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We deal with zero-sum stochastic games. We demonstrate the importance of stationary
strategies by showing that stationary strategies are better (in terms of the rewards they

guarantee for a player, against any strategy of his opponent) than (1) pure strategies
(even history-dependent ones), (2) strategies which may use only a finite number of
different mixed actions in any state, and (3) strategies with finite recall. Examples are
given to clarify the issues.

1. Introduction

A zero-sum stochastic game Γ can be described by a state space S := {1, . . . , z},
and a corresponding collection {M1, . . . ,Mz} of matrices, where matrix Ms has

size m1
s × m2

s and, for a ∈ As := {1, . . . ,m1
s} and b ∈ Bs := {1, . . . ,m2

s}, entry

(a, b) of Ms consists of a payoff rs(a, b) ∈ R and a probability vector ps(a, b) =

(ps(t|a, b))t∈S . The elements of S are called states and for each state s ∈ S the

elements of As and Bs are called (pure) actions of players 1 and 2 in state s. The

game is to be played at stages in N in the following way. The play starts at stage 1

in an initial state, say in state s1 ∈ S, where, simultaneously and independently,

both players are to choose an action: player 1 chooses a row a1 ∈ As1 , while player 2

chooses a column b1 ∈ Bs1 . These choices induce an immediate payoff rs1(a1, b1)

from player 2 to player 1. Next, the play moves to a new state according to the

probability vector ps1(a1, b1), say to state s2. At stage 2, new actions a2 ∈ As2

and b2 ∈ Bs2 are to be chosen by the players in state s2. Then player 1 receives

payoff rs2(a2, b2) from player 2 and the play moves to some state s3 according to

the probability vector ps2(a2, b2), and so on.

The sequence hn = (s1, a1, b1; . . . ; sn, an, bn) is called the history up to stage n.

The players are assumed to have complete information and perfect recall.

A mixed action for a player in state s is a probability distribution on the set of

his actions in state s. Mixed actions in state s will be denoted by xs for player 1

and by ys for player 2, and the sets of mixed actions in state s by Xs and Ys,

respectively.

Naturally, As ⊂ Xs and Bs ⊂ Ys for all states s ∈ S. A (history-dependent)

strategy π for player 1 is a decision rule that prescribes a mixed action πs(h)
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in the present state s for any past history h of the play. For player 2, (history-

dependent) strategies σ are defined similarly. We use the notations Π and Σ for the

respective (history-dependent) strategy spaces of the players. If the mixed actions

prescribed by a strategy only depend on the current state, then the strategy is called

stationary. Thus, the stationary strategy spaces are X := ×s∈SXs for player 1 and

Y := ×s∈SYs for player 2. We will use the respective notations x and y for stationary

strategies for players 1 and 2.

A strategy π is called pure if it always prescribes a pure action with probability

1, namely πs(h) ∈ As for all states s and histories h. Pure strategies are defined in

a similar way for player 2. A pair of strategies (π, σ) together with an initial state

s ∈ S determine a stochastic process on the payoffs. The sequences of payoffs are

evaluated by the average reward, given by

γs(π, σ) := lim inf
N→∞

Esπσ

(
1

N

N∑
n=1

rn

)
,

where rn denotes the random variable for the payoff at stage n.

For any initial state s ∈ S, it is in the spirit of the game to evaluate a strategy

π of player 1 by the reward φs(π) that π guarantees when starting in s; so let

φs(π) := inf
σ∈Σ

γs(π, σ) .

Similarly, for strategies σ of player 2 define

ψs(σ) := sup
π∈Π

γs(π, σ) .

Mertens and Neyman (1981) showed that

sup
π∈Π

φs(π) = inf
σ∈Σ

ψs(σ) =: vs ∀ s ∈ S .

Here, v := (vs)s∈S is called the average value of the game. A strategy π of player 1

is called ε-optimal, ε ≥ 0, if

φs(π) ≥ vs − ε ∀ s ∈ S .

Similarly, a strategy σ of player 2 is called ε-optimal, ε ≥ 0, if

ψs(σ) ≤ vs + ε ∀ s ∈ S .

Because of the definition of the value v, both players have ε-optimal strategies

for all ε > 0. However, 0-optimal strategies do not generally exist and stationary

strategies are not always sufficient to achieve ε-optimality for all ε > 0 [see the

famous game, the Big Match in Gillette (1957) and Blackwell and Ferguson (1968)].
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2. The Results

We start with the following theorem, which states that, for each player, there exists

a pure stationary strategy which is at least as good as any other pure (possibly

history-dependent) strategy.

Theorem 2.1. In any zero-sum stochastic game G, there exists a pure stationary

strategy x for player 1 such that for any initial state s ∈ S and any pure strategy π

φs(x) ≥ φs(π) .

A similar statement holds for player 2.

Proof. We only prove the statement for player 1; for player 2 a similar proof can

be given. When player 1 uses a pure strategy (possibly a history-dependent one),

then at any stage of the play, player 2 knows in advance which action player 1 is

going to choose. Therefore, we examine a related zero-sum game Ḡ in which player 1

chooses an action first and then player 2 has to make his move. This can be done by

replacing each state s by a state (s, 0) and, for each a ∈ As, a state (s, a). State (s, 0)

has actions sets As for player 1 and {1} for player 2; all payoffs are 0 and action

a ∈ As leads to state (s, a) with probablility 1. State (s, a) has actions sets {1} for

player 1 and Bs for player 2; action b ∈ Bs gives a payoff 2 · rs(a, b) to player 1 and

leads to state (t, 0) with probability ps(t|a, b). The game Ḡ is a so-called perfect

information game, i.e. a stochastic game where in each state at most one player

has a non-trivial set of actions. For such games, it is well known [cf. Liggett and

Lippman (1969)] that player 1 has pure stationary optimal strategies (and so has

player 2). Any such optimal strategy is better than any pure strategy for player 1

in the game Ḡ and, therefore, it corresponds in an obvious one-to-one fashion to a

pure stationary strategy in the original game with the required property.

Example 2.1. Consider the following game G:

5 4

1 2

0 6

1 1

state 1

0

1

1

2

state 2

Player 1’s actions are the rows, while players 2’s actions are the columns. In

each entry, the payoff is placed in the upper left corner, while the number in the

bottom right corner denotes the state to which transition occurs with probability 1.
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Following the construction in the proof of Theorem 2.1, the related zero-sum

game Ḡ is as follows:

0

(1, 1)

0

(1, 2)

(1, 0)

10 8

(1, 0) (2, 0)

(1, 1)

0 12

(1, 0) (1, 0)

(1, 2)

0

(2, 1)

0

(2, 2)

(2, 0)

0

(1, 0)

(2, 1)

2

(2, 0)

(2, 2)

One can easily verify that the pure stationary strategies

x̄ = ((1, 0), (1), (1), (1, 0), (1), (1))

ȳ = ((1), (0, 1), (1, 0), (1), (1), (1))

are optimal for the respective players in Ḡ, guaranteeing the value ῡ = 2. So, the

corresponding pure stationary strategy for player 1 in the original game G is

x = ((1, 0), (1, 0)) .

Clearly, x guarantees φ1(x) = φ2(x) = 2 in G, and no pure strategy (not even a

history-dependent one) is able to guarantee more than 2.

Theorem 2.1 has the following consequence, which says that if a player is re-

stricted to using only a finite number of mixed actions, in all states, then he cannot

do better than to use a stationary strategy.

Corollary 2.1. Let X̃s be a non-empty and finite subset of Xs, for all s ∈ S. Then

there exists a stationary strategy x̃ for player 1 with the following properties:

(1) x̃s ∈ X̃s for all s ∈ S.
(2) Suppose that π is a strategy for player 1 such that πs(h) ∈ X̃s for any present

state s ∈ S and past history h. Then, for any initial state s ∈ S

φs(x̃) ≥ φs(π) . (1)

A similar statement holds for player 2 as well.

Proof. The proof is straightforward. One only has to define a zero-sum game G̃

with the same state space S̃ = S, such that in any state s ∈ S, player 1’s actions are

exactly the elements of X̃s, player 2’s action space remains Bs, while the payoffs

and transitions are given by taking expectations. Then by applying Theorem 2.1 for

G̃, we obtain a pure stationary strategy x̃ in G̃, which is also a stationary strategy

of the original game G (not necessarily pure though). Both required properties of

x̃ follow immediately.

Next, we deal with strategies which, for some m ∈ N∪{0}, use only the present

state and the past history of the last m stages (strategies with finite recall of m
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stages). It turns out that, perhaps surprisingly, these strategies are not any better

than stationary strategies (which have no recall at all).

Corollary 2.2. Suppose a strategy π of player 1 satisfies for some m ∈ N∪{0} that

for any present state s ∈ S and for all histories (s1, a1, b1; . . . ; sn+m, an+m, bn+m),

for all n ∈ N, the prescribed mixed action

πs(s1, a1, b1; . . . ; sn+m, an+m, bn+m)

is independent of (s1, a1, b1; . . . ; sn, an, bn).

Then, there exists a stationary strategy x for player 1 such that for any initial

state s ∈ S

φs(x) ≥ φs(π) .

Proof. Since m is fixed, strategy π can only prescribe finitely many different mixed

actions, in all states of the game. Therefore, the result immediately follows from

Corollary 2.1.

Finally, we wish to make some remarks regarding Corollary 2.2. (Similar remarks

could be made on Corollary 2.1 as well.)

Remark 2.1. In Corollary 2.2, the condition that π has finite recall is crucial, as

shown by a famous example, called the Big Match, which was introduced by Gillette

(1957) and solved by Blackwell and Ferguson (1968). In that example, if player 1 is

able to recall all the past actions of player 2 then he can guarantee higher rewards

than by stationary strategies.

What is more, in another example by Flesch et al. (1999), it is sufficient to

know only the present stage of the play (the “length” of the history) in order to

beat stationary strategies. The example examined in Flesch et al. (1999) is the

following one.

L1 R1

T1
1 0

1 1

B1
1 1

2 4

state 1

L2 R2

T2
1 0

1 2

B2
0 1

3 4

state 2

0

3

state 3

1

4

state 4

The notation is similar to that of Example 2.1. States 3 and 4 are so called

“absorbing states”. By entries (B1, L1) and (T2, L2) play can move between the

two non-absorbing states.
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This game has the following properties for initial states 1 and 2:

(a) The value is v1 = v2 = 1.

(b) For all ε > 0, player 1 has ε-optimal strategies that depend only on the stage

number. Indeed, define strategy fK for player 1, where K ∈ N, as follows:

at stage n play T1 or T2 with probability
K
√

n

n+ 1
for all n ∈ N .

Observe that this strategy fK is symmetric in the sense that the prescribed

mixed actions in states 1 and 2 are the same for any stage n. Note that these

Top probabilities converge to 1 as n tends to infinity, so fK assigns less and

less probabilities to actions B1 and B2.

For initial states 1 and 2, for all ε > 0, if K ∈ N is large, then player 1 can

guarantee a reward at least 1− ε by playing the strategy fK , namely

φ1(fK) ≥ 1− ε, φ2(fK) ≥ 1− ε .

(c) Player 1 has no stationary ε-optimal strategy for initial states 1 and 2, if ε ∈
[0, 1). In fact, player 1 can get at most 0 for initial states 1 and 2 by playing

stationary strategies, namely

φ1(x) = φ2(x) = 0 ∀ x .

Note that (b) implies (a), because the highest payoff in the game is 1.

Now we briefly explain (b). The question here is how player 2 can reply to the

strategy fK . Intuitively, player 2 has two hopes to decrease player 1’s reward. The

first one is achieving absorption in entry (B2, L2) with payoff 0. Player 2’s best

candidate would be playing actions L1 and L2 whenever the play is in state 1 or in

state 2. But then whenever the play is in state 2, a transition occurs to state 1 with

a large probability, and it takes a long time until the play comes back to state 2

again. Because the strategy fK assigns decreasing probabilities to action B1, the

lengths of stay in state 1 will increase fast during the play and the frequency of

visits to state 2 will tend to zero. As a consequence, the frequency of stages when

absorption could occur is zero (in the limit) and the probabilities on action B2 at

those stages will decrease “rapidly”. Therefore, the overall probability of absorption

in entry (B2, L2) will be small. In conclusion, playing L1 and L2 gives player 2 little

hope.

On the other hand, since the payoffs in entries (T1, R1) and (T2, R2) equal 0,

player 2 could try to play actions R1 and R2 with a “positive” frequency and

hope that the play will not absorb. But in that case, the frequency of stages when

absorption could occur is positive and the probabilities onB1 and B2 at those stages

decrease “slowly”. Hence, it will appear that the play must eventually absorb with

probability 1, and then the zero payoffs in entries (T1, R1) and (T2, R2) will have

no influence on the reward.

Finally, we discuss (c). Note that strategies are completely determined by the

choices for states 1 and 2. For each stationary strategy x = (x1, x2) of player 1, we
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define a strategy yx = (yx1 , y
x
2 ) for player 2: let

yx1 :=

{
(0, 1) if x1 = (1, 0)

(1, 0) otherwise
, yx2 :=

{
(0, 1) if x2 = (1, 0)

(1, 0) otherwise.

Notice that, for s = 1, 2, we have γs(x, y
x) = 0 for all x, so the proof of (c) is

complete.

Remark 2.2. Note that, in Corollary 2.2, the stationary strategy x depends on π.

Consider the following game:

1 0

1 1

0 1

1 2

state 1

1

2

state 2

Let πn be the stationary strategy for player 1, for any n ∈ N, given by

πn =

((
n− 1

n
,

1

n

)
, (1)

)
.

Clearly,

φ1(πn) =
n− 1

n
∀ n ∈ N .

However, there is no stationary strategy which would guarantee 1 for initial

state 1, hence there is no x with the property that

φ(x) ≥ φ(πn) ∀ n ∈ N .

Nevertheless, in any zero-sum stochastic game, for any ε > 0 one can show the

existence of a stationary strategy xε such that for all initial states s ∈ S

φs(xε) ≥ sup
x
φs(x)− ε

(in the example above, take πn with a large n ∈ N). Then, by Corollary 2.2, we

obtain for all initial states s ∈ S that

φs(xε) ≥ φs(π)− ε

whenever π has finite recall. (So xε is independent of π).
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