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RECURSIVE REPEATED GAMES WITH ABSORBING STATES

J. FLESCH, F. THUIJSMAN, anp O. J. VRIEZE

We show the existence of stationary limiting average e-equilibria (& > 0) for two-person
recursive repeated games with absorbing states. These are stochastic games where all states
but one are absorbing, and in the nonabsorbing state all payoffs are equal to zero. A state is
called absorbing if the probabihty of a transition to any other state is zero for all available
pairs of actions. For the purpose of our proof, we introduce properness for stationary
strategy pairs. Our result is sharp smce it extends neither to the case with more nonabsorbing
states, nor to the n-person case with n > 2 Moreover, it is well known that the result cannot
be strengthened to the existence of O-equilibria and that repeated games with absorbing
states generally do not admit stationary e-equilibria.

1. Introduction. A recursive repeated game with absorbing states is a special
kind of stochastic game with finite state and action spaces, and with N = {1,2,...} as
the set of stages. A two-person stochastic game can be described by a state space
S :={1,...,z}, and a corresponding collection {M,,..., M.} of bimatrices, where
entry (i,j) of M, consists of r'(s,7,j),r*(s,i,j) € R and a probability vector
(pls, i, j), ..., p(zls, i, ). The stochastic game is to be played in the following way.
At each stage n € N the play is in precisely one of the states. If the play is in state s
at stage n then, simultaneously and independently, both players are to choose an
action: player 1 chooses a row i of M, while player 2 chooses a column j of M.
These choices induce an immediate payoff r'(s, i, j) to player 1 and r(s, i, j) to
player 2. Next, the play moves with probability pltls, i, j) to state ¢, where new
actions are to be chosen at stage n + 1.

The players are assumed to have complete information and perfect recall. A
player’s strategy is a specification of a probability distribution, at each stage and state,
over the available actions, conditional on the history of the play up to that stage.
Strategies are generally denoted by 7 for player 1 and o for player 2. A strategy is
called stationary if, for each state, it specifies a mixed action to be used whenever this
state is being visited. Stationary strategies are denoted by x and y. A stationary
strategy is called pure, if for each state, it specifies one action to be chosen. A pair of
strategies (s, ¢ ) with an initial state s € S determines a stochastic process on the
payoffs. The sequences of payoffs are evaluated by the limiting average reward, given
for player k € {1,2} by

1
k _ . -
s, m,0) = Esm(h;illilf T

iRz),

n=1

where RY are random variables for the payoffs of player k at stage n € N.
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RECURSIVE REPEATED GAMES 1017

A pair of strategies (7, o) is a limiting average e-equilibrium (e > 0), if neither
player can gain more than ¢ by unilateral deviation, i.e., if for all s, 7, &:

y'(s,m, 0)>ys,7,0)—e and y*(s,m, o) = yi(s, 7, )~ &.

The question of existence of e-equilibria is the most challenging open problem in
stochastic game theory these days.

Now we turn to recursive repeated games with absorbing states, a special class of
stochastic games. A state is called absorbing, if the probability of ever leaving this
state is zero for all pairs of actions. If all payoffs in the nonabsorbing states equal
zero, then the stochastic game is called recursive. A repeated game with absorbing
states is a stochastic game with only one nonabsorbing state. Thus, a recursive
repeated game with absorbing states is a repeated game with absorbing states where
all payoffs in the nonabsorbing state equal 0.

Although repeated games with absorbing states always have limiting average
s-equilibria (cf. Vrieze and Thuijsman 1989), it is well known that they need not have
stationary ones (cf. Sorin 1986). Recently, Evangelista et al. (1994) showed the
existence of stationary limiting average s-equilibria for ARAT repeated games with
absorbing states. ARAT stands for additive decomposability of rewards and transi-
tions in player controlled parts. Here we show that recursive repeated games with
absorbing states also have stationary limiting average e-equilibria. It is well known
that recursive repeated games with absorbing states need not have stationary limiting
average O-equilibria (see Example 1 in §2). In §4 we provide an example showing that,
contrary to the zero-sum case (cf. Everett 1957, Thuijsman and Vrieze 1992),
non-zero-sum recursive games may not have a solution in stationary strategies.
Although that game does have 0-equilibria, the general existence of limiting average
g-equilibria is not even known yet for recursive games.

In §2 we give the formal definitions and notations and we derive some preliminary
results. For recursive repeated games with absorbing states we introduce proper
strategy pairs and show their existence. In §3 of this paper we show the existence of
stationary limiting average e-equilibria. Several examples are provided to give the
intuition behind the steps of the proof. Section 4 concludes with some examples
showing that neither n-person recursive repeated games with absorbing states with
n > 2, nor two-person recursive games, necessarily have stationary limiting average
e~equilibria.

2. Preliminaries. We first introduce some necessary notations. We use the
notation I' for a two-person recursive repeated game with absorbing states. Without
loss of generality we suppose the absorbing states of T to be of size 1 X 1 and the
nonabsorbing state to be of size m X n. Thus there is only one nontrivial state with
action spaces [ :={1,...,m} and J = {1,..., n}. Therefore the stationary strategy
spaces X and Y have the form:

X = {x = (x(i)),erl 2o x(i) =1, x(i) = 0 Vi EI},

iel

Y = {y = (y())yer| 2¥()) =1, 9(j) 20V EJ}-

=

The imitial state is the nonabsorbing one, and the associated bimatrix will be denoted
by M. If entry (i, j) of M is chosen, then with probability p); a transition occurs to an
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1018 J. FLESCH, F. THUIISMAN, AND O. J. VRIEZE

absorbing state where the payoff is af“} to player k, and with probability 1 — p}* the
play stays in the initial state. In the initial state all immediate payoffs are equal to 0.
k

For completeness we define aj, = 0 if pj = 0.

DEFINITION 2.1, Let x and y be arbitrary stationary strategies. We introduce

po= L Lx()piy(j),  Car(x) = {i e Ilx(i) > 0},

el jel
Ti(y) = {i € llpt > O}, Bi(y) = {ielly'(i,y) = v'(s,y) V).

Sets Car(y), T*(x) and B%*(x) are analogously defined. The sets Car(x) and Car(y)
are called the carriers of the strategies x and y. For the strategy pair (x, y) we have
that pj, is the one step absorption probability. If pi, = 0, then we say that (x, y) is
recurrent; otherwise we say (x,y) is absorbing. Now TY(y) consists of the pure
strategies that are absorbing against y, B'(y) is the set of pure limiting average best
replies against y, and similar interpretations apply for 7*(x) and B%(x). As is well
known, B'(y) and B(x) are always nonempty.

Basic assumptions. Each time that we write about a limit for & to 0, we have a
discrete sequence in mind, which can be assumed to converge by compactness
arguments and by finiteness of the state and action spaces. Similarly, whenever we
consider strategies depending on 8 € (0, 1), we implicitly assume that the carriers of
these strategies are independent of § and 8 is close to 0. Also, we identify cach pure
stationary strategy with the corresponding action.

LEMMA 2.2, Let (x,y) € X X Y. Then y'(x,y) = 0 if p}, = 0, and otherwise

I(X ) - ZLEIEJEJx(i)pzﬂ;y(j)azj - ZzEI'x(i)p;}fy’yl(i’y)
YAy = Ty s x(Driy (D T, o)

The proof of this lemma is straightforward. For our main result we iniroduce
proper and &-proper strategy pairs (8 € (0,1)) for two-person recursive repeated
games with absorbing states.

DEFINITION 2.3. A pair of strategies (x5, ;) € X X Y is §-proper for 6 > 0, if

(1) (x;,ys) is completely mixed, i.e., Car(x;) = I and Car(y,;) = J,

() v'G, y,) > y'(e, y;) implies 8-x;() = x;(e) for all i, e €1,

(3) v*(xs, j) > v*(x,, f) implies 8- y;(j) = y,(f) for all j, f < J.

A pair of strategies (x,y) is called proper if (x,y)= limg , o(x4, y5) for some
sequence of &-proper strategy pairs (x;, y5)-

Proper and 8-proper strategy pairs are defined analogously to proper and &-proper
equilibria of games in normal form, but here they are not always s-equilibria, not
even for zero-sum games, as shown in the following example.

ExampiE 1. In this game entry (1,1) is nonabsorbing and all other entries are
absorbing with probability 1 (indicated by ) giving the corresponding absorption

0,0 2,-2

1,-1 0,0
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RECURSIVE REPEATED GAMES 1019

payoffs to players 1 and 2 respectively. Here (1 — 87, §%),(1 — 82, §%)) is &-proper
for small & > 0, so ((1,0),(1,0)) is proper, but neither one is an e-equilibrium.

THEOREM 2.4. There exists a proper strategy pair in T.

PrROOF. By the compactness of X and Y, it suffices to show that, for & sufficiently
small, there exists a &-proper pair in T. Let § € (0, 1) and let X(8) = {x € X|x(}) =
6™ Viel} and Y(8) = {y € Y|y(j) > 8" Vj €J}. Consider the following corre-
spondence ¥ from X(8) X Y(8) into the set of all subsets of X(8) X Y(8):
V(x,y) = (E,, F,), where E, = {x € X(8)|y'(i, y) > y'(e, y) implies &-x(i) = x(e)
Vi,e € I}, and F, = {y € Y(8)ly*(x, j) > v*(x, ) implies 6 y(j) = y(f) Vj, f € J}.
Now ¥ has a fixed point, since all conditions of Kakutani’s fixed point theorem (cf.
Kakutani 1941) are satisfied. Because every fixed point is a 8-proper pair, the proof is

complete. O

3. Stationary e-equilibria. In this section we shall prove our main result:

THEOREM 3.1.  In every recursive game with absorbing states T, there exists a station-
ary e-equilibrium (x_, y.) for all &€ > 0.

In order to prove this theorem we first give a sufficient condition for a strategy x;
to be an ¢-best reply against some y;.

LEmMA 3.2. For all 6 € (0,1), let x5 and y; be arbitrary stationary strategies in the
game T and let § = limy |, y5. Suppose 3i* € Car(x;) N BYy,) n TH). If

. xs(e)
lim =22
61?3 x5(i%)

=0 Vee T'(y;)\B(ys),

then y'(x5, y5) = y'G*, y5) — & for every & > 0 and sufficiently small 8.

PROOF. Let &> 0. Lemma 2.2 yields that for sufficiently small § we have
v'(x5, ¥5)

_ ZeeBl(ya)xa(e)Pjyﬂl(e:)’5) + ZeeBl(yﬁ)xa(e)Pjyﬂl(e’J’5)
Leepiyn¥s(€) P, + Log piy,¥s(€) Py,

xs(e) . xs(e) . |
ZGEBl(y‘S)XE(i*)pEYEV (6, )’a) + Ze%Bl(yﬁ)mpeysy (6’ yﬁ)

T xs(e) ® v x5(€) ®

EEB](Ys)xs(i*)pe)'z; C‘FEBl(y(s)xs(i*)pcys

Z x5(e)

* 1
xg(l'*)peya'y (67 y6)

esB'(ys)

T xs(e) %

eEB'(ya)xs(i*)peyg

—e=y(i*,y;) —e. O

PROOF OF THEOREM 3.1.  Let (X, 7) be a proper pair, where (%, §) = lim, | (x5, y;)
for some sequence of &-proper pairs. We show the following (illustrated in Exampie 2
below):

(1) If (%, ) is absorbing, then (x;, y;) is an s-equilibrium for small 8.

(2) If (%, §) is recurrent, then either (%, §) or (x5, ) or (£, y,) is an s-equilibrium
for small 8.
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1020 J. FLESCH, F. THULJSMAN, AND O. J. VRIEZE

ParT (1). Since (&, ) is absorbing, the &-properness of (x;,y;) implies the
existence of i* € B'(y;) N T'(§). We show that x, is an e-best reply against y; for
sufficiently small 8. Suppose T'(y;)\ B'(y;) # &, otherwise it is obvious. By the
s-properness of (x;, ys),

lim 55(0) _ o Ve e T(5,) \ B'(),

w0 x5(7%)

so the conditions of Lemma 3.2 are fulfilled and therefore x; is an e&-best reply
against y; for sufficiently small 8.

ParT (2). If (%, 7)is an s-equilibrium, then we are done. Otherwise, at least one
of the players has a profitable deviation with respect to (&, §). Without Joss of
generality suppose that i* € B'(y) is a profitable deviation of player 1 against .
Then, since (%, §) is recurrent, we must have i* € T'(j). We show that (x,, $)is an
e-equilibrium for sufficiently small o.

Since i* € T'(§) we also have i* € T'(y,) for all 8. Let e € T'(§)\ B'(§). Then
(cf. Lemma 2.2),

lim y!(i%, = y1(i*, §) > y'(e, §) = lim y!(e,
wv( vs) = v'(i*,5) > v'(e, ¥) mv( ¥s)

yields that y'(i*, y;) > v'(e, y;) for sufficiently small 3. Hence, by the &-properness
of (x5, y;) we have

fm 29 g
510 X5(i%)

and, by Lemma 3.2 with (x, 7) instead of (x5, y;), we obtain Y (x5, ) = Y, 9) — &
for small 8. So x; is an &-best reply against y.
On the other hand 7 is a best reply against x; since

¥5(J*)
m ===
w0 Ys(J)
implies, by the 8-properness of (x;, y;), that y*(x;, j*) = y*(x;, j) forall j* & Car(y)
and all j € J, which implies y*(x;, ) > v*(x,, /) forall j€J. 0

ExAMPLE 2. As before, entry (1, 1) is nonabsorbing and absorption with probabil-
ity 1 is indicated by *. Here the pair (x;, y;) = (1 — 82 — 84 8%, 82),(8%,1— 8%

li >0 Vj* e Car(§),Vjel
8

0,0 4,-3
«

3,—2 1,—4
X *

1,—4 3,-2
] *

is &-proper for small 8; hence (%, ) = ((1,0,0),(0,1)) is proper. Then (%, J) is
absorbing, and one can easily check that (x;, y;) is an e-equilibrium for small &. Note
that (%, y) is not an e-equilibrium in this game.

Copyright © 20071 All Rights Reserved
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The pair (x5, y,) = (1 — 8% — 8%, 8%, 8%),(1 — 82, 62)) is also &-proper for small
8 €(0,1), so (%, §) =((1,0,0),(1,0)) is proper. Here (%, ¥} is recurrent, and the
second action of player 1 is a profitable best reply against § and leads to absorption
in entry (2, 1). Observe that for small 8, the pair (x;, ) leads to absorption in the
same entry with probability close to 1, so x; is an e-best reply against 7. On the other
hand,  is obviously a best reply against x;, so (x;, §) is an s-equilibrium for small 5.

4. Examples and remarks. The examples below illustrate that the main theorem
cannot be strengthened. The nonexistence of stationary O-equilibria in recursive
repeated games with absorbing states is well known (cf. Example 1 or Everett 1957)
Just as the nonexistence of stationary e-equilibria for repeated games with absorbing
states (cf. Sorin 1986). Example 3 shows that three-person recursive repeated games
with absorbing states generally do not admit stationary s-equilibria.

ExampPLE 3. This is a three-person recursive repeated game with absorbing states.
It is a cubic 2 X 2 X 2 game where the layers belonging to the actions of player 3
(Near and Far) are represented separately. As before, player 1 chooses Top or

T
N
L R 3,01 1.1.0
0,00 0,1,3 * *
T " 01,1 0,0,0
1,3,0 1,0.1 . "
B * Ed

Bottom and player 2 chooses Left or Right. For this game no stationary e-equilibrium
exists. A detailed analysis of this game is provided in Flesch et al. (1995).
Our last example is a recursive game which has no stationary s-equilibrium.
ExampLE 4. The probability vectors control transitions to states 1, 2 and 3
respectively. To see that there is no stationary e-equilibrium, one can reason as
follows. Suppose player 2 puts positive weight on Left in state 2, then player 1’s only
stationary e-best replies are those that put weight at most £/(2 — &) on Top in state

0.0 0.0 0,0 31
B (0,11 (1,0,0) (0,1,0 R

1; against any of these strategies, player 2’s only stationary e-best replies are those
that put weight 0 on Left in state 2. So there is no stationary e-equilibrium where
player 2 puts positive weight on Left in state 2. But there is neither a stationary
e-equilibrium where player 2 puts weight 0 on Left in state 2, since then player 1
should put at most 2& weight on Bottom in state 1, which would in turn contradict
player 2’s putting weight 0 on Left.
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1022 1. FLESCH, F. THUIISMAN, AND O. I. VRIEZE

REMARK 1. Another way to establish equilibria having similar properties as
s-proper pairs is by defining for & € (0, 1) the following restricted strategy spaces:

X(8) = <x eX| Y x(i) = m VIV # UCI},
ieU

7(5) - {y e ¥ T y(j) = 67V v # ch},
JEV

and by defining linearized rewards

Fi(x,y) = L x()y'(i,y) and F*(x,y) = L y(/)v (%))

el =

Using Kakutani’s fixed point theorem, one can show the existence of stationary
equilibria (%;, 75) in X(8) X Y(&) with respect to the rewards (7', 7). Such equilib-
ria have similar properties as &-proper pairs, and the existence of limiting average
s-equilibria can be established analogously.

Notice that a stationary equilibrium (z;, w;) would also exist in X(8) X Y(8) with
respect to the original rewards (y',y?), but for such an equilibrium v, ws) >
v'(e, ws) would not necessarily imply & -z;(i) = z;(e). This causes a discontinuity in
the best reply structures when approaching X X Y by X(8) X Y(3).

REMARK 2. Limiting average rewards are often defined as liminf; ,.((1/T)

T_E._(R%). Since for stationary stratcgies the two definitions coincide, our
results apply to this alternative definition as well.

REMARK 3. Observe that the e-equilibria constructed are also s-equilibria in the
finitely repeated game, if the number of repetitions is large enough.

Acknowledgement. We are indebted to anonymous referees. Their remarks con-
tributed to a better presentation of the results.
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