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Total Reward Stochastic Games and
Sensitive Average Reward Strategies
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Communicated by G. P. Papavassilopoulos

Abstract. In this paper, total reward stochastic games are surveyed.
Total reward games are motivated as a refinement of average reward
games. The total reward is defined as the limiting average of the partial
sums of the stream of payoffs. It is shown that total reward games with
finite state space are strategically equivalent to a class of average reward
games with an infinite countable state space. The role of stationary
strategies in total reward games is investigated in detail. Further, it is
outlined that, for total reward games with average reward value 0 and
where additionally both players possess average reward optimal station-
ary strategies, it holds that the total reward value exists.

Key Words. Stochastic games, total reward, average reward, value
existence.

1. Introduction

In this paper, we consider two-person, zero-sum stochastic games. A
stochastic game is a dynamical system that proceeds along an infinite
countable number of decision times. In the two-player case, both players
can influence the course of play by making choices out of well-defined action
sets. Unless mentioned otherwise, we will assume throughout this paper that
the system can only be in finitely many different states. The actions available
to a player depend on the state of the system. When at a certain decision
time the players, independently and simultaneously, have both made a
choice, then two things happen:

(i) player II pays player I a state and action dependent amount;
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(ii) the system moves to the next decision time, and the state at that
new decision time is determined by a chance experiment according
to a probability measure determined by the present state and by
the actions chosen by the players.

Thus, a stochastic game F is defined by <S, A1, A2, r,p>, where:

(i) S= {1,2,. . . , z} is the state space;
(ii) A1 = {A 1 ( s ) \ seS} , with A1(s) = {1 ,2 , . . . , m1(s}} the action set of

player I in state s;
(iii) A2 = {A2(s)\seS}, with A2(s) = {1,2 , . . . , m2(s)} the action set of

player II in state s;
(iv) r is a real-valued function on

(v) p is a probability vector-valued map on

i.e., p(s,a1, a2) = (p(1\s,a1 , a2), . . . ,p(z\s,a1 ,a2))eR z , where
p(t\s, a1, a2) is the probability that the next state is t, when at
state s the players choose a1 and a2, respectively.

The players are assumed to have complete information (i.e., they know
S,A 1 ,A 2 , r ,p) as well as perfect recall (i.e., at any stage they know the
history of play). They can use this information when playing the game. Plans
of how to play the game, strategies, will be formally defined in Section 2.
The specification of an initial state and a pair of strategies results in a
stochastic process on the states and the actions and thus leads to an infinite
countable stream of expected payoffs. In comparing the worth of strategies,
such an infinite stream should be translated to one single number. Several
evaluation rules have been studied in the literature.

In the initiating paper on stochastic games, Shapley (Ref. 1) introduced
the discounted payoff criterion. Let ni denote an arbitrary strategy for player
i, i= 1,2, and let rr(s, n1, a2) denote the expected payoff to player I at
decision time T when the play starts in state s and when the players use n1

and n2. Now, the discounted payoff is defined as

where Be(0,1) is the discount factor and 1 -B is a normalization factor.
Since rT(s, n1, n2) is uniformly bounded, it easily follows that Op(s, n1,n2)
always exists.
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A second commonly used criterion is the average reward criterion, as
introduced by Gillette (Ref. 2), This is defined as

Since the limit of the right-hand side of (2) does not need to exist, this
criterion is usually introduced from the worst case viewpoint of player I.
Observe from (2) that the average reward is the limit of the partial averages
and thus can be considered as a Cesaro average payoff.

The third criterion which we like to mention and which will be studied
extensively in this paper is the total reward criterion. This evaluation rule
is formally defined as

This criterion was introduced by Thuijsman and Vrieze (Ref. 3). Observe
that the total reward can be interpreted as the Cesaro average of the partial
sums of the stream of expected payoffs. Again, this limit does not need to
exist and the worst case viewpoint of player I has been taken.

In Section 2, we discuss the main results in the theory of stochastic
games. In Section 3, we motivate the total reward evaluation rule as a
refinement with respect to the average reward criterion. In Section 4, we
show that total reward games can be represented as average reward games
at the expense of an infinite state space. In Section 5, for stationary strategies,
we give several equivalent expressions with respect to the total reward as
well as a complete characterization of games for which both players have
optimal stationary strategies. Finally in Section 6, we show that, for games
with average reward value 0 as well as with average reward optimal station-
ary strategies for both players, the total reward value exists. Since in general
for guaranteeing nearly the total reward value the players need behavioral
strategies, this result implies that, for games where the players have average
reward optimal stationary strategies, they can play more sensitively by using
behavioral strategies.

2. Pelimlnaries

In this section, we mention the most important results in the theory of
stochastic games. First, we introduce the notions of strategies, solution of
a game, and e-optimal strategies. The most general type of strategy is a
behavioral strategy. In stochastic games, it is assumed that, at every decision
time, the players know not only the present state of the system but also the
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whole sequence of states and actions that have actually occurred in the past.
Now, the randomized choice at decision time r may depend on this known
history

Then, a behavioral strategy for player i, i= 1, 2, can be defined as

with

where Hr is the set of possible histories up to decision time r and P(A i(s r))
is the set of randomized actions based on the pure action set A i (S T ) , i.e.,

A Markov strategy is a strategy that, with respect to the history of the game,
only takes the current decision time into account. Formally, ni is a Markov
strategy if

with

The most simple form of strategy is a stationary strategy, where the history
up to the present state is neglected by the players. In this paper, we will
denote a stationary strategy by fi for player i and formally

with

i.e., whenever the system is in state s, player i plays the randomized action
fi(s) independent of the history of the game and independent of the decision
time.

Now, we define a solution of the game. Let o be either ob, or oa, or
ot. The stochastic game is said to have a value
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when, for all starting states seS;

Observe that the left-hand side of (4) is the highest amount that player II
would have to pay (by playing clever), while the right-hand side is the highest
amount that player I can guarantee. For the evaluation rule o, the strategy
n 1 [ n 2 ] is called e-optimal, with e>0, for player I [II] if

A 0-optimal strategy is called optimal. For discounted stochastic games,
Shapley (Ref. 1) showed the existence of the value as well as the existence
of optimal stationary strategies for both players. The discounted value O*
is the unique solution to the following set of equations:

In (5), the right-hand side denotes the value of the matrix game defined on
the action sets A1(s) and A2(s) with payoffs

For the discounted stochastic game, optimal stationary strategies
f* = (f*(1), • • • ,f*(z)) can be found by taking f*(s) optimal in (5). Bewley
and Kohlberg (Ref. 4) extended Shapley's result in a very useful direction
by showing that, for all B close to 1, O* can be expressed as a Puiseux series
in 1 -B; i.e., there exist Me{1, 2,. . .} and c0 ,c1, c2,... eRz such that

For average reward stochastic games, which are also called undis-
counted stochastic games, the existence proof of the value turned out to be
more difficult. This is mainly due to the fact that, unlike the discounted
reward, the average reward is not a continuous function of the strategies of
the players. Mertens and Neyman (Ref. 5) showed the existence of the
value of average reward stochastic games by providing a construction for
e-optimal behavioral strategies by choosing at every decision time T an
optimal action in a B(hr)-discounted game, i.e., an action optimal in (5) for
P = P(hr). In their procedure, as the notation B(hT) already indicates, the
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discount factor is being updated every decision time in dependence on the
actual history.

In their proof, Mertens and Neyman used the result of Bewley and
Kohlberg (Ref. 4) and showed that the vector C0 in (6) is the average reward
value O*. That in general the players do not possess e-optimal stationary
strategies for the average reward criterion was already known from a famous
example by Blackwell and Ferguson (Ref. 6), called the big match; cf.
Example 3.2 below.

For total reward stochastic games, not much is known. Thuijsman and
Vrieze (Ref. 3) have shown that, in total reward stochastic games, one
encounters similar problems as in average reward stochastic games. This
aspect is briefly recalled in Example 3.4 in the next section.

3. Total Reward Stochastic Games and Sensitive Average Reward Strategies

Total reward stochastic games can be considered as refinements of aver-
age reward stochastic games. For an infinite stream of payoffs, the average is
determined by the asymptotic behavior of this stream and ignores differences
between streams of payoffs, whenever the averages are the same.

Example 3.1. See Fig. 1. This example shows the motivation for a
refinement of the average reward criterion.

Fig. 1. Example 3.1: Two games to illustrate the definition of total rewards.

In the game representation, player I is always the row player and player II
the column player. A box
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denotes the immediate outcome of an action combination, i.e., payoff r to
player I and payoff -r to player II, and transitions to the next decision time
according to p. When p is deterministic, i.e., the system moves to a certain
state with probability 1, then usually this next state number is given in the
right lower part of the box. When p is probabilistic, then this probability
vector is given.

For game 1, the average reward value vector equals (0,0,0). However,
player I would prefer to start in state 1 (getting total reward 1), while player
II would prefer to start in state 2 (paying total reward -1, or equivalently,
getting 1). Likewise for game 2, the average reward value vector equals (0, 0)
and also in this game player I would like to start in state 1 (owning half of
the time 2 and half of the time 0), while player 2 would like to start in state
2 (being indebted half of the time -2 and half of the time 0).

Example 3.1 shows that the total reward criterion can be interpreted as
a refinement with respect to the average reward criterion, applied to games
where, for every state, the average reward value is 0. But what about starting
states with average reward value unequal to 0? Evidently, the total reward
value for such a starting state exists, since playing an e-optimal strategy
with respect to the average reward assures as total reward +00 or — oo,
depending on the average reward value being positive or negative.

Example 3.2. See Fig. 2. This example, called the big match [cf.
Blackwell and Ferguson (Ref. 6) for an average reward analysis], shows
that, for states with average reward value 0, the total reward value may not
exist if for other states the average reward value is not equal to 0. This game
has average reward value vector (0, 1, —1), while for the total rewards

Hence, the total reward value does not exist for state 1.
Example 3.2 suggests that, for the total reward criterion, it makes sense

to restrict to games where the average reward value is 0 for every state.
However, we need a further restriction.

Fig. 2. Example 3.2: The big match.
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Fig. 3. Example 3.3: Although the average reward value is 0 for all states, the total reward
value does not exist for state 1.

Example 3.3. See Fig. 3. In this example, the average reward value
vector is (0,0,0,0). However, for the total rewards,

This can be seen as follows. Player I can play average reward optimal for
initial states 3 and 4, but only e-optimal for initial state 2. Thus, for any
strategy of player I, an average reward S-best reply by player II, S>0, will
yield an average reward of at most -e + S for state 2 and at most 8 for
state 4. Hence, for initial state 1, the average reward is at most -e/4 for S
sufficiently small and therefore

In view of these examples, we study the class of stochastic games charac-
terized by property P1 below.

Property P1. The average reward value equals 0 for every initial state
and both players possess optimal stationary strategies with respect to the
average reward criterion.

Bewley and Kohlberg (Ref. 7) showed that property P1 implies property
P2 below, and in Vrieze (Ref. 8) it can be found that P2 is equivalent to
P1.

Property P2. The Puiseux series expansion of O* can be written as

In the analysis below, property P2 shall also be used. However, since
we motivated the total reward criterion as a refinement of the average reward
criterion, our starting point will be property P1. Speaking of total rewards,
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we would like to evaluate a stream r0(s, a1, K2), r1(s, n1, n2) , . . . by
Er=0rt(s n1, n2). But, even if it is bounded, this sum may not exist; cf.
Example 3.1, game 2. The next evaluation that one can think of is the
Cesaro-limit of the row of partial sums, i.e.,

For instance, it sounds fair that, for game 2 of Example 3.1, starting in state
1, the stream of payoffs, with partial sums 2,0,2, 0 , . . . , is evaluated as 1,
since 1 is the average possession of player I. For stationary strategies (f1,f2),

always exists (cf. Theorem 4.1 below), but for nonstationary strategies this
is not true. In definition (3), we could also have taken lim sup instead of
lim inf or any convex combination of them in order to define a total reward.
We prefer to use the worst case viewpoint of player I. Evidently, whenever
E t = 0r t(s ,n1 ,n2) exists, it equals the total reward as defined in (3).

The class of stochastic games with property P1 is closely related to
average reward stochastic games as can be seen by the following example
of Thuijsman and Vrieze (Ref. 3).

Example 3.4. See Fig. 4. This game, called the bad match, is the total
reward analogue of the big match for the average reward, as given in
Example 3.3. Strategically, these two games are identical from the viewpoint
of player I. Namely, how should he balance between his first and second
action in state 1, in order to absorb in a favorable way. The main feature
of the big match concerns the nonexistence of e-optimal Markov strategies.
Besides, for the big match e-optimal history dependent strategies of a special
type exist. The bad match bears the same phenomena with respect to the
total rewards.

The bad match has total reward value vector (0,0,2, -2) [for all
strategies, the average rewards are (0,0,0,0)], while the big match has

Fig. 4. Example 3.4: The bad match.
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average reward vector (0,1, —1). For both games, an optimal stationary
strategy for player II is to play (1/2,1/2) in state 1, whenever the play is
in state 1. Neither for the big match nor for the bad match does player I
have optimal strategies. For both games, player I can play (K+ 1)-1-optimal
in state 1 by playing the mixed action (1 - (kr + K+1)-2, (kt + K+1) -2) at
the Tth visit to state 1, where kT denotes the excess number of times that
player II chose action 2 over the number of times that player II chose action
1 during the r -1 previous visits. Notice that, if play starts in state 1 then,
as long as player I chooses his first action, play visits state 1 at the even
decision times.

4. Reformulation of a Total Reward Game as an Average Reward Game

Every total reward game can be reformulated as an average reward
game with countably many states in the following way. Let

denote a possible history up to decision time r>1, and let Hr be the set of
all hT's. Observe that \Ht\ is finite for each r. The associated average reward
game f to a total reward game T is now defined as follows, where tildes
refer to the associated game. Let

and, for any T=0,1,2 , . . . and for any

let

Furthermore, let

In the game f, states correspond to histories of the game T. Observe that,
in game F, each state S can only be reached along one path. It can be verified
that, for the initial states SeH0=S, the sets of strategies of the players



JOTA: VOL. 98, NO. 1, JULY 1998 185

correspond in a 1 to 1 way with the sets of strategies for the original game;
cf. Thuijsman and Vrieze, Ref. 3. Moreover, when we consider strategies
for a play that starts in a state s = h teS, then we do not need to assign
actions for states that will never be reached (or we could assign action 1 for
all such states). Especially this holds for all states ht, with f > r, for which
the first part of ht does not coincide with ht. Now, these restricted strategies
clearly coincide with the strategies of the original game for starting state
se S.

At each decision time T, for every initial state seH 0 in f, and for all
pairs of corresponding strategies ( n 1 , n 2 ) and (a1, n2), it holds that

Hence,

The left-hand side of (7) is the average reward of (n1, n2) in f for initial
state s0, while the right-hand side of (7) is the total reward of (n1, n2) in F
for initial state s0. Therefore, we have the following theorem.

Theorem 4.1.

(i) The average reward game f is equivalent to the total reward game
T for initial states belonging to S=H0.

(ii) In game T, for initial state s=hteHT with ST=S, the discounted
payoff for ( n 1 , n 2 ) is

where n1 and n2 are the unique associates in T to n1 and n2 in f.

Proof. Statement (i) is shown by (7). In game f, for initial state 3=
hr with st = s and for strategies n1 and n2, the expected payoff at decision
time T is
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Hence, the discounted reward for n1 and n2 is

If we now exchange the summation order of T and n, the second term of
(10) becomes

The first term of (10) obviously equals Et-1 r(sn, a1n, a2n), which completes
the proof. 

Corollary 4.1. The B-discounted reward value for initial state s=hr

with st=s in game T equals

Theorem 4.1 shows that a total reward stochastic game is equivalent to
an average reward stochastic game with a countable state space. The value
existence proof of Mertens and Neyman cannot be applied straight-
forwardly, though the countable state space is not the bottleneck. From the
definition of game f, it can be seen that the immediate rewards may be
unbounded. In Section 6, we indicate how the Mertens-Neyman proof can
be adapted to this case.

5. Stationary Strategies in Total Reward Games

We now pay attention to stationary strategies. The next theorem is of
computational interest.

Theorem 5.1. For a pair of stationary strategies (f1,f2), if the total
reward is finite, then the following four expressions are equivalent:
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(iii) there exists a pair, v, ueR satisfying

while 0i(f1,f2) = v for any such pair;

Here, P(f1,f2) is the stochastic transition matrix for (f1,f2), i.e., entry (s, t)
of P(f1,f2) gives the transition probability

Furthermore Q(f1,f2) denotes the Cesaro limit of P(f1,f2), i.e.,

Proof. The proof proceeds as follows: (iv) -»(ii) -»(iii) -»(i) -»(iv). The
dependence of the different variables on f1 and f2 will be suppressed.

(iv)-»(ii). From Qr = 0 (finite total reward means average reward 0)
and

we derive

since

Combined with

this gives

Since the so-called fundamental matrix I-P+Q is known to be nonsingular,
it follows that

Hence, (ii) follows by taking limits.



188 JOTA: VOL. 98, NO. 1, JULY 1998

(ii)-»(iii). First, we discuss the existence of a solution (v, u). Multiplying

by Q gives QOt, = 0. Hence,

showing the first part of (iii). On the other hand, it is well known [for
instance, Vrieze (Ref. 8, Lemma 8.1.3)] that QOt = 0 if and only if there
exists a vector u with

showing the second part of (iii). Second, we discuss the uniqueness of the
v-part. If

then

gives

and thus

which implies

(iii)-»(i). Iterating the first equation of (iii) gives

Taking averages of these expressions leads to

Multiplication of the second equation of (iii) by Q gives Qv = 0. Hence, by
taking limits in (11) and using

we obtain (i).
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(i)-»(iv). Here, we just apply the Tauberian theorem,

for

which is bounded by the assumption of finite total reward. In establishing
(iv), one should realize that:

We finish this section with a characterization of the subclass of games
for which both players have optimal stationary strategies with respect to the
total reward value. But first we show that the Puiseux series expansion of
the discounted value is of a special type, whenever both players have total
reward optimal stationary strategies.

Theorem 5.2. If the total reward value O* exists and is finite, and if
both players have optimal stationary strategies, then for the Puiseux series

it holds that

Proof. The fact that c0 = c1 = c2= • • • = C M - 1 =0 is a consequence of
property P1 (also see P2), which clearly holds under the assumption of the
theorem. Let f* and f* be optimal stationary strategies with respect to the
total reward value. Now, let f2 be uniform discount optimal for player II in
the Markov decision problem that results when player I fixes f*. It is well
known [cf. Bewley and Kohlberg (Ref. 7, Corollary 6.5)] that, for a pair of
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stationary strategies, for all B close to 1, the B-discounted payoff can be
written as a power series in 1 - B. So,

where d0 equals the average reward of ( f * , f 2 ) . Obviously,

On the other hand,

As a conclusion

Similarly, with the aid of f* and an appropriate f1, one can prove that

Then,

Reconsidering OB(f*,f2)<OB yields

which gives

In a similar way, using f* and f1, we derive that

which together with the previous inequality implies

Theorem 5.3. For a total reward stochastic game the following two
statements are equivalent:

(i) the value vector exists and is finite; both players possess optimal
stationary strategies;
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(ii) the following set of equations has a solution for variables

Here O1(s) and O2(s), seS, are the extreme points of the polyhedral sets of
optimal strategies for player I and player II, respectively, for the matrix
games (12). Furthermore, for all solutions to (12)-(14), v is the same and
v is the total reward value. Optimal stationary strategies can be composed
by optimal actions for the matrix games (13) for player I and for the matrix
games (14) for player II.

Proof. Observe that (i), as well as existence of a solution to (12), imply
that property P1 holds.

(ii)-»(i). Let v, u1, u2, a satisfy (12)-(14), and let f*(s), seS, be optimal
for player I in (13). Then, for any f2,

We show that O t(f*,f2)>v. Multiplication of (15) by Q ( f * , f 2 ) yields

If for a state s we have

so positive average reward, then the total reward for that starting state is
oo > v(s). Hence, we can concentrate on the set of states
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Since S is closed with respect to P(f*,f2), i.e., play never leaves S, we can
assume without loss of generality that S=S. Then, iteration of (15) gives

By taking averages, we get, for any T,

Multiplication of (16) by Q(f*,f2) and using

gives

But then, by taking limits in (17), we obtain

Similarly, for the stationary strategy f* composed of optimal actions
f*(s), seS, for player II in the matrix games (14) and any strategy f1 for
player I, we have

The combination of (18) and (19) shows assertion (i).
(i)-*(ii). Let O* be the total reward value vector, and let f* and f* be

optimal stationary strategies. In Theorem 5.1, we already showed that

Equation (12) then follows from (5). It remains to show (13) and (14).
Let f2 be such that the total reward O t(f*,f2) is finite and hence

From Theorem 5.1 (iii), we deduce that

and since
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this gives

and

If f2 is such that O t ( f * , f 2 ) is infinite, then

since f* is total reward optimal. But then also

Observe that increasing a in (20) does not violate the inequality. Let a* be
the minimal a, such that (20) holds for all states seS and for all pure
stationary strategies f2. Since for the Markov decision problem that results
when f* is fixed, with payoff structure -(O*(s) + a*r(s,f*, •), player II has
an optimal pure stationary strategy, it follows that the minimum of this
Markov decision problem is nonnegative. Hence,

Obviously, for f* total reward optimal, we have

Hence, the stochastic game with payoff structure -O*(s) + a*r(s, •, •) defined
on the action sets O1(s) x A2(s), seS, has average reward value vector 0. So,
by the already-mentioned Lemma 8.1.3 in Vrieze (Ref. 8), there exists a
vector u1 satisfying Eq. (13). Analogously, the existence of u2 can be
shown.

6. Existence of Value for Total Reward Stochastic Games

In Section 4, we showed that a total reward stochastic game with finite
state and action spaces is equivalent to an average reward stochastic game
with infinitely countable many states (corresponding to histories in the origi-
nal game) and with the same action sets in corresponding states. This equiva-
lence can be used to show that the value of a total reward stochastic game
exists.
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Theorem 6.1. A total reward stochastic game for which property P1
(or equivalently P2) holds, has a value. e-Optimal strategies can be con-
structed by playing discounted optimal at every decision time, whereby the
discount factor is appropriately adapted after every step.

Our proof is an adaptation of the proof of Mertens and Neyman (Ref.
5) for the existence of the value of average reward stochastic games in the
case of finite state and action spaces. However, the proof of Mertens and
Neyman consists of several pages of mathematical analysis. We will not
repeat that here, but merely indicate the line of the proof and mention the
differences.

Sketch of Proof. Let e > 0; let k0,M,L be sufficiently large constants;
let ST+1 be the state observed at decision tune r +1. Then, define recursively,
for r = 0,1,2, . . . ,

Now, player I, at every decision time r, chooses an optimal action in the
matrix game of the Shapley equation (5) for discount factor Br. Obviously,
for a pair of strategies of the players, a stochastic process evolves with
respect to s r ,a1 t , a2T,kt, P t , y r . We denote the stochastic representations
by putting bars above the variable. Using Theorem 4.1, it can be shown,
along similar lines as in the proof of Mertens and Neyman, that the sequence

with r = 0,1, 2 forms a semimartingale. Now, one of two things can
happen. Either this semimartingale has finite limit expectation or infinite. If
the strategy of player II is such that this expectation is finite, then the analysis
of Mertens and Neyman can be followed giving rise to an expected total
payoff of at least

When the strategy of player II is such that this expectation is unbounded,
then also the total reward is unbounded, showing that also in this case the
constructed strategy is e-optimal.



JOTA: VOL. 98, NO. 1, JULY 1998 195

Theorem 6.1 and Example 3.4 teach us that, when we are not only
interested in the average payoff, but want to play more sensitively by looking
also at the behavior of the partial sums, then we can do so, but we generally
need to use behavior strategies. This in spite of the fact that reaching the
average can be achieved by playing stationary.

Remark 6.1. Recall that we used

to define the total reward, where the numbers rn(s, n1, n2) denoted expected
payoffs [cf. Eq. (3)]. This is very much different from taking

where Es,n1,n2 denotes expectation with respect to initial state and strategies
and where the numbers an are the actual payoffs. Suppose for example that,
at each decision time, the payoff is 1 with probability 0.5 and —1 with
probability 0.5. Then, our definition would yield a total reward of 0, whereas
the alternative definition would yield — oo. Although for average reward
stochastic games the value does not change when interchanging expectation
and lim inf (cf. Mertens and Neyman, Ref. 5), this is clearly not valid for
total reward stochastic games. This phenomenon is related to the fact that
for total rewards the partial sums need not be bounded. It is not clear to
us whether property P1 is a sufficient condition for the existence of the value
for the alternative criterion.
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