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Abstract: For n-person perfect inlbrmation stochastic games and for n-person stochastic games with 
Additive Rcwards and Additive Transit ions (ARAT) we show the existence of pure limiting average 
equilibria. Using a similar approach we also derive the existence of limiting average e-equilibria for 
two-person switching control stochastic games. The orderfield property holds for each of the classes 
mentioned, and algorithms to compute  equilibria are pointed out. 

1 Model 

We deal with n-person stochastic games with finite state and action spaces. Only 
for some special classes of stochastic games limiting average e-equilibria are 
known to exist, but generally their cxistence remains to be an open problem (see 
Thuijsman [ 19921 for a survey on equilibrium existence). For  zerosum stochastic 
games Mertens & Neyman [198 lJ showed the existence of the limiting average 
value. Approaching this value generally involves the use of history dependent 
strategies. In this paper  we show existence of limiting average equilibria (in 
'almost stationary'  behavior strategies) for perfect information stochastic games 
and for stochastic games with Additive Rewards and Additive Transitions 
(ARAT). For two-person stochastic games with switching control we show the 
existence of limiting average e-equilibria. For  none of these related classes (any 
perfect information game has ARAT as well as switching control structure) 
equilibrium existence was known before. Our  method implies that the orderfield 
property holds for these classes, i.e. if payoffs and transitions are rational, then 
there are rational equilibrium strategies and rational equilibrium rewards as well. 
Algorithms to determine equilibria are also pointed out. Whenever we speak 

1 We gratefully acknowledge valuable remarks by J. Flesch and by anonymous  referees on earlier 
versions. 
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about  equilibria, optimal strategies, best replies etc., we shall always have limiting 
average rewards in mind. 

Pure s ta t ionary optimal strategies exist for zerosum perfect information games 
(cf. Liggett & Lippman [1969]) as well as for zerosum ARAT games (cf. Raghavan 
et al. [1985]). For  zerosum switching control  stochastic games there are also 
stat ionary optimal strategies (cf. Filar [1981]), these however  are not  necessarily 
pure. An example at the end shows that  in the non-zerosum case stat ionary solu- 
tions may fail to exist in any of the classes mentioned.  Another  example explains 
why for switching control  games we have to restrict to the two-person case. 

An n-person stochastic game is given by: (a) a set of players N = {1, 2 . . . . .  n}, 
(b) a set of states S = { 1, 2 . . . . .  z}, (c) for each state s and each player i a finite set 
of actions A~, (d) for each state s and each joint  action a E A~ = IIj~ N A~ a payoff  
r~(s,a)EN to player i, and (e) for each state s and each joint  action a~A,  
a transition probabil i ty vector p(s, a) = (p( l ls, a), (p( 21 s, a) . . . . .  p (z[ s, a)) e [0, 1] ~. 
A perfect informat ion stochastic game has the property:  

V s 3 i V j # i :  # A ~ =  1. 

An ARAT stochastic game has additive rewards and additive transitions: 

V s V i V a : r i ( s , a ) = ~ ' r j ( s , a  ~) and VsVtVa:p(tls, a)~-F, pj(tls, aJ), 
J J 

for some functions r~. and pj. A switching control  stochastic game has the 
property:  

Vs3iVa,  b: i f a i =  b i, then p(s,a) = p(s,b). 

Play can start in any state of S and evolves by players i ~ N  independently 
choosing actions a ~ A ~ ,  where s k is the state visited at stage k. A strategy for 
player i is a rule to decide for any history h k = (s 1, a ~, s 2, a2 , . . . ,  sg _ 1, ak ~, sk), with 
aheAsh, what mixed action (mixed over A~) to use in state s k at stage k~ N. 
Generally, strategies are denoted by a i for player i. A joint  strategy is denoted by 
a and a - i denotes a joint  strategy of the players in N \ { i }. For  initial state s and 
joint  strategy o- the reward to player i is given by 7i(s, a) = E s~ (lim infr~ ~o ~ Y'[-1 
r i (S(k) ,A(k) ) ) ,  where S(k), A(k )  are r andom variables for state and action at 
stage k. Let  y i(a) = (7i(1, a),7i(2, or) . . . . .  Vi(z, a)). Stat ionary strategies for player 
i are denoted by x i = (x~, x~, . . . ,  xi~), where x~ is the mixed action to be used by 
player i in state s, whenever state s is being visited. A strategy is called pure if it never 
uses any randomization. We denote pure stationary strategies for player i b y f  ~. 

2 Results 

Theorem 1 : Every n-person perfect information stochastic 9ame has pure equilibria. 
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Proof:  Given  an n-person perfect informat ion  game  F,, consider the related 
zerosum game F (i) where player  i is maximizing his reward,  while players N \ { i} 
are jo int ly  minimizing player  i's reward.  By Liggett  & L i p p m a n  [1969]: 

3"U i 3 f (  i) Va: 7 ' ( f i (  i), a - i )  2 v i > 7~( a i , f - i (  i) ). 

Then  v i ( f f ( 1 )  . . . . .  i f ( n ) )  >_ v i for all i. S incef i ( i )  is pure, any deviat ion of player  
i will be observed immedia te ly  and can always be punished by the players  in 
N \ { i } using f -  i(i) because, for any state s and any act ion a i r f~ (i), the transi t ion 
probabi l i ty  only depends on player  i's action and, by the opt imal i ty  of f i ( i ) :  

~. p(tl s, a i) v I <_ vi~ -- ~. p(tIs,fis(i))v~. 
t t 

N o w  for each player  i we define rc i by: p layf i ( i )  as long as no player  has deviated; 
if at some previous stage p layer j  • i has deviated, then p layf i ( j ) .  It can be verified 
that  (~a . . . . .  ~z n) is a pure  equil ibrium in/2. [ ]  

Theorem 2: Every n-person A RATstochast ic  game has pure equilibria. 

Proof: We now use the result of Raghavan  et al. [1985] to take, for each i, pure  
strategies f ( i )  as in the previous proof.  Then,  complete ly  ana logous  to the above,  
we define ~zl,... ,~n and, for the possibili ty of punishment ,  we observe that  for any 
state s and any act ion aieA]: 

~f, p( t  I s, a i, ~ - i ) v l  = E Pi(tl s, ai)v~ + • Z pj(t[ s, n{)vit 
t t t J ~ - i  

<_ ~, pi(t] s,f~(i))v~ + Z • pj(t] s, ~)v~ 
t t j # i  

-- ~ p( tls,f~( i), ~z,- i) v~ _< ~ p( tIs,f~( i), ~zsi)yi( t, f i (  i), ~z -i)  
t t 

= yi(s, f i ( i ) ,  7z-i). 

This again yields that  (~z 1 . . . . .  re") is a pure  equilibrium. [ ]  

Observe  that,  for the equilibria constructed in the previous proofs,  the players  
play pure  s ta t ionary  while prevent ing any deviat ion by a cons tant  threat  of  using 
a pure  s ta t ionary  punishment .  The  existence of pure  s ta t ionary  opt imal  strategies 
in the game F ( i )  is of crucial impor tance  in the above  proofs,  for this implies that  
the level p layer  i can guarantee  by  playing f~(i) (i.e. the maxmin)  is the same as the 
level at which his opponen t s  can punish him by p l a y i n g f  i(i) (i.e. the minmax).  
The  following three-person game shows that  m a x m i n  and  m i n m a x  need not  be 
equal. 

Example: 

N 
L R 

F 
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Here there is only one state. Player 1 plays Top or Bottom, player 2 plays Left or 
Right, player 3 plays Near or Far. It can be seen that max~l m i n ~  71(x ~, 
x 2, x 3) = 1/2 _< 3/4 = min~.~ maXx~ 71 (x l, x 2, x3). For perfect information games 
and for ARAT games a gap between maxmin and minmax cannot occur because 
the joint minmax strategy of the n -  1 players is pure and stationary, and thus 
corresponds to n - 1  pure stationary strategies for the individual players. The 
example shows that the above proof cannot be applied for 3-person switching 
control stochastic games. 

Theorem 3: Every two-person switching control stochastic game has e-equilibria. 

Proof'. By Filar 1-1981] we have: 

~ V1, V2 ~ x, y V ~7 : 71( x l ,  a2 ) ~ V 1 ~71(0-1,X 2) and 72 ( al, y2 ) >_ v2 >_ 72 ( yl, cr2). 

Let g2 be a pure stationary best reply for player 2 against x 1. Let R be the set of 
states that are recurrent w.r.t. (x 1, g2). Let 2 1 be the set of stationary strategies 21 

1 for all for player 1 with Car(21 ) _ Car(x1) and for which in addition: a) 2~ = xs 
se R, b)[ Car(2))l = 1 for all s$ R and c) all states in S \  R are transient with respect 
to ( y l  g2). Let 21 @~-1 be such that 72 (Y 1, g2) ~.~ 72 (~1, g2) for all E1 E21. Then also 
72(21, g2) ~ 72(x1  g2) ~ v2. 

On the other hand, using the switching control structure, we also have 
71 (21, g2) > V 1. Moreover it can be verified that like in the previous proofs: 

1 2 1 VsVal, aZ:71(s, 21,gZ)>_~p(t]s,a ,gs)Vt and 
t 

72(s, 21,g2)_>~ t s ^1 2 2 P( [ ,Xs,a )vt, 
t 

which implies that the players can punish each other, whenever they observe any 
deviation. Since player 2 plays pure, his deviations can be observed immediately. 
Player 1, however, uses a mixed stationary strategy on R. There he could improve 
his reward by repeated deviations within the carrier of his strategy. For arbitrary 
e > 0, such deviations can be observed by player 2 in the long run with probability 
at least 1 - e, since the action frequencies of player l's actions should converge to 
21 (cf. Thuijsman [-1992]). Then, if we let n 1 consist of playing 21 and punishing by 

2 consist of playing g2 and punishing by x 2 yl whenever necessary, and if we let n~ 
whenever necessary, partly based on some e-dependent testing, then (n 1, n~) is an 
e-equilibrium. [] 

We remark that for these e-equilibria both players are playing stationary while 
checking the opponent and threatening to use a stationary punishment. Notice 
that we would find a pure (0-)equilibrium in case [Car(xs~)] = 1 for all se R. 

Theorem 4: Perfect information-, ARA T- and two-person switching control games 
have the orderfield property. 
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Proof'. The equilibria constructed for the perfect information case and for the 
ARAT case consist of pure strategies. Hence rational payoffs and transitions will 
give rational equilibrium rewards. For  any two-person switching control game 
with rational data one can take rational stationary optimal strategies for the 
related zerosum games (cf. Filar [1981]). Since our e-equilibria consist of these 
strategies combined with pure stationary strategies, the orderfield property 
holds. [] 

We remark that for zerosum ARAT stochastic games finite algorithms are known 
to compute pure stationary optimal strategies (cf. Raghavan et al. [1985]). The 
equilibria we constructed for the ARAT case (including perfect information), 
consist of zerosum optimal strategies. Hence, for these two cases the zerosum 
algorithms can straightforwardly be extended to yield finite algorithms for 
finding equilibria. For  the two-person switching control case our approach first 
requires the determination of stationary optimal strategies, which can be done by 
the finite algorithm of Vrieze et al. [1983]. Next, this solution has to be combined 
with a solution to a perfect information game. 

Example: 

1 2 3 4 

This example of a two-person perfect information game is taken from Flesch et al. 
[1996]. Player 1 plays rows, player 2 plays columns. Up left are the rewards for 
players 1 and 2 respectively; down right are the transition probabilities. Our 
construction gives the pure equilibrium: (7~ ~ with threat to play f l ,  f2), where 
n ~ = (1, 0) and where f~ = f2  = (0, 1). It is easy to verify that, for this example, 
there are no stationary e-equilibria (e > 0). However, for ARAT repeated games 
with absorbing states existence of stationary e-equilibria has been shown by 
Evangelista et al. [-1996]. 
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