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Perfect Equilibria in Stochastic Games I 

F.  T H U I J S M A N ,  2 S. H .  T I J S ,  3 A N D  O .  J .  V R I E Z E  4 

Communicated by R. Rishel 

Abstract. We examine stochastic games with finite state and action 
spaces. For the fl-discounted case, as well as for the irreducible limiting 
average case, we show the existence of trembling-hand perfect equilibria 
and give characterizations of those equilibria. In the final section, we 
give an example which illustrates that the existence of stationary limiting 
average equilibria in a nonirreducible stochastic game does not imply 
the existence of a perfect limiting average equilibrium. 

Key Words. Stochastic games, equilibria, trembling-hand perfect 
equilibria. 

1. Introduction 

To keep  no ta t ions  s imple ,  we restr ict  the  analys is  to 2 -person  s tochas t ic  
games ;  the  resul ts  can eas i ly  be  ex t ended  to N - p e r s o n  games  with N > 2. 

A 2 -pe r son  s tochas t ic  game  is a finite set o f  mat r ices  {M1, M2 . . . .  , Mz} 
c o r r e s p o n d i n g  with  the  set o f  states S = {1, 2 , . . . ,  z}. The mat r ix  Ms has  
size rn, × ns, and  the en t ry  ( i , j )  o f  Ms is given as 

~ rl(s, i,j), r : ( s , ~  . 
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Here, 

p(s, i,j) = (p(11 s, i,j), p(21s , i, j ) , . . . ,  p(zls , i,j)) ~ A z, 

r '(s ' i ' j ) 'r2(s ' i ' j )~R' A~={ qER~:q---0'  ~,=l q t : l } .  

The interpretation is as follows: Play can start in any state of S, and 
transitions occur at stages n ~N. If play is in state s at stage n, then 
independently and simultaneously player 1 chooses i ~ {1, 2 , . . . ,  ms} and 
player 2 chooses j ~  {1, 2 , . . . ,  ns}. The triplet (s, i,j) determines a direct 
payoff rk(s, i,j) to player kE {1, 2} as well as a probability vector p(s, i,j), 
whose meaning is that, at stage n +  1, play will be in state t c S with 
probability p(tls, i,j). In this way, the play proceeds from stage to stage 
and from state to state. 

We allow the players to randomize over their pure actions, which means 
that, in state s, player 1 [2] uses some mixed action xs ~ Am'[ys ~ An']. Now, 
player 1 [2] will choose action i[j] with probability xs(i)[y,(j)]. 

Each player's interest is to maximize his total income, without making 
binding agreements. To achieve this goal, each player uses some strategy: 
this is a plan that, at any stage of play, given the current state as well as 
the history, tells the player what mixed action to use. The history of play 
at stage n is the sequence 

((sl, il , j 0 ,  (s2, i2,J2), • • •, (sn-l, in-1 ,J,-1)) 

of  past triplets of states and actions that occurred. 
A stationary strategy is a strategy for which only the current state 

decides what mixed action is to be used, and neither stage nor history play 
a role. Hence, a stationary strategy for player 1 is simply some 

x 

x c X : =  II a"", 
s = l  

for player 2, it is some 

y e  Y:= [l dx".. 
S = I  

Each player wants to maximize his own expected total income. In this 
paper, we deal with two interpretations of expected total income: the 
/3-discounted reward and the limiting average (or undiscounted) reward. 
Let R .  k be the random variable denoting the direct payoff to player k at 
stage n, and let Es~. denote expectation with respect to starting in s and 
players using (o-, ~'). Then, 

y~(s, o', ~'):= Es,, ,((1-fl) ,=,~ ~8"-lRk.), 



JOTA: VOL. 69, NO. 2, MAY 1991 313 

with 13 ~ [0, 1), is the/3-discounted reward for play k, and 

ykl(S, O', r):= E~(liminfT_~(l/T) ,~,~ R~) 
is the limiting average (or undiscounted) reward for player k. 

For/3 ~ [0, 1], we write y~(o-, ~-) for 

(y~(1, o', ~-), y~(2, o', ~ ) , . . . ,  y~(z, cr, T)). 

In any stochastic game, either both players want to maximize their /3- 
discounted rewards, or they both want to maximize their limiting average 
rewards. 

Clearly, in general a pair of strategies need not exist which maximizes 
both player l 's  and player 2's income at the same time. However, if the 
players have independently selected their strategies to play the game, then 
each of them will be satisfied if his strategy is a best reply to the strategy 
of his opponent, for otherwise, a better strategy could be chosen. Hence, 
a pair of strategies which are best replies to one another seems to be a 
reasonable and stable solution for the game, stable since no player has an 
incentive to deviate unilaterally. 

Definition 1.1. A pair of strategies (or*, ~'*) is a/3-discounted equili- 
brium (/3 < 1), or a limiting average equilibrium (/3 = 1) if, for all strategies 
o- and ~-, 

2 
, 

In this paper, we are mainly concerned with stationary equilibria, i.e., 
equilibria consisting of stationary strategies. The set of stationary equilibria 
of a stochastic game F will be denoted by E(Ft~) for the fl-discounted case 
(/3 < 1) as well as for the limiting average case (/3 = 1). Here, the emphasis 
is on stationary strategies, because such strategies have attractive properties. 
I f  one uses a stationary strategy, then one can disregard stage numbers as 
well as the full history of play at all stages. For any fixed pair of stationary 
strategies, play will take place as a Markov process on the set of states, 
which implies that the course of play is well structured. This Markov 
structure simplifies a great deal the computation of rewards. For nonstation- 
ary strategies, computation of rewards will often be very hard, even if the 
number of states is small. Another, more specific reason for focusing on 
stationary strategies is given in the concluding remarks (Section 4). 

For bimatrix games, stochastic games with just one state and only one 
stage to play, the following theorem is well known (see Nash, Ref. 1). 
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Theorem 1.1. For every bimatrix game, there is at least one equili- 
brium. 

For bimatrix games, Selten (Ref. 2) introduced the perfectness concept. 
The idea is as follows. Suppose that you are playing an equilibrium, but 
your opponent  has a trembling hand and might make small mistakes. Then, 
your strategy should not only be a best reply to his equilibrium strategy, 
but to certain small perturbations of  his strategy as well. 

Selten (Ref. 2) introduced the notion of  perturbed game to investigate 
such perfect equilibria. We will now extend Selten's definitions to stochastic 
games. 

Definition 1.2. Let F = {M1, M E , . . . ,  Mr} be a stochastic game, with 
mixed action space Am,[A "s] for player 1 [2] in state s. For each s ~ S, let 

1 ~msr 2 E ~ t t  l e s ~ R  "'] such that ~l~(i)>0 for all i and ~im£1 el~(i) <1  [ e~ ( j )>0  
n for all j and ~SLl e2~(j) < 1]. Such a pair (e 1, e 2) is called a mistake pair. 

The (e l, eE)-perturbed game is defined as the stochastic game F(e 1, e 2) given 
by {M~, M E , . . . ,  Mz}, but where, for all s, player I [2] is restricted to mixed 
actions in 

A,"~" := {x~ ~ Am': x~(i) >- els(i) for all i} 

[resp., A "S with similar definition]. e2 

Let X,,[ Y,~] be the set of  stationary strategies of player 1 [2] in F(e ~, e2). 

Definition 1.3. A pair of  stationary strategies (x, y) E X x Y is called 
perfect if there exists a sequence of  mistake pairs {(e ~", e2~): n ~ N} converg- 
ing to 0, and a sequence {(x", y" )~  E(F~(e  TM, E2")): n ~ N} converging to 
(x, y). Thus, for /3  < 1, we speak of  perfect/3-discounted pairs; and, for 
/3 = 1, we speak of  perfect limiting average pairs. The set of  perfect equilibria, 
i.e., perfect pairs which are equilibria of  a stochastic game F~, fl c [0, 1], 
will be denoted by PE(F~). 

Theorem 1.2. For every bimatrix game, there is at least one perfect 
equilibrium. 

This theorem has been proved by Selten (ReL 2). 
In Section 3, we show the existence of perfect equilibria for /3- 

discounted stochastic games as well as for irreducible limiting average 
stochastic games; we also give characterizations of perfect equilibria for 
these cases. A stochastic game is called irreducible if, for all pairs of 
stationary strategies, the related stochastic process on the set of states is an 
irreducible process. Recall that the idea behind the trembling-hand perfect 
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equilibrium is that players not only want to play a best reply to each other's 
strategy, but want to play a best reply to small perturbations thereof as 
well. Implicitly, this means that the reward function, /3-discounted or 
limiting average, should be continuous on the set of stationary strategies. 
The/3-discounted reward function is continuous for any stochastic game, 
while the limiting average reward function certainly is not. To have con- 
tinuity of the limiting average reward function, one needs the irreducibility 
property (or at least that for any pair of stationary strategies there is precisely 
one ergodic set). 

In Section 4, we give an example to illustrate phenomena that may 
occur in nonirreducible stochastic games. 

First, we state some useful facts about stationary strategies in Sec- 
tion 2. 

2. Preliminaries 

For (x, y )~  X x Y and k~{1, 2}, the following notations, facts, and 
lemmas will be used in the sequel. For Remarks 2.1 and 2.2, we refer to 
Kemeny and Snell (Ref. 3); for Lemma 2.1, we refer to Shapley (Ref. 4); 
and for Lemmas 2.2 and 2.3, we refer to Blackwell (Ref. 5). 

Notation 2.1. 

rk(x, y) := (rk(1, Xl, Yl), rk(2, X2, Y2), . . . , rk( z, Xz, Yz) ), 

r?l s n s 

rk(s, x~, y,):= Z Y, xs(i)rk( s, i , j )y,( j) .  
i=l j=l 

Notation 2.2. P(x, y) is the z × z matrix in which the entry (s, t) is 
p(t ls ,  x,, y~), which is given by 

rn n s 

p( t[s ,x , ,ys ) := E Z x,(i)p(t[s,  i,j)y~(j). 
i = l  j = l  

Notation 2.3. 

T 

Q(x, y):= l i m ( l / T )  ~ (P(x, y))n. 
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Remark 2.1. P(x, y) and Q(x, y) are stochastic matrices; i.e., all entries 
are nonnegative and all row sums are 1. 

Remark 2.2. 

Q(x, y)P(x, y) : Q(x, y) = P(x, y)Q(x, y). 

Lemma 2.1. y~3(x,y) is the unique solution 
equation 

v k(x, y) = (1 -- ~ )rk(x, y) + tiP(x, y)vk(x, y). 

Vk(X,y) eR ~ of the 

[ ,emma 2.2. 

yk(x, y) = Q(x, y)rg(x, y) = ~im y~(x, y). 

Lemma 2.3. There exists a unique wk(x, y) such that 

Q(x, y)wk(x, y) = O, 

ykl(X, y) + Wk(X, y) = rk(x, y) + P(x, y)wk(x, y). 

Remark 2.3. If the stochastic game is irreducible, then all entries of 
Q(x, y) are strictly positive and all rows of  Q(x, y) are equal to the unique 
stationary distribution of  the stochastic process with transition matrix 
P(x, y). 

From Lemma 2.2 and Remark 2.3, one directly obtains the following 
remark. 

Remark 2.4. For an irreducible stochastic game, 

yk(s,x,y)=ykl(t,x,y), foralls, t~S. 

We also introduce the following notations (cf. Lemmas 2.1 and 2.3), 
which will enable us to relate best strategy choices in the multiple-state and 
infinite-horizon problem to best action choices in single-state and single- 
stage problems. 
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and 

Notation 2.4. Let (x, y) c X x Y, s e S, a c A m,, and b e A "~. 

(i) For fl < 1, 

q~(a, s, x, y) := (1 -fl)r~(s, a, y~)+~ ~ p(t[s, a, y~)y~(t, x, y), 
t = l  

¢~(b, s,x,y):=(1-fl)r2(s,x~, b)+[3 ~ p(t]s,x~, b)y2~(t,x,y), 
t = l  

z 

q~ll(a,s,x,y):=r1(s,a, ys)+ • P(tjs, a, ys)wl(t,x,Y), 
t = l  

z 
2 q~l(b,s,x,y):=r2(s,x~,b)+ ~ p(tls, x,,b)w2(t,x,y). 

t = l  

(ii) For/3 e [0, 1], 

B~(s, x, y):= {a c A"~: q~(_a, s, x, y) = max q~(a, s, x, y)}, 
a 

B2~(s, x, y):= {b 6 A"~: q~(_b, s, x, y) =max  q~(b, s, x, y)}. 

(iii) For /3 ~ [0,1], x* E X and y* ~ Y, 

"-(~o~(x* 1,x,y), ~ * ' * q~¢(x~, z, y)), • - , ~t~(x2,2, x , y ) , . . . ,  x, 

¢~(y*, x, y) 
2 , 2 , x,y)). := (q~(y*, 1, x, y), qt~(Y2,2, x, y ) , . . . ,  ~¢(y~, z, 

Observe that Lemma 2.1 and Notation 2.4 directly imply the following 
remark. 

Remark 2.5. 

q~(x~, s, x, y) = y~(s, x, y), 

~ ( y ~ ,  s, x, y) = y~(s, x, y), for all/3 ~ [0, 1). 

The importance of these definitions becomes clear in the following 
lemmas. 

Lemma 2.4. For a stochastic game F, let x, x* c X, y ~ Y, and fl < 1. 

(i) If ~ ( x * , x , y ) <  y~(x,y),  then 1 , 1 -- y~(x ,y)<--yt~(x,y). 
(ii) If ~p~(x*, x, y) :~ y~(x, y), then y~(x*, y) ~ y~(x, y). 
(iii) If  q ~ ( x * , x , y ) ~ y ~ ( x , y ) ,  then ~ * yt~(x , y) - y~(x, y). 
(iv) If  ~(x* , x , y )~y~(x , y ) ,  then y~(x*,y)Zy~(x,y).  
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The discerned cases in the above lemma can be proved using an iteration 
argument. 

Lemma 2.5. For an irreducible stochastic game, let x, x* ~ X and y ~ Y. 

(i) If ~l(x*,x,y)<_ yl(x,y)+wa(x,y), then yl(x*,y)<- yl(x,y). 
(ii) If ~ll(x*,x,y)~y](x,y)+w~(x,y),then y~(x*,y)~y~(x,y). 
(iii) If ~ol(x*,x,y)>-yl(x,y)+w~(x,y), then y~(x*,y)>-yl(x,y). 
(iv) If (;ll(x*,x,y)~y](x,y)+wl(x,y), then yl(x*,y)~:yl(x,y). 

Each of the cases in the above lemma can be proved by multiplying 
both sides of the inequality with Q(x*, y) and using Lemmas 2.2, 2.3, 
Remarks 2.3, 2.4, and Notation 2.4. 

The next lemma follows directly from Lemmas 2.4, 2.5, and Definition 
1.1. It uses the functions ~o~ to characterize stationary equilibria in the 
stochastic game. 

Lemma 2.6. Let again ( x , y ) ~ X x Y .  For /3<1,  as well as for F 
irreducible and/3 = 1, (x, y) is an equilibrium if and only if, for all s E S, 
we have: 

p~(x~, s, x, y) = max q~(a, s, x, y), 
a 

~o~(y~, s, x, y) = max ~ ( b ,  s, x, y). 

In the following lemma, we characterize stationary equilibria in a 
perturbed stochastic game F~ (e I, e2), using the sets B~. Verbally, the lemma 
says that, if a pair of stationary strategies is an equilibrium, then there can 
only be surplus weight on actions that are among the best; conversely, 
if for a pair of stationary strategies all actions that have surplus weight 
are among the best, then this pair of strategies is an equilibrium. We use 
ei[f~] to denote the degenerate mixed action: choose action i[j] with prob- 
ability 1. 

Lemma 2.7. Let F be a stochastic game, let (e l, e 2) be a mistake pair, 
and let (x, y) c X~, x y2 .  For/3 < 1, as well as for F irreducible and/3 = 1, 
the following statement holds: (x, y) c E(F~(e 1, e2)), if and only if, for all 
s , i , j ,  

[ x~( i) > e]( i ) ~  ei c B~( s, x, y)], 

[ ys(j) > e ] ( j ) ~  f) E BZ~(S, x, y)]. 
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Proof. The proof is analogous for the two discerned cases, so let 
~[0,1]. 

(i) The "only i f "  part. Suppose that (x, y ) e  E(F~(~ *, ez)) and, for 
some s* and i*, 

x~.(i*)>e~.(i*) and e**~B~(s*,x,y). 

Take i ' e  B~(s*, x, y), and define x ' c  X~ by 

x's := xs, for s # s*, 

x'**(i):=xs.(i), fori~{i*,i '},  

x',.(i') := x~.(i')+ x~.(i*)- el~.(i*), 

Xrs.(i *) := els.(i* ). 

Using the linearity of ~o~(., s, x, y), we derive that 
1 ¢ 1 * q~t~(x,., s*, x, y) > q~t~(x,,, s , x, y), 
1 t ~ ( x , ,  s, x, y) = q~(x,, s, x, y), - for all s ¢ s*, 

which contradicts (x, y) e E(Ft3(e 1, e2)); cf. Lemma 2.6. 
(ii) The " i f "  part. Suppose that, for all s, i and j, 

[Xs(i) > e](i)~e; ~ B~(s, x, y)], 

[ys(j) > e2(j) ~ f j  ~ BZ~(s, x, y)]. 

Then, using the fact that 
rrl s 

• ~(a, s, x, y) = 2 a i~(e , ,  s, x, y), 
i = t  

we derive that 

~o~(a,s,x,y)<-~o~(x,,s,x,y), for all a e A~ ~ . 

Similarly, one can show that 

q~(b, s, x, y) < 2 -- ~Pt~(Y~, s, x, y), for all b E A~. 

In view of Lemma 2.6, this implies that 

(X, y )  E E( r t~ (e  1, e2)). 

for all a e A"~, 

[] 

3. Perfect Equilibria in Stochastic Games 

In this section, we will treat fl-discounted stochastic games and irreduc- 
ible limiting average stochastic games simultaneously. Therefore, F~ should 
be interpreted as a general fl-discounted stochastic game for fl < 1 and as 
an irreducible limiting average stochastic game for fl = 1. 
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Theorem 3.1. For each stochastic game F and for every /3 ~ [0, 1], 
E ( F ~ ) ~ O .  

The proof of Theorem 3.1 is based on the facts that y~ is a continuous 
function on X x Y, for each k and/3, and that X and Y are closed convex 
polyhedra; see Fink (Ref. 6) and Rogers (Ref. 7). Because for any mistake 
pair (e 1, e2), the sets X,~ and Y,~ are also closed convex polyhedra, the next 
lemma immediately follows. 

Lemma 3.1. Let F(E *, e ~) be a perturbed stochastic game. Then, 

E(F~(~ ~, E~)) ~ O, for all/3 ~ [0, 1]. 

Lemma 3.2. If (x, y) ~ X × Y is a perfect pair for F~, 13 c [0, 1], then 
(x, y) ~ PE(Fe). 

Proof. There exist a sequence of mistake pairs {(e 1~, e2~): n c N} con- 
verging to 0 and a sequence {(x ~, y~) ~ E(F~(e 1", e2")): n ~ N} converging 
to (x, y). We have to show that, for all (x*, y*) E X x Y, 

y~(x*, y) <- y~(x, y), y2~(x, y*) <-- y~(x, y). 

So, let x*~ X, and take a sequence {x"*c X,~,. : n 6 N} converging to x*. 
Then, 

1 [  n *  n yetx ,y")<- y~(x~,y ), f o r a l l n ~ N .  

Using the continuity of y~, we get 

y~(x*, y)<- y~(x, y). 

Similarly, one can show that 

y~(x,y*)<-y~(x,y), for all y* e Y. [] 

Lemma 3.3. PE(F~) ~ Q, for all/3 e [0, 1]. 

Proof. Let fl ~ [0, 1]. Take a sequence of mistake pairs {(el~, e2n): n 
N} converging to 0. By Lemma 3.1, there exists a sequence {(xn, y " ) e  
E(F~(eln, 2~)): heN}.  Because (x'~,y")cX× Y, for all hEN,  and X ×  Y 
is a compact set, we may assume, without loss of generality, that the sequence 
{(x", y") e E(F~(e TM, e2,)): n oN} converges in X x 14. Then, lim,_,~o(x ", yn) 
is a perfect equilibrium in F~ by Lemma 3.2. [] 

In Theorem 3.2, we give two characterizations of perfect equilibria. 
First, we need some definitions. We define completely mixed strategies as 
stationary strategies that use all actions with positive probability. We also 
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define E-perfect pairs as pairs of completely mixed strategies where, for a 
specific mistake pair (constant e for all actions), any surplus weight of the 
strategies is on best actions; see Lemma 2.7. 

Definition 3.1. A stationary strategy x e X [y E Y] is called completely 
mixed if, for all s, i, j, 

x,(i) > 0 [T,(j) > 01. 

Definition 3.2. Let e > 0 and /3 ~ [0, 1]. A pair of completely mixed 
strategies (x, y) is called e-perfect in F¢ if, for all s, i, j, 

[x,(i) > e~e~  ~ B~(s, x, y)], 

[Ys(j) > e ~ f j  e B~(s, x, y)]. 

Notice from Lemma 2.7 that a pair of stationary strategies is an e-perfect 
pair if and only if it is an equilibrium in the specific perturbed game where 
all weights are perturbed by the same e > 0. 

The next lemma tells us that, in order to decide whether or not a pair 
of  stationary strategies is a perfect equilibrium, it is sufficient to consider 
equilibria of such constant E-perturbed games, where e tends to zero. Hence, 
one can restrict the analysis to a relatively small class of perturbed games 
in order to investigate perfectness for a given pair of stationary strategies. 

Theorem 3.2. Let (x, y) ~ X x Y and let/3 ~ [0, 1]. The following three 
statements are equivalent: 

(i) (x, y) is a perfect equilibrium in F e. 
(ii) There is a sequence {e n ~ (0, 1): n c N} converging to 0 and a 

sequence {(x ~, yn) ~ X x Y: n ~ N} converging to (x, y) such that (x n, yn) is 
e"-perfect in F¢ for all n c N. 

(iii) There is a sequence of completely mixed pairs {(x", y" )~  X x 
Y: n ~ N} converging to (x, y) such that, for all s, i, j, n 

[x,(i) > 1 . O~e i  ~ Be(s, x , y")],  

[y,(j)  > 0 ~ f j  6 B~(s, x", y")]. 

Proof. We successively show that (i) ~ (ii), (ii) + (iii), (iii) -~ (i). 

(i)-~ (ii). Suppose that (x, y )~  PE(Fe). Then, there is a sequence of 
mistake pairs {(e TM, e2n): n ~N} converging to 0 as well as a sequence 
{(xn, yn )c  E(Fe(E TM, e2n)): n oN} converging to (x ,y) .  Let 

In - "~n • e~:=max{e~ (t), el: (j)}, foreach n~N.  
s,i , j  
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Then, by Lemma 2.7 and by Definition 3.2, each pair (x", y") is e"-perfect. 
(ii) ~ (iii). Suppose that e" and (x", y"),  n 6 N, are as in (ii). Then, 

by definition, (x ~, y") is completely mixed for all n. Since 

lim (x", y") = (x, y), 

it holds that, if x~(i) > 0, then x~(i) > E" for large n. Thus, by Definition 3.2, 

e, eB~(s ,x" ,y" ) ,  for large n. 

( i i i)~(i) .  Let {(x",y"):  n~N},  and let (x,y)  be as in (iii). For all 
n ~ N, for all s, i, j, define 

e l~"(i):=n-l, i fxs(i)>O; e~"(i):=x~(i), otherwise; 

e~n(j) := n -1, if Ys(j) > O; e~n(j) := y~(j), otherwise. 

Then, Ft~(e TM, e 2") is a well-defined perturbed game for large n. For large 
n, for s~ S and i such that xs( i )>0,  we have x~( i )> n - I -  TM " - es (I); and, for 
s and i such that xs(i) = 0, we have x"~(i) = e:s~(i). Hence, x" c X,~- for large 
n; and, by (iii), we have that x~'(i)> e]"( i )> 0 implies e ~  B~(s, x ~, y~). 
Using the same argument for player 2 and using Lemma 2.7, we have 
shown (i). [] 

4. Concluding Remarks 

One of our reasons to consider this notion of trembling-hand perfect 
equilibrium for stochastic games was to be able to work with particular 
sequences of stationary /3-discounted equilibria, for /3 tending to 1. In 
Vrieze and Thuijsman (Ref. 8) and more generally in Thuijsman (Ref. 9), 
it is shown that, for certain classes of stochastic games, one can derive 
limiting average e-equilibria by examining arbitrary sequences of stationary 
/3-discounted equilibria. However, the existence of limiting average e- 
equilibria in general stochastic games is still an open problem. Now, being 
able to use sequences of perfect stationary /3-discounted equilibria may 
bring us closer to a solution for this challenging problem. 

To illustrate the fact that trembling-hand perfectness does not make 
much sense in nonirreducible limiting average stochastic games, we examine 
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the following example: 

00/ 0lj 
/ 2 1 J  3 

state 1 state 2 state 3 state 4 

Here, the notation for state 3, for example, means a payoff 0 [1] to player 
1 [2] and a transition to state 3 with probability 1. For this game, a stationary 
strategy is completely determined by the mixed action for state 1. If  we let 
x = et and let y = f l ,  then (x, y) c E(Ft) .  So there is at least one stationary 
limiting average equilibrium for this game, but is there also a perfect one? 

Let (e 1, e 2) be a mistake pair for state 1, and let 

(x', y') c E(Fa(E',  E:)). 

Then, 

y'(2) = 1 - E2(1) - E2(3), 

because player 2's limiting average reward is maximal if column 2 gets 
maximal weight, as to maximize the probability of absorption in state 3. 
So, if (x*, y*) is a perfect limiting average equilibrium, then y* =f2- This, 
however, would imply that x* = ez in case (x*, y*) is an equilibrium. But 
then the only best answer to x* for player 2 is f3 # Y*, which contradicts 
the assumption that (x*, y*) is an equilibrium. Hence, there are no perfect 
limiting average equilibria in this stochastic game, even though a stationary 
limiting average equilibrium exists. One can also check that (x, y) is a 
perfect/3-discounted equilibrium for all/3 < 1. 

It should be observed that any stationary equilibrium in a/3-discounted 
or irreducible limiting average stochastic game is necessarily a subgame- 
perfect equilibrium. 

Characterizations in this paper for perfect equilibria in stochastic games 
are similar to characterizations for perfect equilibria in bimatrix games (see 
Ref. 10). 
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