
OR Spektrum (1993) 15:9-15 

�9 Springer-Verlag 1993 

Stationary e-optimal strategies in stochastic games 
Frank Thuijsman and Koos Vrieze 

Department of Mathematics, University of Limburg, P.O. Box 616, 6200 MD Maastricht, The Netherlands 

Received May 27, 1991 / Accepted in revised form October 6, 1992 

Summary. We deal with stochastic games with finite state 
and action spaces for which we examine players' possibili- 
ties for playing limiting average (e-)optimal by means of 
stationary strategies (e > 0). It is well-known that station- 
ary limiting average e-optimal strategies need not exist for 
all initial states, hence we focus on those particular initial 
states for which the limiting average value is either 
maximal or minimal over the set of states. 

Zusammenfassung. Ftir stochastische Zwei-Personen- 
Null-Summen-Spiele mit endlichen Zustands- und Ak- 
tions-R~umen untersuchen wir die M6glichkeiten eines 
Spielers, um mit Hilfe von station/~ren Strategien e- 
optimal zu spielen bezfiglich des Durchschnittsgewinn- 
Kriteriums (~ > 0). Es ist bekannt, dab solches im allgemei- 
nen nicht ffir alle Zust/~nde m6glich ist. Deshalb konzen- 
trieren wir unsere Untersuchung auf die Zust/~nde ffir 
welche der Durchschnittsgewinn-Wert entweder maximal 
oder minimal ist. 

Key words: Stochastic game, limiting average rewards, 
stationary optimal strategies 

SehliisselwiJrter: Stochastisches Spiel, Durchschnittsge- 
winn Auszahlungen, station~ire optimale Strategien 

I. Introduction 

Two-person stochastic games are non-cooperative games 
of the following type: Let A1, A2, ..., A~ be a finite 
collection of finite matrices, where each entry (i,j) of 
matrix A~ consists of a number r(s, i,j) e ]R and a prob- 
ability vector p(s , i , j )=(p( l[s , i , j ) ,  p(2[s,i , j)  . . . . .  
p(zJs, i,j)). Such a game can start in any "state" of 
S={1,2, ...,z} and is to be played as follows: if at stage 
ne{1,2 ,3 . . .}  play is in state seS ,  then independently 
from each other, player 1 has to choose a row i of As and 
player 2 has to choose a column j of As; having done so 
player 1 receives r(s,i,j) from player 2 and with prob- 

ability p(t[s, i,j) play moves to state t e S, where actions 
have to be chosen at stage n + 1. Proceeding this way there 
is at each stage n a payoff R, by player 2 to player 1. In 
literature two major ways of evaluating the sequence R1, 
R2, ... as a single "reward" to player 1 are the fl-discounted 
reward, f le  (0, 1)) and the limiting average reward. The 
assumption normally is that both players use the same 
evaluation where player 1 wishes to maximize his reward, 
while player 2 wishes to minimize the same. In order to 
achieve those goals the players make use of strategies, 
plans to play the game. They may use all information they 
have. At each stage of play each player knows all the 
entries of the matrices as well as the history of play, i.e. the 
sequence of past states visited and the pure actions chosen 
in those states. The players are allowed to randomize over 
their (pure) actions, so in general a strategy will assign a 
mixed action to each triple (state, stage, history). Station- 
ary strategies are strategies where a player neither uses 
information about stage nor about history. So a station- 
ary strategy for player 1 can be seen as x = (xl, x2 . . . . .  xz), 
where x, is a mixed action for player 1 to be used whenever 
play is in state s. Stationary strategies for player 2 will be 
denoted y. For general strategies we write n for player 1, a 
for player 2. For fie(0,  1) the fl-discounted reward to 
player 1 for initial stage s e S and strategies (n, a) is 

E 1 oo ~_IR given by y~(s ,n ,a)= s ~ [ ( - f l ) ~ , = l f l  ,], while 
the limiting average reward is given by 7(s,n,o-)= 

1 O 
Es~o[lim infN~ =-~- ~ , - ~  R,]. Here Es~ denotes expecta- 

tion with respect to s, n and o-. 
From the seminal paper on stochastic games by 

Shapley [10] it directly follows, using Blackwell [2], that 
for allfl e (0, 1) there exist v~ e 1R ~ and stationary strategies 
x ~ for player 1 and yP for player 2 such that for all n and a 
(using vector notation): 

7~(x ~, a) > v p > 7P(n,y~). 

The vector v r is called the fl-discounted value of the game 
and strategy x~ (S )  is a (stationary) fl-discounted optimal 
strategy for player 1 (2). Also, a stationary strategy ~(~) is 
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/?-discounted optimal if and only if for each s e S the mixed 
action 2~(ys) is optimal for player 1 (2) in the matrix game 
[ ( 1 - / ? ) r ( s , i , j ) + ~ t p ( t l s ,  i,j)v(]gj, while this matrix 
game has value v p. 

Mertens and Neyman [7] have shown that also the lim- 
iting average value v always exists and that v = limzT1 v p. 
Nevertheless, neither limiting average optimal strategies 
nor history independent limiting average e-optimal strate- 
gies need exist. The classic example for this phenomenon 
is "the big match" of Blackwell and Ferguson [3], which 
can be given as: 

Example 1.1 

state 1 state 2 state 3 

The numbers in the left-upper corners are the payoffs 
to player 1; the numbers in the right-lower corners are the 
states to which play will move (with probability 1) once 
the entry is chosen. 

For  this game, for initial state 1, the unique stationary 
/?-discounted optimal strategy for player 1 is (1/(2-/?) ,  
(1 - /? ) / (2 - /? ) )  and v/~ =0. The limiting average value of 
this game for state 1 is also equal to 0 but player 1 has only 
history dependent limiting average e-optimal strategies 
(e > 0). Player 2 on the other hand has a stationary limiting 
average optimal strategy: he can play (1/2, 1/2) in state 1 
at all stages. 

Following example shows that there is not necessarily 
for each initial state a stationary limiting average optimal 
strategy for at least one of the players; here both players 
need history dependent strategies for limiting average e- 
optimal play for initial state 1: 

strategy, but obviously similar results can be derived for 
player 2. We focus our attention on initial states in 
S max := {s e S : v, = maxt vt} and initial states in 
S min :={sGS:v~=mintvt}. If player 1 has a stationary 
limiting average (e-)optimal strategy for initial state s, 
then we call s an (e-)easy initial state for player 1 (e > 0). In 
Sect. 2 we show that there are always easy initial states for 
player 1 in S max, while there need not be easy initial states 
for player 1 in S m~. Some of these results can also be found 
in Thuijsman and Vrieze [11], where the emphasis is 
mainly on general-sum stochastic games. In Sect. 3 we 
show that all states in S rni~ are e-easy initial states for 
player 1, while there may be states in S m~ that are not e- 
easy for player 1. However a sufficient condition is 
presented for which all initial states in S max are e-easy for 
player 1. In Sect. 4 we show that the techniques we use 
allow for new and simple proofs for the existence of 
limiting average value and stationary limiting average 
(e-)optimal strategies in several special classes of stochas- 
tic games: unichain stochastic games; stochastic games for 
which lim~Tlv ~ does not depend on the initial state; 
stochastic games with state independent transitions. 

In several of our proofs we will use the argument that: 
if player 1 plays a stationary strategy, then player 2 has a 
pure stationary strategy as a (/?-discounted or limiting 
average) best reply (cf. Hordijk et al. [6]). We close this 
section by introducing some notations for a pair of 
stationary strategies (x,y). 

The payoff  vector r(x,y) is the vector (r(1,x,y), 
r(2,x,y), ..., r(z,x,y)) with r(s,x,y):= ~ i ~ j  Xs(i) 
r(s, i,j)y~(j). 

The transition matrix P(x,y) is the z•  of 
which entry (s, t) is given by p(tls, x,y) := ~ . ~ j  x~(i) 
p(tls, i,j)ys(j). 

The matrix Q(x,y) is defined by Q(x,y)= 
l N n limN~=--~-~n=lP (x,y), where P~(x,y) denotes the n- 

fold product  of P(x,y) with itself. Using these notations 
the ]?-discounted reward and the limiting average reward 
can be given respectively as: 

7Z(x,y) = (1 - f l ) ( 1 - / ?P (x ,y ) ) - l r (x ,y )  and 

Example 1.2 7(x,y) = Q(x,y)r(x,y). 

state 1 state 2 state 3 

Here the unique stationary fl-discounted optimal strat- 
egy for player 1, as for player 2, is (1/(4-2fl) ,  1/(4 2fl), 
(2-2fl)/(4-2fl)) and v~=0. Each player faces a "big 
match like" situation for initial state 1. 

In this paper we discuss player l 's possibilities for 
limiting average (e-)optimal play by means of a stationary 

In this paper we also use the following convention. Let 
(fin)n ~ ~ be a sequence of discount factors converging to 1 
and let (xP,)n ~ ~ be a sequence of stationary fin-discounted 
optimal strategies converging to x 1. We write limit ix ~ 
=x  1 instead of limn~=X~,=x 1. We will do similarly for 
other limits, assuming each time that we are dealing with a 
converging sequence. By taking subsequences all limits 
can be assumed to exist. If we write "x~...  for all fl close to 
1", then this should be interpreted as "x/~. ... for some 
sequence (fln)n~ converging to 1 and n sufficiently large". 

Since the number of pure stationary strategies is finite 
and since for each n there is a pure stationary limiting 
average best reply against x ~., we conclude that there is a 
pure stationary limiting average best reply against x ~n for 
all n sufficiently large. 
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2. Easy initial states 

Theorem 2.1. For player 1 there are easy initial states in 
s max. 

This theorem was first p roved  by Tijs and Vrieze [12], 
based on a result of  Bewley and Kohlberg [1] which says 
that  for  all/? sufficiently close to 1, the/?-discounted value 
v ~ as well as a pair  of  s ta t ionary/?-d iscounted  optimal 
strategies can be expanded in Puiseux series in fractional  
powers of  (1 fl). Here  we present an elementary proof.  

In this example v : (0, 0) while v~ = ( 1 + fi + x/1 - / ? ~ ) /  
2 f i > 0  and v2~= - v ( < 0  for  all/? e(0,  1). State 1 is easy for 
player 1 while state 2 is not.  The  unique s ta t ionary /?-  
discounted opt imal  strategy for player 1, as for  player  2, is 

to play ((1 + / ? - x / 1  -/72)/2/?, ( - 1  + /?+x/1  -/?2)/2/?) in 
both  states. 

In the following example player  1 has no easy initial 
states in S min. 

Example 2.3 

Proof of  Theorem 2.1. Let x ~ be a s ta t ionary/?-discounted 
optimal strategy, for /?  < 1, and let x ~ - limz T 1 x B. Also, let 
f be a s tat ionary limiting average best reply against x ~. 

Define Z~=(1- /? ) ( I  /?P(x~,)5)) -1 and let Z =  
limzT1ZZ.Then for all/? the matr ix Z p is nonnegat ive and 
has rowsums all equal to 1; hence such is Z. Then  
?~(x~,)5)=Z~r(x~,)5)>_v ~ for  all/?,  and limB~1 y~(x~,)5) - 
Zr(x I, ~) >_ lim~ T 1 v ~ = v. 

Now observe that  ZP(x 1,)5)= Z, because for al l /? we 
have Z ~ ( I -  /?P(x ~, ~)) = (1 -/?)I. 

Hence for each s e S ,  row Z,  of  Z is a s tat ionary 
distr ibution of  the Markov  chain related to p(xl,)5). Let 
S ~, $2, ..., S H be the ergodic sets for  P(x 1, ~) and let q l, q 2, 
..., qn be the unique s ta t ionary distributions on those 
ergodic sets. Then  for each s we have that  Z~ is a convex 
combinat ion  of  q l, q2 . . . . .  qH and therefore there are/11,/.t2, 

H h Z - ~-~H , h ~h . . . , /z~ > 0 w i t h  2h=l/ls = 1 such that  , -  z~h=X~s~ . 
Altogether  we have that  for  each s: 

;C1 ;C1 
state 1 state 2 

Here  we have v = (1,2) but  state 1 is not  easy for  player 
1. The unique s ta t ionary/?-d iscounted  optimal  strategy 

for player  1, as for  player 2, is to play ((3 - 9x/~-- 8fi)/2fl, 

( - 3  + 2fl + x/9 - 8/?)/2/?) in state 1. 
In bo th  examples of  this section player 1 has a 

s tat ionary limiting average e-optimal strategy for bo th  
initial states in each of  the games. Hence,  in each of  these 
games all states are e-easy for player 1. 

3. e-Easy initial states 

v, = lim v~ < lim yZ(s, x ~, )5) 
fiT1 ~T1 

In this section let u mln= minsv~ and let v max= maxsv~. 

= lim Z~r(x~, )5) = Z,r(x  1, )5) 
,eT1 

H H 
Y,  yqhr( xl' )5) = E )5), 

h = l  h 1 

where ?h(x 1, )5) denotes the limiting average reward (e IR) 
for  each of  the states in S h. 

The above equat ion implies the existence of  an ergodic 
set S h* with ~h, (x 1, re)> maxtvt. Because )3 is defined as a 
limiting average best reply against x ~, this means that  for  
each s e S  h* and for any strategy r : 7(s, x1, r ) >  
)~(s, x 1,)5) _> v s = maxtvt. [] 

In fact Tijs and Vrieze [12] show that  all states s with 
v~ = maxtv(  for  all fl close to 1, are easy initial states for  
player 1. The following example shows that  this condit ion 
can not  be weakened to Vs = maxtvz. 

Theorem 3.1. All states in S rain a r e  e-easy initial states for  
player 1, for  all e > O. 

Proof Let e > 0 and let ~ be a pure s ta t ionary limiting 
average best reply to x p for  all fl close to 1, where the x~'s 
are s ta t ionary/?-discounted optimal  strategies. Because of  
the /?-discounted optimali ty of  x ~ we have: 

v ~ _< (1 - fi)r(x ~, )5) + fiP(x p, )5)v ~ for  all ft. 

Multiplying this inequali ty by Q(x~,f)  gives us 

Q(x p, )5)v ~ < (1 - f l)Q(x ~, )5)r(x ~, fi) + fl Q(x p, )5)v B 

for  all ft. 

Hence we have that  for  fl sufficiently close to 1: 

y(x ~, )5) = Q(x ~, )5)r(x ~, )5) > Q(x p, )5)v ~ > (v  rain _ e) I z. 

Example 2. 2 

state 1 state 2 

Because )5 is a limiting average best reply to x ~, the 
s ta t ionary strategy x ~, with fi close to 1, is limiting average 
e-optimal on S mm. [] 

One could hope that  similarly all states in S max are e-easy 
for player  1. However  the next example illustrates that  
within S max there may  be states that  are neither easy nor  e- 
easy for  player  1. 
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Example 3:2 

state 1 state 2 state 3 state 4 

In this example v=(1,  1, 1,0). It is not hard to verify 
that for any stationary strategy x player 2 has a best reply y 
with 7(1, x ,y )  = 7(2, x ,y )  = 0, since player 2 can either steer 
the process to state 4, or he can make it remain in state 1 or 
2 with payoff 0. 

To see that v=(1 ,1 ,1 ,0 )  examine the stationary 

strategy ))~ given by the mixed action ( (1 -x /1 - ]? ) / ] ? ,  

( - l + ] ? + x / 1 - ] ? ) / ] ? )  for states 1 and 2, and find that: 
1 = limz T ~ 7Z(s, x~, Y) < limz~ ~ v( = v~ < 1 for s = 1,2 and any 
pure stationary ]?-discounted best reply y. Here the last 
inequality holds because player 2 can play his first action 
in each state, thus guaranteeing payoffs of at most 1. We 
do not claim that )?Z is ]?-discounted optimal, we just use it 
to provide a lower bound for v z. 

In some cases however one may find that, even though 
there are stationary limiting average e-optimal strategies 
for player 1 (e > 0), neither x ~ nor x ~, with ]? close to 1, are 
limiting average e-optimal in S ma~. We examine one such 
example and then we present a sufficient condition for all 
states in S max to be e-easy for player 1. 

Example 3.3 

state 1 state 2 state 3 

For this game v ~ = ((1 - x / 1  -]?)/]?, 1,0) for ]? close to 
1 and a stationary ]?-discounted optimal strategy for 

player 1 is for instance x~=( (1 -x /1 - ]? ) / ]? , ( -2+2]?  

+ x/1-]?)/]?,(1-]?)/]?).  Recall that there is a pure sta- 
tionary/?-discounted best reply against x ~. For stationary 
strategies yl  =(1,0 ,0) ,  y2=(0 ,  1,0) and y3 =(0,0,  1), one 
can verify that 7~(1,xg,y~)=7~(1,xP, y2)=7~(1,x~,y3) 
= ( 1 - ~ / 1 - ] ? ) / ] ? = J 1 .  It is straightforward to see that 
7(1,x1,y2)=0 and 7(1,x~,y3)=0 for all ]? close to 1. 
Against x p the strategy y 3  is a pure limiting average best 
reply, giving limiting average reward 0 to player 1 by a 
transition to state 3. This transition is clearly caused by 
x3 ~ @ 0. Thus, we have found that neither x 1 nor x p, with ]? 
close to 1, are limiting average e-optimal, since 
V 1 = lim~ ~ 1 v~ = 1. 

Nevertheless, we would like to be able to derive a 
stationary limiting average e-optimal strategy from any 
arbitrary converging sequence of stationary discounted 
optimal strategies. Thus we should find a way to deal with 
sequences x ~, like in this example. We examine x ~ more 
closely by expanding it as a Puiseux series (cf. Bewley and 
Kohlberg [1]): 

(1) (1) 
x ~ : 0 + 1 (1 --  ]?)1/2 

0 0 

1 ( - 1  
+ - 2  (1 - ]?) + 1 (1 --  ]?)3/2 -k... 

1 0 

Notice that x3 ~ 4=-0 is caused by the vector corresponding 
to (1-]?).  If we let ~ ,  with fl near 1, consist of the 
first terms of this expression, up to and excluding (1 -]?), 
then we get a stationary strategy for player 1 : 2  p= 

(1 - x/1 -]?, x/1 -]?, 0). Not only do we now have a strat- 
egy which avoids the third action, but also 7(1,2p, y l ) =  

l - x / 1 - ] ? ,  7(1,~p, Y2) = 1 and 7(1,~P,y 3) = 2 - 2 x / 1 - ~  
which implies that ~ is limiting average e-optimal for ]? 
close to 1. 

We generalize the observation of Example 3.3 to derive 
a sufficient condition for all states in S max to be e-easy for 
player 1. First we recall that by Bewley and Kohlberg [1] 
we may assume that there are N e N, x0 e • 1A ms, x1, x2, 
�9 .. e • 1 p, ms, such that: 

Do 

x ~ = ~ x,(1 _fl) , /U 
n = 0  

is a stationary fl-discounted optimal strategy for all fi close 
to 1. Here ms is the number of rows of As and A m, is the 
simplex of mixed actions over those rows. 

Because x ~ is a stationary strategy for fl close to 1, we 
have x 1 =x0; ~iXns(i) =0 for all n > 1 and for all s; if for 
s e S  and n_>l one has Xos(i)=xas(i)=. . .=xn is(i)=0, 
then xns(i) > O. 

We now define a strategy for player 1 that will turn out 
to be limiting average e-optimal when a certain condition, 
to be specified later, is fulfilled. We also distinguish some 
sets of states within S max. 

Definition 3.4. Let S* = {s e smax: for  player 1 strategy x a is 
limiting average optimal for  initial state s}. Define 2c p = 
2 nN--01Xn (1 __fl)n/N andx~ = ~=N + 1X,(1 _fl)n/U, for  fl close 
to 1. Define s = x 1, for  s e S* and 2P, = 2~ otherwise, for  fl 
close to 1, and let fi be a pure stationary limiting average best 
reply to k~ for  all fl close to 1. 

Define S** = S* w {E c smax: E ergodic with respect to 
0 ~p, )3)}. Define A = S max \ S**. 

Here the existence of)~ is again due to the finite number of 
pure stationary strategies. Recall that we are dealing with 
a countable sequence of strategies ~ ,  against each of 
which a pure stationary best reply exists. Hence we can 
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take a subsequence of )~'s, all of which have the same pure 
limiting average best reply 37. 

Lemma 3.5. The stationary strategy ~c ~ is limiting average 
e-optimal for all initial states in S**, for fl suffi'cien tly close 
to 1. 

Proof  First of all notice that S * * + 0  by the proof  of 
Theorem 2.1 and second that by definition ~ is limiting 
average optimal for initial states in S*. Moreover on S* 
we have ~ = x  ~ and if player 1 uses x 1, then play will 
remain in S* with probability 1 regardless of player 2's 
strategy. So let E c S m~x \ S* be ergodic with respect to 
(27~,37). We show that 7(s, x~,33)_> v m a X  - -  e for fl close to 1. 

For  fl close to 1 we have v~<(1-fl)r(x~,37)+ 
fiP(xa,37)v ~ and hence 

+ (1 - fl)2r(xN, y) + f l (1  - fl)P(XN, 37)v ~ 

+ (1 - fl)r(x ~, 37) + flP(x ~, 33)v ~. 

Combining these inequalities gives: 

~ xm(i)p(tls,  i, ~)vff < ~ ,  XNs(i)(~ max -- a) 
i t i, XNs(i)<O 

+ 2 XNs(i)(vraax + a) 
i, XNs(i)>_O 

= 2a Z x~,(i). 
i, XNs(i)>_O 

Since ~ > 0 is arbitrary, we conclude that l im~P(XN,37)V( 
_< 0 and hence that l im~lfl  Q~P(xx, 33) d <_ O. 

Altogether we have: 

V max 1E = lim QgvP <_ lim Ogr(Y/, 37) 

= lim 7(2 ~, 37)e = lira y(5 8, 33)e. 
f l t l  fit1 

Because 37 is a limiting average best reply to 2~ for fl 
sufficiently close to l, this shows that 2a is limiting average 
e-optimal on E for fl close to 1. [] 

Let Q~ denote the restriction of Q(}~, 33) to rows 
corresponding with states in E. Multiplying above in- 
equality by Q~ yields, after division by 1 - f l  (recall that 

Q~P(~,33) = Q~): 

Q~v ~ <_ Q~r(Yc~,33) 

+ (1 - fl)Q~r(xN, 33) + flQ~P(XN, 33)v ~ 

x ~ ~ + Qer(_ , y) + fi(1 - f l)- '  Q~P(x_ ~, 33)J. 

It is straightforward to verify that: 

lim ( i  fl)Q~r(xN, 37) = O, 
flrI 

lim Q~r(x ~, 37) = 0 ,  
fir1 

lim fl(1 - fl)-~ Q~eP(x Z ,  33)v ~ = O. 
fir1 

We show that we also have lim B T l fl Q~P(XN, 33) v ~ <_ 0: 

Take 3 > 0. For  s e E we have 

2 , p ( t l s ,  XNs, fe)vff = 2 i  ~tXNs(i)p(tls,  i,33)V~t �9 

For fl close to 1 we have: 

~ t p ( t l s ,  i, 37)v( < V m a x  + 6 ~ for all i. 

For  i with XNs(i ) < 0 we have ~ff(i)> 0 and hence, since 
s ~ E c S max and E ergodic w.r.t. ( ~ ,  ~), for such i and for fl 
close to 1: 

~" p(tls,  i, 33)/, = ~ p(tls,  i, 37)vff > v max - -  6 ~ .  

t~S t~E 

In the above lemma we have seen that :?~ is limiting 
average e-optimal for all initial states in S** c S max. 
However, it may well be that S**=~S max and that the 
states in A = S max \ S** are not e-easy for player 1. Such is 
illustrated by Example 3.2 where A = {1,2}, S** = S* = {3} 
and S m~x= {1,2, 3}. Nevertheless, in Theorem 3.6 below, 
we present a sufficient condition for ~ to be limiting 
average e-optimal for initial states in A as well. Obviously, 
this condition is not fulfilled for Example 3.2. 

Below we use the notation v~, r(X~,33)A, 1A, etc. for the 
restrictions of v p, r(x~,37), 1 = (1, 1, 1 . . . .  ,1), etc. to coordi- 
nates in A. Let JAc (etc.) denote restriction to coordinates 
in A ~ = S \ A .  Also let P(xP,33)  A, P(xP,33)  Ac and P(xP,33)A 
respectively denote restriction to rows and columns in A, 
rows in A and columns in A ~, rows in A. 

Theorem 3.6. I f  limp,1 ( 1 - f l ) ( I  A _flp(~#,37)A) 1=0 ' then 
Sc ~ is limiting average e-optimal for  all initial states in S max, 
for fl close to 1. 

Proof  For initial states in S** the e-optimality follows 
from Lemma 3.5, so we only have to consider initial states 
in A. As above we start with /<_(1- f l )r (x~,37)+ 
f lP(x ~, 37) v ~, which implies: 

v~ _< (1 - fl)r(xP,37)A + flP(Yc~,37)Av~ + flP(2~,37)Acv~c 

+ f l ( l  -- f l)P(XN,37)AV fl + flP(x_fl,37)AV ~. 

Subtracting flP(s on both sides, multiplying by 
(I A - flp(2~, )3) A)- 1 and taking limits gives: 

vmaxlA = lim VA ~ _< lim f l(I  A -fiP(2Z,37)A)-Ip(YcZ,33)ACV~A~ 

+ lim (1 -- fl)(I a -- flp(yce,37)A) l[r(xfl,33) A 
fir1 

+ flP(XN,37)av e + fl(1 -- f i ) - lp(xe ,  f )ave  ]. 
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Note that each term within the square brackets is bounded 
uniformly in/?. By the condition of the theorem we obtain: 

V max 1A < lim f l(I A --/?P(~cB,fi)A)-lP(~c$,y)ACV~c 

= lim (I ~ - /?p(2~ , ) )A)  ~p(yca,~)A~vA~. 
~1 

Now we use that for any square stochastic matrix P for 
which ( I - P ) - ~  exists, one has: 

( I -  f l p ) - i  = ( I  - p ) - I  _ (1 - f l ) ( I -  f l P ) - I p ( I  - p ) - l .  

This can be verified by (left-)multiplying both sides with 
( I - / ?P) .  

Applying this relation for P = P ( ~ , f ) ~ ,  using that 
P(Yd~,fi)~(IA-p(~cl~,fi)A)-~P(x~,y) ~ is bounded and 
using the assumption that lim~, ~ (1 - f l ) ( I  A -flP(Yc~,f) A) 

0, yields: 

vmaXl A < lim (1 A -- P(2cZ,:V)~)-~P(fcZ,:~)~v~ 

= lim (I A - p ( j Z ,  f ) A )  ~p(~c~,f)~VA~. 

Since VAc<VmaxlAc, the inequality sign in the above 
equation can be replaced by an equality sign. Next observe 
that entry (s, t) of (I ~ - P 0  ~p, )~)A)-1 p(}~, ~ ) ~  denotes the 
total probability of ever entering A ~ at state t, when 
originally starting in seA .  Hence the probability of 
entering S**, when starting in A, is close to 1 for fl 
sufficiently near 1. Thus we have y(s,~,)~)>_v m~ e for 
s e A  andfl  close to 1. [] 

Remark 3. 7. The condition of Theorem 3.6 not only 
means that starting in A one has to leave A with 
probability 1, but that one has to leave A sufficiently fast 
(cf. Example 3.2). 

Observe that each entry of (I ~ _ f l p ( ~ / ~ , ) ~ ) A ) - I  c a n  be 
written as ~ = m  c~(1 _fl)~/U, with m e Z and c, e ~ .  The 
condition of Theorem 3.6 holds if and only if m > - N  for 
each entry. This occurs for instance if all states in A are 
transient with respect to (xl,jT), since in that case 
l i m i t  1(I  A - flP(x p, f)A) -1 exists. 

If P(}~, ~)Acv~0 for each s e A ,  then the condition of 
Theorem 3.6 also holds, because then each entry of 
p,(}~,f)A is at most (1 - k ( 1  -fl)~/N)~ for some constant 
k e ~ .  

Proof Using a method similar to that of the proof  for 
Theorem 2.1 one can show that for each stationary 
strategy y of player 2 it holds that: y (x l ,y )=  
limpl~7~(x~,y)>lim~llv ~. Because there is a stationary 
limiting average best reply to x ~, the limiting average value 
is at least lim~TlV ~. A player 2 version gives that the 
limiting average value is at most lim~TlV ~. [] 

Other proofs for the above theorem have been given by 
Gillette [4], Hoffman and Karp [5] and Rogers [9]. 

Bewley and Kohlberg [ 1] and Vrieze [1 3] give proofs for 
the following theorem, which is in fact a corollary of our 
Theorem 3.1. 

Theorem 4.2. I f  for a zero-sum stochastic game lim~,1 v ~/s 
independent of  the initial state, then lim~r~J equals the 
limiting average value and a stationary fi-discounted opti- 
mal strategy x ~ is limiting average e-optimal for  player l for  
fl close to 1. 

A stochastic game with state independent transitions 
(SIT) is a stochastic game for which all game matrices 
have equal size and for which furthermore p(s , i , j )  
=p(t,  i,j) for all s, t e S and all actions i,j. 

Theorem 4.3. For a SIT stochastic game the limiting average 
value is independent of  the initial state, equals limiT1 v p and 
both players have stationary limiting average optimal 
strategies. 

Proof Let again x z be a stationary fl-discounted optimal 
strategy for player 1, f le  (0, 1). Let x 1 = limpT ix z and let 33 
be a stationary limiting average best reply to x 1. By the 
proof  of Theorem 2.1 there is a non-empty set S* c S m~x 
such that for all s e S* : 7 (s, x 1, ~) > maxt(lim B r 1 Off) �9 Then 
p(tls,  x l ,y )=O for all s e S * ,  t e S \ S *  and all y. 

Take s* eS *  and define x* = x  j for s e S *  and x* =xJ.  
for s e S \ S * .  Now ~(s ,x* ,y)=~(s* ,xX,y)> ~(s*,xl , fO> 
maxt(lim~ t l v~) for all s e S and for all y. So for each initial 
state the limiting average value is at least max,(limiT1 v~). 
A player 2 version would show that the limiting average 
value is at most mint(limiT1 v0 for each initial state s. So 
vs=lim~TlV( for all s, t e S .  [] 

Parthasarathy et al. [8] derived a similar result for SER- 
SIT stochastic games, i.e. SIT stochastic games which 
have the additional property of separable rewards (SER): 
r(s, i,j) = c(s) + a(i, j)  for all s, i,j. 

4. Spec ia l  c lasses  of  s tochast ic  g a m e s  

A unichain stochastic game is a stochastic game with the 
property that for every pair of stationary strategies there is 
precisely one ergodic set of states. 

Theorem 4.1. Let x B be a stationary fl-discounted optimal 
strategy, f ie(0,  1), in a unichain stochastic game. Then the 
unichain stochastic game has limiting average value 
v = lim~ r 1 v ~ and xX is limiting average optimal for player 1. 
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