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Abstract. The linear complementarity problem (q,A) with data A ∈ Rn×n and q ∈ Rn involves
finding a nonnegative z ∈ Rn such that Az+ q ≥ 0 and zt(Az+ q) = 0. Cottle and Stone introduced
the class of P1-matrices and showed that if A is in P1\Q, then K(A) (the set of all q for which
(q,A) has a solution) is a half-space and (q,A) has a unique solution for every q in the interior of
K(A). Extending the results of Murthy, Parthasarathy, and Sriparna [Ann. Dynamic Games, to
appear], we present a number of equivalent characterizations of P1\Q. Also, we present yet another
characterization of P -matrices. This widens the range of matrix classes for which a conjecture raised
by Murthy, Parthasarathy, and Sriparna [SIAM J. Matrix Anal. Appl., 19 (1998), pp. 898–905]
characterizing the class of Lipschitzian matrices is true.
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1. Introduction. The linear complementarity problem (LCP) with data A ∈
Rn×n and q ∈ Rn involves finding a vector z ∈ Rn such that

Az + q ≥ 0, z ≥ 0, and zt(Az + q) = 0.

Many have tackled a number of problems on existence and solvability of LCP by
studying the properties of A; this has lead to the evolution of a wide range of matrix
classes. Good background material on the subject can be found in [2, 13].

We shall briefly introduce the concepts and notation required for presentation of
the results of this paper. For A ∈ Rn×n, q ∈ Rn, let F (q, A) = {z ∈ Rn

+ : Az+q ≥ 0},
S(q, A) = {z ∈ F (q, A) : (Az + q)tz = 0}, and K(A) = {p ∈ Rn : S(p,A) 6= ∅}. For
most of the other notation, we shall follow that used in [2]. Let n̄ = {1, 2, . . . , n}
and for α, β ⊆ n̄, let Aαβ denote the submatrix of A obtained by retaining only rows
corresponding to α and columns corresponding to β. A similar notation is used for
vectors. The complement of α ⊆ n̄ with respect to n̄ will be denoted by ᾱ. The vector
e will denote the vector of ones (of appropriate order).

We define a number of matrix classes studied extensively in the literature of LCPs.
Say that A ∈ Q if S(q, A) 6= φ for all q ∈ Rn; A ∈ Q0 if for all q, F (q, A) 6= φ ⇒
S(q, A) 6= φ; A ∈ P 0(P ) (A is nondegenerate) if detAαα ≥ 0(> 0)(6= 0) for all α ⊆ n̄;
A ∈ P 1 if A ∈ P 0 and detAαα = 0 for some unique α; A ∈ INSk if |S(q, A)| = k
for all q ∈ int K(A); A ∈ R0 if |S(0, A)| = 1; A ∈ E0(E) if |S(q, A)| = 1 for all
q > 0 (q ≥ 0); and A ∈ E′ if |S(q, A)| = 1 for all q ≥ 0 and |S(0, A)| ≥ 2. The class
INS1 is denoted by U . Next, say that A ∈ Q if Aαα ∈ Q for all α ⊆ n̄. Similar
notation is used for other classes.

For A ∈ Rn×n with detAαα 6= 0 for an α, the principal pivotal transform (PPT)
of A with respect to α, denoted by ℘α(A), is defined as M = ℘α(A), where Mαα =
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(Aαα)−1, Mαᾱ = −(Aαα)−1Aαᾱ, Mᾱα = Aᾱα(Aαα)−1, and Mᾱᾱ = Aᾱᾱ −MᾱαAαᾱ.
Whenever we refer to PPTs, we mean only those which are well defined. It is a well-
established result that if A belongs to Q, Q0, P 0, P , P 1, or INSk, then every PPT
of A is also in the respective class.

For any A ∈ Rm×n, the associated two-person zero-sum matrix game is described
as follows. There are two players: row player R and column player C. R chooses a
row i, C chooses a column j, and R pays C an amount equal to aij . A mixed strategy
for R(C) is a probability vector p ∈ Rm(q ∈ Rn). The fundamental theorem of von
Neumann asserts that there exist strategies p̄ and q̄, called optimal strategies for R
and C, respectively, and a real number v, called the value of the game (denoted by
v(A)), such that

p̄tA ≤ ve and Aq̄ ≥ ve.
A strategy is said to be completely mixed if all its coordinates are positive. A game

is said to be completely mixed if all the optimal strategies are completely mixed. We
shall refer to the game by the matrix itself.

Cottle and Stone [3] showed that if A ∈ P 1\Q, then A ∈ U and that K(A) is a
half-space. They further showed that if, in addition, detA = 0, then the support of
the half-space K(A) can be chosen to be a positive vector. Murthy, Parthasarathy,
and Sriparna [11] showed that if A is a completely mixed game with v(A) = 0, then
A ∈ P 1\Q if and only if A ∈ U . In section 2, we show that A ∈ P 1\Q if and only if
A ∈ U and K(A) is a half-space with a positive support. Indeed, we give a number
of equivalent conditions of the statement that A ∈ P 1\Q and detA = 0.

In section 3, we provide some results relating to the conjecture raised by Murthy,
Parthasarathy, and Sriparna [12] concerning a constructive characterization of Lip-
schitzian matrices. In particular, we show that a certain (constructive) property is
necessarily satisfied by Lipschitzian matrices as well as nondegenerate INS-matrices
and that the converse is true with an additional assumption.

2. Results on P1-matrices. For the sake of completeness, we state relevant
portions of some known theorems.

Theorem 1 (see Cottle and Stone [3]). Suppose A ∈ Rn×n ∩P 1. The following
statements hold:

(i) There exists a unique α such that ℘α(A) ∈ P 1 and det℘α(A) = 0.
(ii) A is in Q0.
(iii) If A 6∈ Q and detA = 0, then A ∈ U and K(A) = {q : πtq ≥ 0} for some

π > 0.
Theorem 2 (see Kaplansky [7]). Suppose A ∈ Rm×n. The following statements

hold for the matrix game A:
(i) If the row player R has a completely mixed strategy, then Aq = v(A)e for all

optimal strategies q of the column player C.
(ii) If v(A) = 0, then the game is completely mixed if and only if [m = n,

rank(A) = n − 1, and all cofactors of A are different from zero and have
the same sign].

(iii) If the matrix game A is completely mixed, then v(A) = detA/(sum of all
cofactors). If, in addition, v(A) = 0, then K(A) = {q : πtq ≥ 0} for some
π > 0.

Theorem 3 (see Murthy, Parthasarathy, and Sriparna [11]). Suppose A ∈ Rm×n.
If the matrix game A is completely mixed with v(A) = 0, then A ∈ Q0 and K(A) =
{q : πtq ≥ 0} for some π > 0.
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Remark 4. It is easy to see that if A is in P 1 and detA = 0, then A is a completely
mixed game with v(A) = 0. However, the converse is not true. This is not true even
with an additional assumption that A is a P 0-matrix. Consider the example

A =

 0 −1 1

1 0 −1

−1 1 0

 .
Note that A is a completely mixed game with A ∈ P 0 but A 6∈ P 1.

Lemma 5. Suppose A ∈ Rn×n, n ≥ 2. If A ∈ E′, then for every proper subset α
of n̄ such that detAαα = 0, Aαα 6∈ P 1.

Proof. Suppose for some proper subset α, Aαα ∈ P 1 and detAαα = 0. Then
Aαα is a completely mixed game with value 0. So there exists a positive vector zα
such that Aααzα = 0. Let qᾱ be such that Aᾱαzα + qᾱ > 0 and qᾱ > 0. Then z is a
nontrivial solution of (q, A), where zt = (ztα, 0

t
ᾱ) and q = (0tα, q

t
ᾱ). Since q is a nonzero

nonnegative vector, this contradicts the assumption that A ∈ E′. This completes the
proof.

Theorem 6. Suppose A ∈ Rn×n, n ≥ 2. The following statements are equivalent:

(i) A ∈ P 1\Q and detA = 0.
(ii) A ∈ U and K(A) = {q : πtq ≥ 0} for some positive vector π.

(iii) A ∈ E′ ∩ P 1.
(iv) A ∈ E′ ∩ Ū .
(v) A ∈ U and A is completely mixed with value zero.
(vi) At satisfies any one of the above conditions (i)–(v).
(vii) At satisfies all of the above conditions (i)–(v).

Proof. Cottle and Stone [3] have already proved that (i) implies (ii).

Suppose (ii) holds. Then, as K(A) is a half-space, it is convex and hence A ∈
Q0\Q (see [5]). So A ∈ P 0 (see Theorem 4 of [3]). Since P ⊆ Q, detAαα = 0 for
at least one α. If possible, let α be a proper subset of n̄ such that detAαα = 0.
There exists dα 6= 0 such that Aααdα = 0. We may assume that eα + dα > 0. Let
qα = −Aααeα. Choose qᾱ to be any positive vector satisfying (a) Aᾱαeα + qᾱ > 0,
(b) Aᾱα(eα + dα) + qᾱ > 0, and (c) πtαqα + πtᾱqᾱ > 0. Let qt = (qtα, q

t
ᾱ), zt = (ztα, 0

t
ᾱ),

and dt = (dtα, 0
t
ᾱ). It is easy to check that z and z + d are two distinct solutions of

(q, A). However, since πtq > 0, q ∈ int K(A), this contradicts that A ∈ U . It follows
that detA = 0 and A ∈ P 1. From the corollary of Lemma 1 of [1], (0, A) has at least
two solutions. Now it is easy to see that A ∈ E′ (also see Danao [4]).

Suppose (iii) holds. Since A ∈ E′, A 6∈ R0. So A ∈ P 1\Q. Let z be a nontrivial
solution of (0, A). From Lemma 5, it follows that z > 0 and hence Az = 0. From
Theorem 1(iii), A ∈ U . As A ∈ P 1 and detA = 0, all proper principal submatrices
of A are in P and hence in U . Hence A ∈ Ū .

Suppose (iv) holds. Since A ∈ E′ and n ≥ 2, all diagonal entries of A are positive
(if a11 < 0, then (1, 0, . . . , 0)t is a nontrivial solution of (q, A) for some nonzero
nonnegative q). Now, if for some α all proper principal submatrices of Aαα are all
P -matrices and detAαα < 0, then (Aαα)−1 is an N -matrix and hence a Q0-matrix
(if Aαα ≤ 0, then obviously (Aαα)−1 ∈ Q0, and if Aαα 6≤ 0, then from Theorem 6.6.4
of [2] (Aαα)−1 ∈ Q). Since U ∩Q0 ⊆ P 0, this would contradict the hypothesis. So
detAαα ≥ 0. From Lemma 5, it follows that detAαα > 0 for all proper subsets α.
Since A 6∈ R0, it follows that A ∈ P 1, detA = 0, and, from Remark 4, A is completely
mixed.
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Suppose (v) holds. From Theorem 2, detA = 0. From Theorem 3, A ∈ Q0 and
K(A) = {q : πtq ≥ 0} for some positive vector π. Since A ∈ U ∩ Q0, A ∈ P 0.
Suppose detAαα = 0 for some α with |α| < n. Then there exists dα 6= 0 such that
Aααdα = 0. Let qα = −Aααeα. Then, for qᾱ positive and sufficiently large, we
observe q ∈ int K(A) and (q, A) has two solutions, that is, (etα, 0

t
ᾱ) and (etα+λdtα, 0

t
ᾱ)

for some λ sufficiently small but positive. This contradicts that A ∈ U , and thus all
proper principal minors of A are positive. Since K(A) is a half-space, A 6∈ Q.

To complete the rest of the proof, we will show that (i) holds if and only if (i)
holds for At. It suffices to show that (i) implies At 6∈ Q. Suppose (i) holds. From the
proof of Lemma 5 it follows that there exists z > 0 such that Az = 0. Then ztAt = 0.
Note that this implies S(q, A) = ∅ for all q < 0. Hence A 6∈ Q.

3. Block property. The study of stability of solution sets in LCPs leads to the
class of Lipschitzian matrices. A matrix A ∈ Rn×n is said to be Lipschitzian if there
exists a real number λ > 0 such that for every p, q ∈ K(A) and every z ∈ S(q, A) there
exists an x ∈ S(p,A) such that ‖x−z‖ ≤ λ‖p−q‖. Mangasarian and Shiau [8] showed
that P -matrices are Lipschitzian. Gowda [6] showed that if A is Lipschitzian and
(q, A) has a unique solution for some nondegenerate q (q is said to be nondegenerate
if z + Az + q > 0 for all z ∈ S(q, A)), then A is in P . Later, Murthy, Parthasarathy,
and Sabatini [9] showed that a Q-matrix is Lipschitzian if it is a P -matrix. Stone [15]
showed that Lipschitzian matrices are nondegenerate INS-matrices and conjectured
that the converse is also true. Murthy, Parthasarathy, and Sriparna [12] introduced the
block property and showed that Lipschitzian as well as nondegenerate INS-matrices
satisfy the block property; they further conjectured that if a matrix has block property,
then it must be Lipschitzian. In this article, we modify the definition of block property
and show that the revised property is also a necessary condition for both Lipschitzian
and nondegenerate INS-matrices. Furthermore, we show that if a matrix A has the
revised block property and (q, A) has a unique solution for some nondegenerate q,
then A is Lipschitzian.

The main significance of block property (as well as the revised one) is that it can
be checked in finite number of steps by examining the sign structures of all PPTs. It
must be mentioned here that no finite characterization is known for checking whether
a given matrix is a Lipschitzian matrix or not. Thus, if the conjecture is true, one
would have a finite condition for checking the Lipschitzian property.

Definition 7. Say that A ∈ Rn×n has block property (B?) if for every PPT
M of A there exists a partition α1, α2, . . . , αk of {1, 2, . . . , n} such that the following
hold:

(i) Mαiαi , are negative N -matrices for i = 1, 2, . . . , k − 1, Mαiαj = 0 for i 6= j,
i, j = 1, 2, . . . , k − 1, and the diagonal entries of Mαkαk are positive.

(ii) For any index sets α and β such that α∆β={i} for some i, detMαα detMββ>
0 provided {x ∈ Rn−1

+ : [−M.αI.ᾱ].(i)x > 0} 6= ∅.
Theorem 8. Suppose A ∈ Rn×n is a nondegenerate INS-matrix. Then A has

property (B?).

Proof. In [12] it was shown that A satisfies condition (i) of Definition 7. From
Theorem 6.6.20 of [2], it follows that M does not have any reflecting facets (see also
Definition 6.2.10 and Definition 6.6.14 of [2]). From this, the second condition of the
definition follows.

Corollary 9. Suppose A ∈ Rn×n is a Lipschitzian matrix. Then A has prop-
erty (B?).
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Proof. The proof follows from the fact that Lipschitzian matrices are nondegen-
erate INS-matrices.

Theorem 10. Suppose A ∈ Rn×n∩E0. Assume that A has property (B?). Then
A ∈ P .

Proof. We will prove this by induction. Since A ∈ E0, aii > 0 for all i. Assume
that Aαα ∈ P for all α such that |α| = k− 1, k ≥ 2. Let β be any arbitrary index set
such that |β| = k. Suppose detAββ < 0. Then the inverse of Aββ is an N -matrix.
From (i) of property (B?), (Aββ)−1 ≤ 0 and all its diagonal entries are negative.
This would imply that v((Aββ)−1) < 0 and hence v(Aββ) < 0. However, this is not
possible, as A ∈ E0 (see Definition 3.9.4 and Corollary 3.9.7 of [2]).

Theorem 11. Suppose A ∈ Rn×n has property (B?). Assume that (q, A) has a
unique solution for some nondegenerate q. Then A ∈ P .

Proof. We may assume without loss of generality that q > 0. If (p,A) has a
unique solution for every positive vector p, then A ∈ E0 and hence A ∈ P . Suppose,
to the contrary, that (p,A) has a nontrivial solution for some p > 0. This means
there exists a facet in the positive orthant and an open ball B of positive vectors such
that for every q′ ∈ B ∩H+, (q′, A) has a unique solution, and for every q′ ∈ B ∩H−,
(q′, A) has at least two solutions, where H+ and H− are the half-spaces containing the
facets. Let α be the index set corresponding to the facet. Then α 6= ∅. Since the facet
intersects the nonnegative orthant in the interior, the system defined in condition (ii)
of Definition 7 is nonempty. Condition (ii) of the definition implies for i 6∈ α, −A.i
and I.i are on the opposing sides of the facet in question. But then it would mean that
(q′, A) has at least two solutions for some q′ ∈ B ∩H+—a contradiction. It follows
that (p,A) has a unique solution for every positive vector p. Hence A ∈ E0 and the
rest follows from Theorem 10.

From the above we have a characterization of P -matrices (see [2] for characteri-
zations of P -matrices), namely, A ∈ P if and only if A has property (B?) and (q, A)
has a unique solution for some nondegenerate q.
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