' )  be a global minimum in NLP 4.2 with objective value q~(~). 

(4.6) 

(4.7) 

Corollary 4.3. I f  variables ~ = ( ~, f,, ~) are a global minimum in NLP 4.2 with objective 
value ~(~), then q~(~) = 6 ( f )  <- 6( f )  V f c  F~ (see (4.3)). 

Theorem 4.1 implies that by solving NLP 4.2, the "best" stationary strategies can 
be found, as can be seen from the following results. 

Proof of Theorem 4.1. Let (~, ~ ~') be feasible in NLP 4.2, and let ~s~s [v~ + ~3~] = e. 
The constraints (v) and (vi) imply that f c  Fs  K. 

Along similar lines as in the proof of Theorem 3.2, it can be shown from the 
constraints (i) to (iv) that f forms an e-optimal pair. 

Now assume f = ( f l , f2)  ~ F~ is e-optimal, so f satisfies constraints (v) and (vi). 
By solving an MDP for player 1 with f2 fixed, variables ~ls and [] for s c S can be 
found such that constraints (i) and (ii) of NLP 4.2 are satisfied. Moreover, 

^ 1  vs = max ¢~(f~,f2) <~ ¢~(f)+ e, (4.4) 
f I E F  1 

A A 
since f is e-optimal. By solving an MDP for player 2 with f~ fixed, variables ~2, f~ 
for s c S can be found such that constraints (iii) and (iv) of NLP 4.2 are satisfied, 
and such that 

~s 2 = max 4)2,(f',f 2) <~ ¢ 2(f ) + e. (4.5) 

Thus the variables (~3, f , f )  are feasible, and by summing (4.4) and (4.5) over s ~ S, 
the NLP 4.2 objective is less than or equal to 2ISle. [] 
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Since ~ is a minimum in NLP 4.2, equality must hold in both (4.6) and (4.7); 
otherwise, by solving MDPs with f l  and f2 fixed, variables fi and/- could be found 
such that equality holds in (4.6) and (4.7), and the new variables could be used to 
contradict the minimality of ~. 

Summing (4.6) and (4.7) (with equality holding) over s E S yields q~(2) = 6 ( f ) .  
For any f 6  Fs  K, by solving appropriate MDPs, variables ~5 and ~ can be found 

such that ~= (15, J~ t-) is feasible in NLP 4.2 and 

/.~1 s = max ~b~(f i, f2) Vs ~ S 
f~  F§ 

and 

-2 vs= = - m i n  q ~ 2 ( f l , f 2 )  V s E S .  
f 2  F 2 

Thus, ~ ( f )  = q~(~) by construction and q~(~)/> q~(2) -- S ( f )  by minimality of ~ and 
derivation above. [] 

The next corollary can be shown along similar lines. 

Corollary 4.4. Suppose that the minimum in N L P  4.2 does not exist, but that the 
infimum equals ~ (necessarily non-negative), then for every e > 0 there exists f 6 F~ 
that is ( 71+ e )-optimaL [] 

Remark. Note that by Theorem 4.1 and Corollary 4.4, the existence of e-optimal 
stationary strategies for every e > 0 is equivalent to the infimum of NLP 4.2 being 
equal to zero. 
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