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Polytope Games1

R. BHATTACHARJEE,2 F. THUIJSMAN,3 AND O. J. VRIEZE
4

Abstract. Starting from the definition of a bimatrix game, we restrict
the pair of strategy sets jointly, not independently. Thus, we have a set
P⊂SmBSn , which is the set of all feasible strategy pairs. We pose the
question of whether a Nash equilibrium exists, in that no player can
obtain a higher payoff by deviating. We answer this question affirm-
atively for a very general case, imposing a minimum of conditions on
the restricted sets and the payoff. Next, we concentrate on a special
class of restricted games, the polytope bimatrix game, where the restric-
tions are linear and the payoff functions are bilinear. Further, we show
how the polytope bimatrix game is a generalization of the bimatrix
game. We give an algorithm for solving such a polytope bimatrix game;
finally, we discuss refinements to the equilibrium point concept where
we generalize results from the theory of bimatrix games.

Key Words. Game theory, bimatrix games, Nash equilibria, restricted
games.

1. Introduction

We consider in this paper classical noncooperative two-person games
with one interesting distinction: the players strategies are restricted.

In noncooperative, two-person games, the pure actions of the players
are enumerated {1, . . . , m} and {1, . . . , n} and then their mixed actions are
defined as

Sm_5x∈Rm uxX0 and ∑
m

iG1

xiG16 ,

Sn_5y∈Rn uyX0, ∑
n

jG1

yjG16 .
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Formally, such a game is characterized by the tuple 〈R1 , R2 , Sm , Sn〉, where
R1 and R2 are the payoff functions for the two players.

It can be shown that a restriction of the strategy sets such that the set
of all feasible strategies (x, y) is of the form XBY, where X⊂Sm , Y⊂Sn ,
and both are polytopes, is equivalent to some bimatrix game where the pure
actions in that game are the extreme points of X and Y. This can be done
because the players still have independent strategy sets.

We consider another class of restrictions; we restrict the joint strategy
set SmBSn to a set C⊂SmBSn . Thus, the players strategies are not indepen-
dent of each other. The question arises of whether two players, choosing a
pair of points (x, y)∈C⊂SmBSn , where C is convex and compact, can reach
a Nash equilibrium in the sense that both players cannot achieve a better
payoff within C, if the other player stays with his strategy.

Formally, this game can be characterized as follows. Let C⊂SmBSn be
convex and compact. Further, define payoff functions R1 (x, y): C→R and
R2(x, y): C→R to be concave and continuous. The two players play a game
in normal form with compact action spaces Sm and Sn . The two players
choose strategies x∈Sm and y∈Sn , without knowledge of the other players
choice. If (x, y)∉C, then the payoff is (−S, −S); if (x, y)∈C, then the payoff
is (R1(x, y), R2(x, y)).

This is a noncooperative two-person general-sum game; therefore, the
concept of a Nash equilibrium, proposed by Nash in Ref. 1, is still valid. If
there exists x∈Sm such that, (x, y)∉C, for all y∈Sn , then there might exist
a Nash equilibria with payoff (−S, −S). It is important to see that it is not
possible for one player to receive negative infinite payoff, while the other
receives a finite payoff. The question that now remains is whether there are
Nash equilibria with finite payoff, assuming that the players prefer a finite
payoff. This is equivalent to finding Nash equilibria over C, i.e., allowing
only strategies (x, y)∈C to be played. We call this a restricted game and
show the existence of Nash equilibria over C. We look at a special class of
restricted games, polytope bimatrix games, in which the restrictions on the
strategy set are linear and the payoff functions are bilinear. These polytope
bimatrix games are in fact a generalization of bimatrix games; we discuss
the similarities and differences.

An example of a restricted game can be found in a situation when there
is a finite resource. Consider two neighboring countries. The clean air which
they share is a finite resource. There exists an upper bound on the sum of
allowable pollution; e.g., if both countries together pollute over this limit,
they both suffer. If a payoff function is defined with respect to the health
of the citizens and if the level of pollution is a strategy, then for some tuple
of strategies, the payoff is a large negative number for both parties. This is
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undesirable; hence, the two countries search for equilibrium strategies that
do not have this large negative payoff.

The organization of the paper is as follows. In Section 2, we give the
basic definitions for playing the game with restricted strategies and the defi-
nition of equilibrium strategies. These are as general as possible. In Section
3, we show the main result, the existence of equilibrium strategies. This is
done with the help of the fixed-point theorem of Kakutani. Again, we
impose minimal conditions on the restricted set and the payoffs so as to
arrive at a general statement about the object of our study, the polytope
bimatrix game. In Section 4, we derive how the best reply sets of a bimatrix
game are projected on a polytope bimatrix game with the same payoff
matrices, but with restrictions on the original set of strategies. Section 5
shows how to solve a polytope bimatrix game by means of a linear comp-
lementarity problem. In Section 6, we give some results on the structure of
the set of equilibria using results from Section 5. Section 7 deals with
refinement to the equilibrium concept. Here, we have extended existing
refinements from the theory of bimatrix games to polytope games.

2. Definitions and Preliminary Results

Consider a convex and compact set C⊂SmBSn and payoff mappings
R1(x, y): C→R, R2 (x, y): C→R. Players I and II play a game in normal
form with actions x∈Sm and y∈Sn . If (x, y)∉C, their payoffs are (−S, −S);
if (x, y)∈C, their payoff are (R1(x, y), R2(x, y)). One can assume that both
players desire a finite payoff. This is equivalent to the following definition.

Definition 2.1. Let the set C⊂SmBSn be nonempty, convex, and com-
pact. Further, let the payoff functions R1: SmBSn →R and R2: SmBSn →R

be continuous and concave on C. Players I and II can play only strategies
x and y respectively, such that (x, y)∈C. Then, their payoffs are R1 (x, y)
and R2 (x, y) respectively. We say that players I and II play a restricted
game, denoted by 〈C, R1 , R2〉.

Since both players want a finite payoff they wish to settle for an equilib-
rium which has a finite payoff. Hence, the equilibrium can be formalized
via the following definition.

Definition 2.2. A strategy pair (x, y)∈C is called a Nash equilibrium
for the restricted game 〈C, R1 , R2〉 if

R1 (x, y)XR1 (x̂, y), for all (x̂, y)∈C,

R2 (x, y)XR2(x, ŷ), for all (x, ŷ)∈C.
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Given that, if (x, y)∉C, the payoff is (−S, −S), a Nash equilibrium for
〈C, R1 , R2 〉 is also a Nash equilibrium in the classical sense over SmBSn ,
since

R1(x, y)HR1(x̂, y), for all (x̂, y)∉C.

In later sections, the object of our investigations is a special class of
restricted games, the polytope bimatrix game.

Definition 2.3. A restricted game 〈C, R1 , R2 〉 is known as a polytope
bimatrix game (PBG), if C is a polytope in RmBn and the payoffs are R1G

xAyt, R2GxByt, for some A, B∈RmBn. The polytope bimatrix game is
denoted by 〈P, A, B〉 and its set of equilibria by EP (A, B ).

3. Equilibrium Points

In this section, we show that an equilibrium in the sense of Definition
2.2 always exists for a restricted game. From here on, we disregard strategy
pairs which are not in the restricted set.

Theorem 3.1. Let 〈C, R1 , R2〉 be a restricted game. Then, there exists
(x, y)∈C such that (x, y) is a Nash equilibrium.

The classical proof for existence of Nash equilibria in finite noncooper-
ative games fails in this case, because the Cartesian product of the best
replies for a strategy pair need not be in the restricted set. We include the
following proof only to show how to circumvent this problem.

Once we have overcome this obstacle, the proof is nearly identical to
the existence proof for classical bimatrix games.

We employ some results about semicontinuous functions and also need
the following definition.

Definition 3.1. Let 〈C, R1 , R2〉 be a restricted game. For y∈Sn , define

X( y)_{x∈Sm u (x, y)∈C};

for S⊂Sn , let

X(S )_*
y∈S

X( y).

For x∈Sm , define

Y (x)_{y∈Sn u (x, y)∈C};
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for S⊂Sm , let

Y(S )_ *
x∈S

Y(x).

Proof of Theorem 3.1. Let (x̃, ỹ)∈C. Define

BR2(x̃)_{y∈Y(x̃) uR2(x̃, y)XR2(x̃, ỹ), for all ȳ∈Y(x̃)},

BR1( ỹ)_{x∈X( ỹ) uR1 (x, ỹ)XR1 (x̄, ỹ), for all x̄∈X( ỹ)}.

So, BR2(x̃) is the set of best replies of player 2 against x̃ in C. It follows
that

BR2(x) [BR1( y)] is upper semicontinuous in x [y].

Now, we define

φ : CBC→CBC,

φ(x1 , y1 , x2 , y2 )∈(BR1( y2)B{y2}B{x1}BBR2 (x1 )).

Standard results yield that φ is compact-valued, convex-valued, and upper
semicontinuous, from which it follows that, with the fixed-point theorem of
Kakutani (Ref. 2), there exists (x*1 , y*1 , x*2 , y*2 ) such that

(x*1 , y*1 , x*2 , y*2 )∈φ (x*1 , y*1 , x*2 , y*2 ).

This implies that

x*1 Gx*2 ∈BR1( y*2 )GBR1( y*1 ),

y*1 Gy*2 ∈BR2(x*2 )GBR2(x*1 ).

Hence, it follows that (x*1 , y*1 )G(x*2 , y*2 ) is an equilibrium. h

In the following example, we show how a restricted game looks and
which points form equilibria. We have taken a simple shape (the circle) and
have restricted our strategy pairs to points enclosed by this circle. The pay-
off is defined in two matrices.

Example 3.1. Consider the bimatrix game defined by

AG31 1

1 04 , BG30 1

1 14 .

The strategy space SmBSn is restricted to

C_{(x, y)∈SmBSn u (x2A1y2)2C( y2A1y2)2Y1y4}.
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Fig. 1. Example 3.1.

This is a restricted game with

R1_xAyt, R2_xByt

continuous and concave, and C convex and compact. The set of all equilib-
ria is

E(A, B )G{(x, y) u (x2A1y2)2C( y2A1y2)2G1y4}

∩{(x, y) ux2Y1y2, y2X1y2}.

Figure 1 shows the original set SmBSn . The restricted strategy set C is
shown shaded and the equilibria are dark.

4. Projecting the Best Replies

Having shown the existence of equilibria for a very general case of
games, we now restrict our study to polytope bimatrix games. In fact, the
polytope bimatrix game is a generalization of the bimatrix game. This can
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be seen by choosing

PGSmBSn .

Then,

(A, B ) ≡ 〈P, A, B〉.

When investigating a polytope bimatrix game, the natural place to start
is the original bimatrix game, obtained by removing the restrictions on the
strategy set. Indeed, the common factor between a polytope bimatrix game
and its original bimatrix game are the payoff functions, and these will deter-
mine also the way that the set of equilibria of the bimatrix game (A, B ),
denoted by E(A, B ), influences the structure of the set EP (A, B ).

We use the fact that both E(A, B ) and EP (A, B ) consist of strategy
pairs that are simultaneous solutions to a pair of linear programming prob-
lems. In both cases, the pairs of LPs have identical objective functions, but
the LPs for the two cases have different feasible sets.

Starting from solutions to the pair of LPs in the case of a bimatrix
game, we use the gradients of the payoff functions to project the solutions
onto the new feasible set for the polytope bimatrix game. In this way, we
obtain a pair of strategies that are simultaneous solutions to the pair of
linear programming problems for the polytope bimatrix game.

Definition 4.1. Let (A, B ) be a bimatrix game. For (x, y)∈SmBSn ,
define

BI( y)_{x∈Sm uxAyt¤x̄Ayt, for all x̄∈Sm},

BII(x)_{y∈Sn uxByt¤xBȳ t, for all ȳ∈Sn}.

These are the best reply sets for a bimatrix game. The following is a
well-known result.

Corollary 4.1. Let (A, B ) be a bimatrix game. Then,

E(A, B )G*
x∈Sm

({x}BBII(x)) ∩ *
y∈S n

(BI( y)B{y}).

Now, consider the polytope bimatrix game 〈P, A, B〉, with the same
payoff functions xAyt and xByt, and consider how the best reply sets are
projected onto the polytope.
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Definition 4.2. Let 〈P, A, B〉 be a polytope bimatrix game. For (x, y)∈
P, define

OHI( y)_5x∈Rm uxAytGmax
x̄∈Sm

x̄Ayt6 ,

OHII(x)_5y∈Rn uxBytGmax
ȳ∈S n

xBȳ t6 .

These sets are hyperplanes in Rm and Rn. They are the isoclines of the
objective functions for the linear problem of maximizing the player I payoff,
while keeping y fixed and vice versa. These are projected onto the polytope.

It is clear that

BI( y) ⊂ OHI( y),
BII(x) ⊂ OHII(x).

Now, the hyperplanes OHI( y)B{y} and {x}BOHII(x) are projected onto
the polytope P. Define

OI( y)_{x∈X( y) udist((x, y), (OHI( y)B{y}))

G min
x̄∈X(y)

dist((x̄, y), (OHI( y)B{y}))},

OII(x)_{y∈Y (x) udist((x, y), ({x}BOHII(x)))

G min
ȳ∈Y(x)

dist((x, ȳ), ({x}BOHII(x)))}.

Theorem 4.1. Let 〈P, A, B〉 be a PBG; let

X_ *
y∈S n

X( y) and Y_ *
x∈Sm

Y(x).

Then,

EP(A, B )G*
x∈X

({x}BOII(x)) ∩ *
y∈Y

(OI( y)B{y}).

Proof. ( ⊆ ) Let

(x, y)∈EP (A, B ).

Then, it follows that

xGarg max
x̄∈X(y)

x̄Ayt,

yGarg max
ȳ∈Y (x)

xBȳ t.
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The point in X( y) with minimal distance to OHI( y) has maximal projection
on the normal Ayt of OHI( y). Since the length of the projection onto Ayt

is xAytyuuAytuu, it follows that

dist((x, y), (OHI( y)B{y}))G min
x̄∈X(y)

dist((x̄, y), (OHI( y)B{y})).

( ⊇ ) Let

(x, y)∈({x}BOII(x)) ∩ (OI( y)B{y}).

Then, x∈OI( y), and since

max
x̄∈X(y)

x̄Ayt⁄max
x̄∈Sm

x̄Ayt,

we find that x minimizes the distance to the isocline with the maximum
possible payoff. Therefore, x is solution to the following problem: maximize
x(Ayt ) subject to x∈X( y). h

5. Solving Polytope Games

Here, we use the knowledge gained in the previous section regarding
the gradients of the payoff functions. This helps us characterize equilibrium
points by means of a linear complementarity problem. First, we recall the
concept of the Kuhn–Tucker conditions.

Theorem 5.1. Consider a linear programming problem with finite
solution,

max x · ct,

s.t. xA⁄b,

x¤0,

where A∈R
mBn, x, c, 0∈R

n, and b∈R
m; a vector x̃ is an optimal solution if

and only if the following Kuhn–Tucker conditions are fulfilled: There exist
µ∈Rm and u∈R n such that

µ, u¤0,

cGµAAu,

u · xtG0,

µ · (AxAb)tG0.

The vectors µ and u are also called Lagrange multipliers. Thus, if the
Kuhn–Tucker condition is fulfilled, the gradient c of the objective function
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lies in the convex cone of the active restriction, because of the comp-
lementarity conditions. This implies that any change to improve the objec-
tive function leads outside the feasible set. For a proof, we refer to
Luenberger (Ref. 3).

The next theorem uses this idea to characterize equilibrium points.

Lemma 5.1. Let 〈P, A, B〉 be a PBG. Then, (x, y)∈EP (A, B ) if and
only if

for all ϕ∈Rm with (ϕAyt )H0, we have (xCϕ, y)∉P;

for all ψ∈R
n with (xBψ t )H0, we have (x, yCψ )∉P.

Proof. (⇒) Let (x, y)∈EP (A, B ). Then,

x(Ayt )¤x̄(Ayt ), for all x̄∈X( y).

Assume that there exists ϕ∈Rm such that ϕAytH0 and (xCϕ, y)∈P. Then,

(xCϕ )AytGxAytCϕAytHxAyt.

But this means that there exists

x̄G(xCϕ ) such that x(Ayt )Fx̄(Ayt ), with (x̄, y)∈P,

which is a contradiction to (x, y)∈EP (A, B ). So, for all ϕ∈Rm such that
ϕAytH0, we have (xCϕ, y)∉P.

(⇐) For all ϕ∈Rm such that ϕAytH0 implies (xCϕ, y)∉P. Assume
that there exists x̄∈X( y) such that x̄(Ayt)Hx(Ayt ). Let

ϕ∈Rm such that x̄GxCϕ.

Since

(xCϕ )AytGxAytCϕAyt,

it follows that 〈ϕ, (Ayt )〉H0. Finally,

〈ϕ, (Ayt )〉H0 and (xCϕ, y)G(x̄, y)∈P,

and this is a contradiction to (xCϕ, y)∉P, so (x, y)∈EP(A, B ). h

This implies that, at an equilibrium, neither player can find a feasible
change of strategy to increase his payoff. In fact, the condition in Lemma
5.1 is equivalent to the Kuhn–Tucker conditions, which state that the only
improving directions point out of the feasible set.

To use Theorem 5.1 to solve our problem, we will need the fact that,
because the set P is a polytope, it can be characterized as a system of linear
inequalities.
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Lemma 5.2. Let 〈P, A, B〉 be a PBG. Then, there exist a matrix M∈
RlBmCn and a vector b∈Rl such that

PG5(x, y)∈RmCn *M3xt

yt4⁄bt and x, y¤06 ,

where

MG3Me

Mp
4 , btG3be

bp
4 ,

with

MeG3
−1 . . . −1 0 . . . 0

1 . . . 1 0 . . . 0

0 . . . 0 −1 . . . −1

0 . . . 0 1 . . . 1
4 , beG3

−1

1

−1

1
4 ,

and where Mp and bp have to be chosen appropriately.

Observe that, for ỹ∈Y,

X( ỹ)G5(x, ỹ)∈RmCn*M3xt

ỹ t4⁄bt, x¤06 .

The matrix M is not unique and we consider the smallest matrix for the
sake of simplicity.

Now we can formalize the condition in Theorem 5.1 in the form of the
Kuhn–Tucker conditions. This yields the following theorem.

Theorem 5.2. Let 〈P, A, B〉 be a PBG, where A, B∈RmBn and M, b are
as in Lemma 5.2. Then, (x, y)∈EP (A, B ) if and only if there exist vectors
µ, ν∈R

l, u1∈R
m, u2∈R

n with

µ, ν, u1 , u2¤0,

(Ayt )G ∑
l

iG1
µi3

Mi1

···
Mim

4Aut
1 ,

x · ut
1G0,

µ3M3xt

yt4Abt2G0,
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(xB )tG ∑
l

iG1

νi3
MimC1

···
MimCn

4Aut
2 ,

y · ut
2G0,

ν1M3x
t

yt4Abt2G0.

Proof. By the definition of an equilibrium point, it follows immedi-
ately that (x̃, ỹ) is an equilibrium point if and only if x̃ respectively ỹ solve
the following two equations:

max
x∈X(ỹ)

xAỹ tGx̃Aỹ t,

max
y∈Y (x̃)

x̃BytGx̃Bỹ t.

Using Lemma 5.1, it follows that x̃ respectively ỹ solve these two equations
if and only if vectors µ, ν∈Rl, u1∈Rm, u2∈R n exist that satisfy the equations
of the theorem. h

Now, we have a set of equations whose solutions are Nash equilibria.
As a direct consequence, we can describe a Nash equilibrium as a linear
complementarity problem (LCP).

Corollary 5.1. Let 〈P, A, B〉 be a PBG. Then, (x, y)∈EP(A, B ) if there
exist µ, ν, u1 , u2 , v such that (x, y, µ, ν, u1 , u2 , v) is a solution to the LCP

3
ut
1

ut
2

vt

vt
4G3

0 −A (M1,...,l,1,...,m)t 0

−Bt 0 0 (M1,...,l,mC1,...,mCn)
t

M1,...,l,1,...,m M1,...,l,mC1,...,mCn 0 0

M1,...,l,1,...,m M1,...,l,mC1,...,mCn 0 0
43

xt

yt

µt

νt
4A3

0

0

bt

bt
4 ,

0G[x y µ ν]3
ut

1

ut
2

vt

vt
4 ,

0⁄x, y, µ, ν, u1 , u2 , v.

LCPs are quite common and can be solved, even though it might be
necessary to perturb the problem to avoid degeneration. Hence, we can
solve a PBG by means of the above lemma.
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Additionally using this characterization, we consider the shape of the
set of equilibria.

Theorem 5.3. Let 〈P, A, B〉 be a PBG. The set of equilibria EP (A, B )
is the finite union of convex polytopes.

This theorem follows directly from the fact that the set of equilibria
EP(A, B ) is equal to the set of solutions to the LCP; Jansen (Ref. 4) has
shown this set to be a finite union of polytopes.

Jansen (Ref. 5) has also investigated the structure of the set of equilibria
found in bimatrix games, where the set E(A, B ) is the union of maximal
Nash subsets, which are convex polytopes. The Nash subsets have the prop-
erty that all strategy pairs in these sets are interchangeable. However, for
polytope bimatrix games, the meaning and usefulness of the concept of
maximal Nash subsets is not clear, as the following example shows.

Example 5.1. Consider the bimatrix game defined by

AG31 1

1 04 , BG30 1

1 14 .

The strategy space SmBSn is restricted to

P_{(x, y)∈SmBSn ux1Cy2⁄1}.

This is a restricted game with

R1_xAyt, R2_xByt

continuous and concave on P, and P convex and compact. The set of equili-
bria is

EP (A, B )G{((0, 1), (1, 0))} ∪ {(x, y) ux1Cy2G1}.

Figure 2 shows the original set SmBSn . The restricted strategy set P is
shown shaded and the equilibria are circled. The strategy pair ((1, 0), (0, 1))
is circled, even though it is not even in P, because it is an equilibrium point
of the original bimatrix game (A, B ).

By using the results from Section 4, one can see that

((0, 1), (0, 1))∈EP (A, B ), ((0, 1), (1, 0))∈EP(A, B ).

These two equilibria are EP (A, B)-interchangeable, meaning that we can
construct a Nash subset

SG{((0, 1), (0, 1)), ((0, 1), (1, 0))}.
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Fig. 2. Example 5.1.

Considering the polytope, one can also see that there exist no other equilib-
ria which are interchangeable with elements of S; hence, S is a maximal
Nash subset. However, as one can easily see, this maximal Nash subset is
not convex and

conv hull{((0, 1), (0, 1)), ((0, 1), (1, 0))} y⊆ EP (A, B ).

Convexity is one of the most important characteristic of maximal Nash
subsets; clearly, it no longer holds for the polytope bimatrix game.

6. Refinements of the Equilibrium Concept

In this section, we extend refinements to the equilibrium concept, intro-
duced by Harsanyi (Ref. 6), Selten (Ref. 7), and Myerson (Ref. 8) for bi-
matrix games, to polytope bimatrix games. All results are generalizations,
in the sense that, in the special case of a PBG where the polytope is itself
SmBSn , the definitions are equivalent with the standard definitions for
bimatrix games.
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Definition 6.1. A strategy pair (x, y)∈P is called undominated if, for
all x̄∈X( y) and for all ȳ∈Y(x),

x̄A¤xA implies x̄AGxA,

Bȳ t¤Byt implies Bȳ tGByt.

Undominated equilibria of bimatrix games have been investigated by
Borm et al. (Ref. 9).

Definition 6.2. Let 〈P, A, B〉 be a PBG, and let P be characterized as
in Lemma 5.2. For (∈R+, the (-perturbed PBG is defined as 〈P( , A, B〉,
where

P(G5(x, y)∈R
mCn*M3xt

yt4⁄3be

bpA(4 and x, y¤(6 .

Then, this is a simple (-contraction of the polytope P; one should note
that, for sufficiently small (, the polytope structure remains the same, i.e.,
it has the same number of faces, etcetera.

Having so defined the (-perturbed polytopes, we define a perfect equi-
librium in such a way that it conforms with the perfectness concept pro-
posed by Selten in Ref. 7.

Definition 6.3. Let 〈P, A, B〉 be a PBG, with dim(P)GmCnA2 and
relint(P) ≠ ∅. The pair (x, y)∈EP (A, B ) is called a perfect equilibrium if
there exists a sequence ((k)k →0 and also a sequence (xk , yk )k∈N , with
(xk , yk )∈EP(k

(A, B ) for all k∈N, such that (xk , yk)k→(x, y).

Restricted to the special case where the polytope is the original strategy
set, this defines perfect equilibria. We pose the question of whether perfect
equilibria always exist for PBG as they do for bimatrix games. To answer
this, we need the following property.

Definition 6.4. A sequence of sets (Vn )n∈N , where Vn ⊂Rn for some n∈
N, is said to converge to V⊂R n (Vn →V ) if:

(i) for all (vn )n∈N , vn ∈Vn , with vn → nv, we have v∈V;
(ii) for all v∈V, there exists (vn )n , vn∈Vn such that vn → nv.

Lemma 6.1. Let (xk , yk )∈P(k be a sequence with (k →k 0 and
(xk , yk ) →k (x, y). Let

X(k(yk)_{x∈Sm u (x, yk )∈P(k},

Y(k(xk)_{y∈Sn u(xk , y)∈P(k}.

Then, X(k( yk) →k X( y) and Y(k(xk) →k Y (x).
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The proof is a simple application of the preceding definition. We now
show the existence of perfect equilibria.

Theorem 6.1. For every PBG〈P, A, B〉, where relint(P) ≠ ∅, there
exists a perfect equilibrium.

Proof. Since relint(P) ≠ ∅, there exists (0 such that, for all (F(0 , the
game 〈P( , A, B〉 is a polytope bimatrix game. Because every PBG has equili-
bria and the set P is compact, it follows that there exists a sequence
(xk , yk )k∈N , with (xk , yk)∈EP(k

(A, B ) for all k∈N, such that

(xk , yk) →k→S (x, y), for some (x, y)∈P.

All that is left to show is that x∈OI( y). Because

X(k( yk) →k X( y)

and

xkGarg max
x∈X(k (yk)

x(Ayt ),

it follows from the continuity of x(Ayt ) that

xGarg max
x∈X(y)

x(Ayt ).

Thus, it follows that x∈OI( y) and the same argument can be applied to y∈
OII(x). h

As Van Damme (Ref. 10) has shown that, for bimatrix games, perfect
and undominated equilibria are equivalent, we show that, for polytope
bimatrix games, perfect equilibria imply undominated equilibria, but not
the converse.

Definition 6.5. For a set V⊂Rn, define the subset of undominated
points UND(V ) as follows:

UND(V )_{v∈V u there exists no v̄∈V such that

v⁄v̄ and vjFv̄j for some j}.

Lemma 6.2. Let Vn ⊂Rn be a sequence of polytopes such that Vn →V
and there exists np∈N such that, for all n¤np , the supporting hyperplanes
of Vn are parallel to those of V. Then, UND(Vn ) →n UND(V ).

Continuity arises from the fact that, at some (, all restrictions are paral-
lel to the original prototype.
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Theorem 6.2. Let 〈P, A, B〉 be a PBG, and let dim(P)GmCnA2. If
(x, y) is a perfect equilibrium, then (x, y) is undominated.

Proof. Let (xk , yk) be the sequence of (k-equilibria, (xk , yk)∈
EP(k

(A, B ) for all k∈N, that converges to (x, y). Then, it follows that, for
all k∈N, xkA is undominated on {xA ux∈X(k( yk)}, since ykH0 is a com-
pletely mixed strategy under the assumption of full dimension.

From this and the fact that X(k( yk ) →k X( y), it follows with the conti-
nuity of the linear map that

A(X(k( yk)) →k A(X( y)),

and so by Lemma 6.2 it follows that

UND(A(X(k( yk)))→kUND(A(X( y))).

Since

xkA∈UND(A(X(k( yk))) and xk →x,

it follows that x is undominated on X( y). h

The converse does not hold in the case of polytope bimatrix games,
which we show in the following example.

Example 6.1. Consider the bimatrix game defined by

AG31 1

1 04 , BG30 1

1 14 .

The strategy space SmBSn is restricted to

P_{(x, y)∈SmBSn ux1Cy2⁄1, x2⁄1A(1y2)y2 , y2¤(1y2)x1}.

This defines a polytope bimatrix game 〈P, A, B〉.
By using the results in Section 4, it is clear that the set of all equilibria

is

EP (A, B )G{((0, 1), (1, 0))}

∪{(x, y) ux1Cy2G1, x2⁄1A(1y2)y2 , y2¤ (1y2)x1},

which is depicted in Fig. 3. In this picture the equilibria are circled and
they coincide with the undominated points. Especially note that the point
((0, 1), (1,0)) is undominated, mainly because X( y) and Y (x) include only
one point. However, this equilibrium is not perfect, as any perturbation of
the polytope yields equilibria in the upper left side of the polytope.
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Fig. 3. Example 6.1.

Finally, we look at a further refinement to the equilibrium concept,
that of proper equilibria. For bimatrix games, this was proposed by Myer-
son (Ref. 8); we extend this idea to polytope bimatrix games.

Definition 6.6. Let 〈P, A, B〉 be a PBG, (x, y)∈relint(P), X( y)G
conv hull{x1 , . . . , xk}, Y(x)Gconv hull{y1 , . . . , yl}, and (H0. The pair
(x, y) is called (-proper equilibrium if the conditions below are satisfied:

(i) for any set {i1 , . . . , iq} and index r with

xim AytFxrAyt, for all m∈{1, . . . , q},,

there exist µ1 , . . . , µk with xG∑k

iG1 µi xi , ∑q

mG1 µim⁄(µr;
(ii) for any set { j1 , . . . , jp} and index s with

xByt
jnFxByt

s , for all n∈{1, . . . , p},

there exist ν1 , . . . , νl with yG∑l

jG1 ν j yj , ∑p

nG1 ν jn⁄(νs .

Definition 6.7. Let 〈P, A , B〉 be a PBG, with dim(P)GmCnA2 and
relint(P) ≠ ∅. The pair (x, y)∈EP (A, B) is called a proper equilibrium if
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there exists a sequence ((k)k → 0 and a sequence (xk , yk)k∈N , with (xk , yk)
an (k-proper equilibrium for all k∈N, such that (xk , yk)k → (x, y).

Theorem 6.3. For every PBG, 〈P, A , B〉, where relint(P) ≠ ∅, there
exists a proper equilibrium.

Proof. It suffices to show that, for ( small enough, there exist (-proper
equilibria. To prove this, we first define the mapping

PR(
1( y)_3x∈X( y) uxim AytFxrAyt, for all m∈{1, . . . , q},

implies that there exist µ1 , . . . , µk with

xG ∑
k

iG1

µixi , ∑
q

mG1

µim⁄(µr and

µi¤[(y(1C()]kC1, for all i∈{1, . . . , k}4 .

Then, we show that this mapping has properties (i) to (iii) below.

(i) PR(
1( y) is convex and compact. Let x′, x″∈PR(

1( y). Then, for all
{i1 , . . . , io}⊂{1, . . . , k} and t∈{1, . . . , k}, if

xim AytFxrAyt, for all m∈{1, . . . , q},

there exist µ′1 , . . . , µ′k and µ″1 , . . . , µ″k with

x′G ∑
k

iG1

µ′i xi , ∑
q

mG1

µ′im⁄(µ′r ,

µ′i¤[(y(1C()]kC1, for all i∈{1, . . . , k},

x″G ∑
k

iG1

µ″i xi , ∑
q

mG1

µ″im⁄(µ″r ,

µ″i ¤[(y(1C()]kC1, for all i∈{1, . . . , k}.

Then,

λ(x′)C(1Aλ )x″

G∑ λµ′i xiC∑ (1Aλ )µ″i xi

G∑ µ̄i xi ,

with

µ̄i¤[(y(1C()]kC1, for all i∈{1, . . . , k}.
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Now,

∑
q

mG1
[λµ′imC(1Aλ )µ″im ]

G ∑
q

mG1

λµ′imC ∑
q

mG1

(1Aλ )µ″im

Gλ ∑
q

mG1

µ′imC(1Aλ ) ∑
q

mG1

µ″im

⁄( [λµ′rC(1Aλ)µ″r ].

So, it follows that

λ (x′)C(1Aλ )x″∈PR(
1( y);

hence, PR(
1( y) is convex and compact.

(ii) PR(
1( y) is nonempty. First, we order xi with respect to the payoff

so that

xi1Ayt⁄xi2Ayt⁄· · ·⁄xik Ayt,

and partition {i1 , . . . , ik} into subsets T1 , . . . , Ts such that

for any i, j∈Tk , we have xiAytGxjAyt,

for any mFn, i∈Tm , j∈Tn , we have xiAytFxjAyt.

Now, we can construct µ1 , . . . , µk in sA1 steps.

Step 1. For all i∈Ts , let µi_1yuTs u.
Step 2. From one i∈Ts , subtract a1_ [(y(1C()]µi and define µi_

a1yuTsA1 u, for all i∈TsA1 .
Step 3. Repeat Step 2 for TsA1 and TsA2 .

. . .
Step sA1. From one i∈T2 , subtract asA1_ [(y(1C()]µi and define

µi_asA1yuT1 u, for all i∈T1 .

Easy calculation shows that, for ( small enough such a µ1 , . . . , µk fulfills the
restriction.

(iii) PR(
1( y) is upper semicontinuous in y. Let yn→y and xn →x with

xn ∈PR(
1( yn ). Because X( yn )→X( y), it follows that

extr(X( yn )) → extr(X( y)).

Since both extr(X( yn )) and extr(X( y)) are finite sets, we can partition their
elements

K(xi)_{(xn)n uxn∈extr(X( yn)) and xn→xi}
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further,

Kn(xi )_3 *
(xn)n∈K(xi)

{x1, . . . , }4∩X( yn).

For some {i1 , . . . , iq} and r,

xim AytFxrAyt, for all m∈{1, . . . , q};

then, it follows by continuity that, for n large enough,

xA( yn)tFx̄A( yn )t, for all m∈{1, . . . , q},

for all x∈Kn(xim), and x̄∈Kn(xr).

So, since xn∈PR(
1( yn ), it follows that there exist expressions

xnG ∑
Σ j uK n(xj) u

iG1
µn

i xn
i , ∑

i∈{k uxk ∈∪q
mG1K n (xkm)}

µn
i⁄(µn

r .

Now, it follows that

xG lim
n→S

xnG lim
n→S

∑
Σ j uK n (xj) u

iG1

µn
i x

n
i .

Since X( y) is continuous, it follows that

∑
j

uKn(xj) uGuextr(X( yn )) u

is constant for n large enough and can only decrease at y,

xG lim
n→S

xnG lim
n→S

∑
Σ j uK n (xj) u

iG1
µn

i xn
i G ∑

Σ j uK n (xj) u

iG1
lim µn

k lim xn
k .

Now, we can see that

∑
q

mG1

µimG ∑
i∈{k uxk ∈∪q

mG1K n (xkm)}

lim µn
i

Glim ∑
i∈{k uxk∈∪q

mG1K n(xkm)}

µn
i⁄( lim µn

r G(µr ,

which proves that x∈PR(
1 ( y), and so the upper semicontinuity is proven.

In the same way, we can define a mapping PR(
2(x). Since both mappings

are compact-valued, convex-valued, and upper semicontinuous, we can use
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the proof of the existence theorem (Section 3) in exactly the same way to
yield the existence of (-proper equilibria. h

7. Conclusions

In this article, we have studied a generalization of the classical bimatrix
game. The distinction is that the strategies of the players are not indepen-
dent. While this proved to be a more complex game, it was shown that most
of the results could be extended. The key lies in two linear programming
problems, which are solved simultaneously, since these describe the set of
equilibria and give an elegant way to compute an equilibrium.
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