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Abstract
This thesis describes the implementation and
analysis of an existing mathematical algorithm
to find subgame-perfect ε-equilibria in recursive
perfect-information games where each player
controls exactly one non-absorbing state. It
presents examples of games that give rise to in-
sightful structures during the execution of this
algorithm.
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1 Introduction
In the field of game theory, the question whether
subgame-perfect ε-equilibria exist, for all ε > 0, in aver-
age reward stochastic games remains an open problem.
In recent years, a subclass of stochastic games, the class
of recursive games with perfect information, has been
subject to various research efforts in this context.

Flesch et al. [2] showed that such subgame-perfect
ε-equilibria exist for a subclass of recursive perfect-
information games called free transition games. Flesch
et al. [1] gave the proof for a subclass with nonnegative
rewards.

Kuipers et al. [3] showed the existence of subgame-
perfect ε-equilibria for all ε > 0 in all recursive perfect-
information games where each player controls exactly
one non-absorbing state, and provided an algorithm for
their construction. This thesis discusses the algorithm
and its implementation.

Section 2 of this thesis describes the class of games
and the objective and approach of the research by
Kuipers et al. Section 3 presents a general approach
to the implementation of the algorithm. Section 4 shows
how this approach can be made more efficient. Section 5
shows that the fixed point reached by the algorithm is

1This thesis was prepared in partial fulfillment of the require-
ments for the Degree of Bachelor of Science in Knowledge Engi-
neering, Maastricht University, supervisor: Dr. Gijs Schoenmakers

not necessarily unique. Section 6 aims at building intu-
ition about the concept of an α-exit sequence and pro-
vides a simple example. Section 7 concludes the thesis.

2 The class G and
subgame-perfect ε-equilibria

2.1 Model
A game in the class G as defined by Kuipers et al. [3] is
given by the following objects.

The nonempty set of players is denoted by N =
{1, 2, . . . , n}. For each player t ∈ N , there exist exactly
two states associated with t: one non-absorbing state
also denoted by t and one absorbing state denoted by t∗.
The set of absorbing states is denoted by N∗ and the set
of all states is denoted by S = N ∪N∗.

For each player t ∈ N , there is a set of states A(t) ⊆
N∪{t∗} with t∗ ∈ A(t) and t /∈ A(t). For each absorbing
state t∗ ∈ N∗, A(t∗) = {t∗}. For each player t ∈ N ,
there is an associated reward vector r(t) ∈ RN .

A game in G goes through an infinite sequence of
discrete stages. At each stage, exactly one state in S is
active. If a non-absorbing state t ∈ N is active, player
t announces one of the states in A(t) which will be the
active state at the next stage of the game. This may be
referred to as t playing one of the actions available to him
given by A(t). If an absorbing state t∗ ∈ N∗ is active, the
same state t∗ will be active at all subsequent stages. The
players receive real-valued rewards at each stage of the
game. When a non-absorbing state is active, the stage
reward to all players is zero. Every time an absorbing
state t∗ ∈ N∗ is active, the rewards to the players are
given by the vector r(t). The game may start with any
initial state s ∈ S.

The measure that is of concern in the research by
Kuipers et al. is the average reward, the average of the
rewards received over the infinite sequence of stages. If
an absorbing state t∗ ∈ N becomes active at any stage,
the players receive the rewards r(t) an infinite number
of times, compared to a finite number of zero rewards.
The average reward will therefore be equal to r(t). In
the case where only non-absorbing states become active
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during a game, the average reward is zero. Because of
the similarity between the stage rewards and the average
reward, both will be called reward in this thesis.

The games in G can also be interpreted in an alter-
native, simpler way. The action of announcing one’s ab-
sorbing state can be seen as stopping the game, since all
subsequent stages and the players’ rewards are predeter-
mined at that point. In this interpretation of the model,
players receive their rewards when the game stops and
it is consistent that they receive no, i.e. zero, rewards if
it never stops.

The actions in these games are deterministic, mean-
ing that the state announced by the active player will
become the next state of the game with probability 1.
However, players may determine the action they will play
by performing a lottery with any probability distribution
over their actions.

The games described here have the property of perfect
information, which means that only one player is active
at any time and that this player knows exactly which
effect his choice of action will have on the state of the
game.

Furthermore, the players know the possible states,
actions and rewards of the game and the complete se-
quence of past active states.

The set of states and the possible actions can be ex-
pressed as a directed graph. As an illustration of the
formal definition of this model, Figure 1 shows such a
graph for a game with three players.
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Figure 1: Complete representation of the states, actions
and rewards in a recursive game with three players. In
this example, N = {1, 2, 3}, A(1) = {1∗, 2, 3}, A(2) =
{2∗, 3}, A(3) = {3∗, 1}, r(1) = (1, 0, 2), r(2) = (3,−1, 2)
and r(3) = (0, 3,−1).

Since the actions associated with absorbing states
have the same structure in every game and for every

player, and since non-absorbing states are always asso-
ciated with zero rewards, the representation can be sim-
plified by omitting absorbing states and assigning their
rewards to the corresponding non-absorbing states. This
also reflects the alternative interpretation of the model
described above, where the active player may simply stop
the game. Figure 2 shows the same game in this simpli-
fied form.
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Figure 2: Simplified representation of the game in Fig-
ure 1.

2.2 Subgame-perfect ε-equilibria
The rules according to which a player makes decisions in
a game are collectively referred to as the player’s strategy.
A strategy profile is a collection of strategies that con-
tains exactly one for each player in a game. The strategy
profile in use determines the (expected) average reward
to each player. A strategy profile is a (Nash) equilibrium
if and only if no player could achieve a higher reward
by unilaterally changing his strategy. Equilibria provide
insight into how a game might play out after the players
have analyzed their best course of action.

In some circumstances, a player may be able to profit
from a unilateral change of strategy, but only by an
amount that can be made arbitrarily small. A strategy
profile with this property is called an ε-equilibrium.

When all players in a game know the complete history
of the game and how it affects the current and future
stages, then the play starting from the current stage can
be seen as a game in its own right. This is referred to
as a subgame. An equilibrium is called subgame perfect
if it is also an equilibrium for every subgame.

An important property of subgame-perfect equilibria
is that they prevent non-credible threats. In a general
equilibrium, it is possible that one player’s strategy in-
volves a successful threat against another player even
though the first would never actually want to act on
the threat. In a subgame-perfect equilibrium, the threat
strategy must be the best response even in subgames
that would not otherwise be reached.

The main result of the research by Kuipers et al. into
the class of games described in Subsection 2.1 is a proof
of the existence of subgame-perfect ε-equilibria for all

(p.2)
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games in the class. The proof is based on an algorithm
that can find such equilibria.

2.3 Plans and strategic concepts
The infinite sequences of states that a certain game could
go through are referred to as (game) plans. Similarly,
finite sequences are called paths. The set of players that
become active on a plan or path g is denoted by N(g).

If a plan contains an absorbing state t∗, it is called
absorbing and said to absorb at t, otherwise it said to be
a non-absorbing plan.

A plan is merely one possible sequence of states in
a game; players are not forced to follow it. If a player
chooses an action that differs from the one indicated by
a plan, he is said to deviate from the plan.

When play is according to a plan g, the reward re-
ceived by player t is denoted by φt(g). The following con-
cepts address the question whether players would want
to follow a certain plan, given the rewards they would
receive. The definitions are based on a vector α that will
generally provide lower bounds on the rewards that the
players can receive in the game.

For α ∈ RN , a player t is said to be α-satisfied by
a plan g if φt(g) ≥ αt. The set of players that are α-
satisfied by g is denoted by sat(g, α).

If all players on a plan g are α-satisfied by g, i.e.
N(g) ⊆ sat(g, α), g is α-viable. The set of α-viable
plans starting at state t is denoted by viable(t, α). For
any t∗ ∈ N∗, the plan h = (t∗, . . . ) is trivially α-viable
for all α ∈ RN because N(h) = ∅.

As this model allows for negative rewards from ab-
sorbing states, players may have an incentive to deviate
from a given plan infinitely often while play returns to
them every time, thus creating non-absorbing play that
guarantees them a reward of zero. This is illustrated in
Figure 3.
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Figure 3: The plan g, starting at u and continuing along
the solid edges, will not be carried out if the player t has
a reason to deviate to u every time he becomes active.

The following concept describes plans where this can
be prevented. For a player t, a state u ∈ A(t) and a

vector α ∈ RN , plans in viable(u, α) have the additional
property of being (t, u, α)-admissible if at least one of the
following conditions is satisfied.

(i) The player t cannot interfere with the plan g because
t /∈ N(g), or there is no reason to interfere because g
itself is non-absorbing and thus already guarantees
a reward of zero.

(ii) Viable play is known to guarantee a positive reward
for player t, expressed by αt > 0, who therefore has
no reason to force non-absorbing play.

(iii) A player x that is active on g before the first occur-
rence of t can create a threat against t by placing a
probability ε > 0 on deviating to the first state of
an α-viable threat plan v with t /∈ sat(v, α). Fur-
thermore, it is necessary that x /∈ sat(v, α), so that
x has no reason to increase the probability of devi-
ating towards v.

The threat structure described in the third condition
is illustrated in Figure 4.

t
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g
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Figure 4: The presence of a threat player x before t on
the plan g can ensure that play is eventually according
to g. If t deviates to u, the threat player is expected to
place a positive probability on announcing the first state
on the viable threat plan v. In this case, t will have
no reason to deviate infinitely often as this would mean
that the first state on v will become active eventually
with probability 1. Note that the threat may be created
by u at the first stage of the plan. Thus, only two players
are required for this structure.

Consider the game in Figure 5. Let α = (0,−1, 1).
Notice that these values are the rewards that each player
receives when he plays his absorbing action. Every plan
that absorbs at 2 is α-viable. The plans (1, 1∗, . . . ) and
(3, 3∗, . . . ) are also α-viable. The plans (1∗, . . . ), (2∗, . . . )

(p.3)
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Figure 5: A game with three players.

and (3∗, . . . ) are trivially α-viable. Plans that absorb at
1 do not α-satisfy player 3 and plans that absorb at 3
do not α-satisfy player 2. Therefore, no other absorbing
plan is α-viable. Non-absorbing plans are not α-viable
because they do not α-satisfy player 3, who must be
included in them.

The plan (2, 2∗, . . . ) is (1, 2, α)-admissible because it
does not include player 1. For similar reasons, the plan
(3, 3∗, . . . ) is (2, 3, α)-admissible and the plans (1, 1∗, . . . )
and (1, 2, 2∗, . . . ) are (3, 1, α)-admissible. The plan
(1, 2, 3, 1, 2, 2∗, . . . ) is (3, 1, α)-admissible because of the
positive α3 = 1.

The plan (3, 1, 2, 2∗, . . . ) is not (2, 3, α)-admissible.
Player 2 would prefer a non-absorbing plan to one where
he absorbs and might therefore announce state 3 every
time. The only potential threat plans in this game,
(1∗, . . . ) and (3∗, . . . ), cannot act as threat plans at
this value of α because they α-satisfy the correspond-
ing absorbing player. For similar reasons, the plan
(2, 3, 1, 2, 2∗, . . . ) is not (1, 2, α)-admissible.

At α = (1,−1, 2) however, the plan (3, 1, 2, 2∗, . . . ) is
(2, 3, α)-admissible because player 3 can create a threat
by playing action 3∗ with probability ε > 0 if player 2 de-
viates from the plan. With this threat in place, there is
no reason for player 2 to announce state 3 every time, be-
cause this will eventually lead to the threat plan (3∗, . . . )
which does not α-satisfy player 2.

2.4 Update procedure

In order to construct a subgame-perfect equilibrium, the
algorithm by Kuipers et al. first computes the rewards
that the players would receive at this equilibrium. This is
achieved by maintaining vectors α ∈ RN that constitute
lower bounds for those rewards.

The process starts at α0 = ρ where ρt = rt(t) for all
players t. This is certainly a lower bound on the rewards
that active players can achieve, as a player may always
choose to play his absorbing action. These lower bounds
are then repeatedly tightened using the following update
procedure.

The updated value for a player t ∈ N in a vector

α ∈ RN is given by

δ(t, α) = max {β(t, u, α) |u ∈ A(t)}

where

β(t, u, α) = min {φt(v) | v ∈ admiss(t, u, α)} .

The procedure computes the minimum reward that
could result from any admissible play after t plays a spe-
cific action, and maximizes this value over all available
actions. While this structure is also typical for zero-sum
games where opponents try to minimize each other’s re-
wards, it is used here to ensure that the resulting value
is a true lower bound.

If ρ is used as the initial value, it will be the case for
any update that αt ≤ δ(t, α) <∞. Section 6 explains the
properties a vector must have for this to be guaranteed.

If an update of player t in αi leads to an actual in-
crease in the value, the vector created by replacing the
value of αi

t with δ(t, α) may be denoted by αi+1, which
is then used as the basis for new updates. The proce-
dure is repeated until a fixed point α∗ is reached where
no update will have an effect. This vector is then used
for the construction of a corresponding subgame-perfect
equilibrium.

Consider again the game in Figure 5. Let α0 =
ρ = (0,−1, 1). The value of player 1 shall be up-
dated. From the admissible plans identified in Sub-
section 2.3, it follows that β(1, 1∗, α0) = φ1(1

∗, . . . ) =
0, β(1, 2, α0) = φ1(2, 2

∗, . . . ) = 1 and therefore
δ(1, α0) = 1. Hence, let α1 = (1,−1, 1). Now con-
sider an update on player 3. Trivially, β(3, 3∗, α1) =
φ3(3

∗, . . . ) = 1. Furthermore, β(3, 1, α1) =
min{φ3(1, 2, 2∗ . . . ), φ3(1, 2, 3, 1, 2, 2∗, . . . ), . . . } = 2.
Thus, δ(3, α1) = 2 and α2 = (1,−1, 2). At this point,
plans that include any non-absorbing states are only vi-
able if they absorb at 2. Such plans give rewards equal
to α2. No further updates would have an effect, so
α∗ = α2 = (1,−1, 2). The vectors resulting from the
above steps are depicted in Figure 6.
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Figure 6: The sequence of vectors produced by the up-
date procedure for the game shown in Figure 5. Arrows
indicate the elements that have been updated, and are
additionally labeled with the corresponding player.

2.5 Construction of a
subgame-perfect ε-equilibrium

A fixed point α∗ ∈ RN of the update procedure de-
scribed in Subsection 2.4 can be used to construct a

(p.4)
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subgame-perfect ε-equilibrium. First, a collection of
plans is selected among the plans that produce the re-
wards indicated by α∗. For every player x, a plan
gx ∈ viable(x, α∗) is chosen and for every player t
and action u ∈ A(t), a plan gtu ∈ admiss(t, u, α∗) with
φt(g

tu) = β(t, u, α∗) is chosen. If gtu only satisfies the
third condition of (t, u, α∗)-admissibility, one must ad-
ditionally choose a corresponding threat player xtu and
threat plan vtu.

The subgame-perfect ε-equilibrium is now given in
the form of prescribed play that is revised when a player
deviates from it. For a game that starts at state s ∈ N ,
the plan gs is used as the first prescription. Players are
expected to play the action given by the prescription
with probability 1. If at any point, a player t deviates to
u ∈ A(t), then the plan gtu is examined. If the plan sat-
isfies either of the first two conditions for admissibility,
play continues in the same way but with the new pre-
scription gtu. If gtu only satisfies the third condition for
admissibility, then at the first occurrence of player xtu
on the plan, he is expected to perform a lottery where he
announces the first state on vtu with probability ε and
plays according to gtu with probability 1−ε. At all other
stages of gtu, the active player is expected to follow the
prescription of gtu with probability 1.

3 Generating game plans
At the center of the update procedure is the computa-
tion of the minimum reward over the set of admissible
plans starting from a certain state. Furthermore, the
definition of admissibility of a plan not only requires vi-
ability but also involves sets of viable plans for the use as
threat plans. One simple approach to implementing this
procedure would therefore require the ability to gener-
ate plans and check them for viability and admissibility.
While an exhaustive list of relevant plans is not nec-
essarily required for the computation of the minimum
reward, it can provide useful insights in the analysis of
games and of the algorithm. This section describes the
general problems in this approach and how they can be
addressed.

A central characteristic of the model described here
is that it allows for the possibility that play returns to a
state that has been active before. Equivalently, the state
graphs of the games in this class may contain cycles.
Indeed, games that do not contain such cycles may be
considered trivial for the purposes of this algorithm and
its implementation.

Every time a player becomes active, he can choose
freely from the set of actions available to him, regard-
less of how he or the other players have chosen up to
that point. This means that play can go through one
or multiple cycles an arbitrary number of times, which

allows for both plans that never absorb and plans that
include any number of transitions before they do. The
length of the non-trivial, non-absorbing part of the plans
is generally unlimited.

This also means that despite the finite number of
states in these games, the set of possible plans for a given
game, and even the sets of viable and admissible plans,
may be infinitely large.

These two factors, non-absorbing play of arbitrary
length and an unlimited number of plans, are the most
fundamental problems that need to be addressed when
this algorithm is to be implemented. A concrete ap-
proach is required that generates finite subsequences and
subsets of the plans that produce the same results.

The obvious approach to generating plans is to tra-
verse the state graph recursively. The process starts at
a given state and repeatedly spreads out along all avail-
able actions. When an absorbing state is reached, this
branch of the recursion does not need to continue as the
remainder of the plan will consist entirely of that same
state.

If plans are constructed sequentially in this way, the
process may encounter a state that is present on the path
generated so far. In this situation, the newly completed
cycle could be traversed infinitely often, which means
that the generated path can be returned as the beginning
of a non-absorbing plan.

The path may also lead to more non-absorbing plans
that make use of other cycles. Since the plans the result
from appending these cycles cannot by viable if the orig-
inal plan is not viable, and since all non-absorbing plans
are admissible if they are viable, and give zero rewards,
it is not necessary to search for such non-absorbing plans
explicitly.

It is however necessary at this point to continue the
generation of absorbing plans. The crucial question re-
sulting from the problems described above is under what
conditions the process can stop even though it has not
yet reached an absorbing state.

3.1 Redundant cycles and
equivalent plans

For the construction of absorbing plans, one might be
tempted to disregard cycles entirely. Indeed, a non-
viable plan cannot become viable through the addition
of a cycle, since the cycle can at most add restrictions
on viability in the form of additional players that need
to be satisfied. However, a viable but inadmissible plan
can become admissible through the addition of a cycle
that includes a potential threat player.

Consider the game in Figure 7 and α3 = (−1, 2, 2).
The only (1, 2, α3)-admissible plan is (2, 3, 2, 1, 1∗, . . . ).
The plan only satisfies the third criterion for admissibil-
ity and it only does because player 3 can create a threat

(p.5)
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(a) A game with three players and three non-absorbing ac-
tions.
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(b) The only sequence of α-updates for the game.

Figure 7: A game where the algorithm reaches a situa-
tion that requires the traversal of a cycle in a plan.

against 1 based on the threat plan (3∗, . . . ). This exam-
ple demonstrates that a cycle can be an essential part of
a plan.

The question remains under what condition a cycle
does not need to be included when generating plans. One
such criterion is presented in Lemma 1.
Lemma 1. Let g = (s1, s2, . . . ) be a plan and let
h = (s1, s2, . . . , sm−1, sm, c1, c2, . . . , ck, sm, sm+1, . . . ) be
a plan for the same game created by inserting a cycle
into g at sm, such that the set of players on the cycle
{c1, . . . , ck} is a subset of the set of players before the
cycle {s1, . . . , sm}. Then, for any players t, u ∈ N and
for any α ∈ RN ,
(i) N(g) = N(h)

(ii) φt(g) = φt(h)

(iii) g ∈ viable(t, α)⇔ h ∈ viable(t, α)

(iv) g ∈ admiss(t, u, α)⇔ h ∈ admiss(t, u, α)

Proof. Proof of (i): N(h) = {s1, s2, . . . } ∪
{c1, c2, . . . , ck} = {s1, s2, . . . } = N(g).

Proof of (ii): If sm is a non-absorbing state then
c1, c2, . . . , ck must also be non-absorbing. If sm is ab-
sorbing then any inserted states must be the same state
sm. The insertion of a cycle does not affect whether
or where the plan absorbs, so the two plans give equal
rewards.

Proof of (iii): It follows from (ii) that sat(g, α) =
sat(h, α), and it follows from this and (i) that N(g) ⊆
sat(g, α)⇔ N(h) ⊆ sat(h, α).

Proof of (iv): If follows from (i) and (ii) that t ∈
N(g)⇔ t ∈ N(h) and that h is non-absorbing if and only
if g is. The value of αt is not affected by the structure of
any plan. Any threats against a player t that are relevant
to the admissibility of g must be made by players that
reside on g before the first occurrence of t. Since any
players added in h are also included in the part of the

plan preceding the addition, h includes exactly the same
threats against a player as g does. The plan h satisfies
any condition for (t, u, α)-admissibility if and only if g
does.

The addition of a cycle that does not include the first
occurrence of any player in the resulting plan is therefore
redundant for the purposes of the update procedure.

A simple corollary of Lemma 1 is that no cycle needs
to be traversed more than once when generating an ab-
sorbing plan. This means that both the length and num-
ber of sequences that need to be generated is finite, and
makes the algorithm computable. The stronger result in
Lemma 1 can however lead to significantly smaller sets
of generated plans.

This criterion for equivalence between plans has the
additional advantage that it can be checked in an efficient
way while generating plans recursively. If a path p =
(s1, s2, . . . , sm) does not contain a redundant cycle, then
appending a state sm+1 to it can only create a redundant
cycle in one way. It must be a cycle that is completed
by the addition of sm+1. Therefore, at each step in the
construction of a plan, it is only necessary to find the last
occurrence of sm+1 on the previous plan p and compare
the sets of players before and after this stage. If sm+1

does not exist in p, there cannot be a new redundant
cycle.

These insights are used in Algorithm 1 to gener-
ate all non-redundant plans starting from a given non-
absorbing state. The plans that have thus been gener-
ated can then be evaluated for their viability and ad-
missibility in order to carry out the update procedure,
compute a fixed point α∗ and select plans for the con-
struction of a subgame-perfect ε-equilibrium.

3.2 Backward generation of
α-viable plans

The exhaustive approach to generating plans described
above is useful for the inspection of the algorithm and its
implementation. However, carrying out the update pro-
cedure and constructing a subgame-perfect ε-equilibrium
only requires the plans in the sets viable(u, α) for
u ∈ S and α ∈ RN , and their subsets admiss(t, u, α)
for t, u ∈ S and α ∈ RN . An approach that only gener-
ates α-viable plans might more time- and in particular
space-efficient.

Whether a plan is α-viable depends on the α-values
of the players on the plan and on its rewards to those
players, which in turn depends on whether and where
the plan absorbs. This suggests an approach that begins
with the construction of an absorbing plan at the first
occurrence of an absorbing state and proceeds backward
to the desired initial state. This way, the rewards from
the plan are known at the beginning of the construction,
and for each player to be prepended, it can be checked

(p.6)
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Data: u ∈ N , initial state of the plans to be
generated, p, path generated so far that
precedes these plans, Ã, function from
state x ∈ S to available actions A(x) if x is
non-absorbing, and to ∅ if x is absorbing

Result: G, set of non-redundant plans starting
from u

G← ∅
if u ∈ p:

/* u completes a cycle in p; this plan
can be added as non-absorbing */

G← G ∪ {(u,non-absorbing)}
/* Create new path with the current state

appended */
q ← p⊕ (u)

for a ∈ Ã(u):
if appending a to q does not complete a
redundant cycle:

/* Recursively generate plans
starting from the next state */

H ← G(a, q, Ã)
for h ∈ H:

/* Prepend the current state to
each generated plan */

g ← (u)⊕ h
G← G ∪ {g}

Algorithm 1: Recursive generation of game plans.
The set of non-redundant plans starting at u ∈ N is
given byG(u, (), Ã). The generated sequences end with
one instance of an absorbing state or with the marker
non-absorbing.

immediately whether the player would be α-satisfied by
the plan. The resulting algorithm is similar in structure
to Algorithm 1 and uses the inverse of the function A(t)
to find possible previous states on the plan. As explained
above, the special properties of non-absorbing plans en-
tail that generating just one α-viable non-absorbing plan
starting at a given state is sufficient. This plan can be
generated separately in a forward direction.

This algorithm appears promising as it can be ex-
pected to prune a branch of the recursion much earlier
than a forward construction can, especially as the α-
values are increased through updates. The approach,
however, has a distinct disadvantage. As mentioned
above, redundant cycles can be detected very efficiently
during a forward construction. The same method is
not possible with the backward approach. Prepending
a state s may create redundant cycles anywhere on the
plan. Any such cycles must contain s, but that infor-
mation alone does not allow for determining their exact
location efficiently.

In this implementation, the test for redundant cycles

is done by considering each state on the plan sequentially
in a forward direction, and checking whether the state
currently under consideration is the first state on a cycle
that is a subset of the set of states already considered. In
practice, this approach to backward generation appears
to be slower than the simpler forward method in most
cases. Due to its improved space-efficiency, it may still
be of interest for the analysis of large games.

4 Bounded evaluation of plans
While the ability to inspect every non-redundant plan in
a game is useful for analytical purposes, many of these
plans will likely not have an effect on the result of the
algorithm. The update procedure described in Subsec-
tion 2.4 computes the maximum of minima, as illustrated
in Figure 8. This structure can be exploited when eval-
uating plans for their viability and admissibility.

t

u1 u2 u3
. . .

max

min

Figure 8: The update procedure computes the maxi-
mum, over all actions, of the minimum rewards over ad-
missible plans.

For α ∈ RN , t ∈ N and any u ∈ A(t), the value
of β(t, u, α) is a lower bound for δ(t, α). Similarly, for
any v ∈ admiss(t, u, α), the value of φt(v) is an upper
bound for β(t, u, α). This means that if the minimum
reward from a certain action has already been evalu-
ated and if for a different action, an admissible plan
is found that gives a lower or equal reward, the latter
action cannot affect the result of the update. There-
fore, no further plans starting from said action have to
be checked. This idea can be implemented by simply
keeping track of both bounds described above, updating
them as needed and aborting the respective computa-
tions when the lower bound is greater than or equal to
the upper bound. This approach can be seen as a spe-
cialization of the alpha-beta pruning algorithm that is
used for general minimax problems.

The class G and the update procedure have further
properties that can help tighten the bounds. As men-
tioned in Subsection 2.4, any update δ(t, α) will be at
least as large as the previous value αt if the process
starts with the initial vector ρ. Furthermore, a general
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upper bound on the reward for player t, regardless of
the possible actions and plans in the game, is given by
max(maxx∈N{rt(x)}, 0). Using these values as the ini-
tial values for the upper and lower bounds prevents a
search for rewards that cannot possible be obtained.

5 Alternative updates of α
For a given vector α ∈ RN , it is possible and common
that the update procedure determines that more than
one player could achieve a higher reward than indicated
by α. In such a case where different updates would lead
to an increase, the algorithm does not require a specific
selection; updating any one player will continue along
a path that eventually leads to a fixed point α∗ which
corresponds to at least one equilibrium.

Figure 9 shows a game with four players and all pos-
sible paths along which α can be updated according to
the algorithm. The structure illustrates that the same
vector can be reached through different sequences of up-
dates, and sequences of different lengths.
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(a) A game with four players and seven non-absorbing ac-
tions.

2

3

-1

3

-1

2

-1

-1

0

2

-1

-1

1

-1

2

-1

1

4

0

2

-1

14

2

2

-1

1

1
0

2

-1

3
4

2

2

-1

3
4

0

3

-1

3

2

1
1

1

2

(b) All possible sequences of updates for the game.

Figure 9: A game with four players and a relatively com-
plex structure of possible sequences of α-updates.

5.1 Distinct fixed points α∗ reached by
the update procedure

The different update sequences in Figure 9 all lead to the
same fixed point α∗ = (2, 3,−1, 3). This appears to be
a very common pattern. Note, however, that additional
fixed points that are not reached by the algorithm are
not uncommon.

One might assume that a unique reachable fixed
point is a general property of the algorithm. That is
not the case. Figure 10 shows a game where different
sequences of updates lead to different fixed points α∗.
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(a) A game with three players and three non-absorbing ac-
tions.
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(b) All possible sequences of α-updates for the game.

Figure 10: A game where two different fixed points α∗
can be reached depending on the order in which players
are updated.

An update of player 1 in α0 = ρ = (−1, 0, 2) produces
the fixed point (1, 0, 2). If instead player 2 is updated
in α0, the result is the vector (−1, 2, 2). Player 1 can
then be updated, which leads to a second fixed point
(1, 2, 2). The surprising structure is in this case related
to the role of player 1 as a threat player. At α = (1, 0, 2),
player 1 can force player 2 to absorb using the threat plan
(1∗, . . . ). This is not yet possible at ρ because player 1
is ρ-satisfied by that plan. Therefore, the vector (1, 2, 2)
can only be reached if player 2 is updated first.

6 Threats and positive
α-exit sequences

The update procedure described in Subsection 2.4 is
applied repeatedly to update elements of vectors until
a fixed point α∗ is reached where no further updates
would lead to an increase. The main difficulty in prov-
ing that this process can be used for the construction
of a subgame-perfect equilibrium for every game in the
class G is the proof that it always leads to a finite α∗
when applied to a vector α with certain properties. The
intention of this section is to give an intuitive description
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of these properties as formalized by Kuipers et al. and
to provide an illustration by means of examples.

6.1 Semi-stable vectors and α-exits
It follows from the formulation of the update procedure
that the result of a single update on a vector α ∈ RN is
finite if α is finite and if for any player t ∈ N and for any
action u ∈ A(t), there exists a (t, u, α)-admissible plan.
The concept of a semi-stable vector provides conditions
under which this is the case.

The player t is said to be α-safe at u ∈ A(t) if for all
plans g ∈ viable(u, α), it is the case that t ∈ sat(g, α).
The set of actions at which t is α-safe is denoted by
safestep(t, α).

For α ∈ RN to be semi-stable, it must first satisfy
the condition that safestep(t, α) 6= ∅ for all players t ∈
N . The reflects the notion that α should contain lower
bounds on the rewards that the players can certainly
achieve, and that the plans that generate these rewards
must necessarily be α-viable. However, this condition
is not sufficient as it does not account for the fact that
the strategies that generate these rewards may require
threats. The following definitions describe sets of players
where this can be the case.

The set X (α) contains all sets X ⊆ N that have all
of the following properties.

(i) Any player in X can choose an action that keeps
play in X. This implies that the subgraph induced
by X contains at least one cycle.

(ii) At least one player inX has a positive α-value. This
means that this player must have a way to force
absorbing play.

(iii) No player in X with a positive α-value can make a
safe step that leaves X. In order to absorb eventu-
ally, play therefore has to leave X due to an action
of a player with a non-positive α-value.

Players with non-positive values in α are α-satisfied
by non-absorbing plans. Therefore, these players will
not necessarily announce a state outside of X unless a
different player in X can create a reason to do so by
means of a threat. The following definition is used to
determine whether a threat is possible when it is needed.

An α-exit from X is an edge (x, y) of the state graph
with x ∈ X, y ∈ S \ X, and where for every plan g ∈
viable(y, α), at least one of the following conditions is
satisfied.

(i) The player x is α-satisfied by g.
(ii) There exists a player in X who can make a safe step

outside of X and who is not α-satisfied by g.

This expresses two ways in which an edge can consti-
tute an exit from a set. In the first case, x is α-satisfied
by every α-viable plan starting from y, which makes y

a safe step for x. Otherwise, at least one of those plans
does not α-satisfy some player in X that does have a safe
step outside of X. This plan could act as a threat plan
against that player and force him to make such a safe
step. An α-exit is called trivial if x can make a safe step
outside of X, because a safe step will by definition only
lead to plans that satisfy the first condition. Otherwise,
the α-exit is called non-trivial.

1

(
−1
2

)
2

(
−2
1

)
(a) A game with two players and two non-absorbing actions.
Examples of this general form were examined by Solan and
Vieille [4] as quitting games where multiple players can choose
the equivalent of an absorbing action at the same time.

-1

2

-1

1
2

(b) The only possible α-update for the game.

Figure 11: A game that illustrates the concept of an
α-exit.

Consider the game in Figure 11. At α1 = (−1, 2), the
set {1, 2} satisfies all conditions of X (α1). Only player 1
can make a safe step outside of the set and only player 2
has a positive α1-value. Player 2 can only achieve the re-
ward given by α1

2 = 2 if he plays action 1. Player 1 would
however profit from the plan (1, 2, 1, 2, . . . ). This issue
is resolved by the α1-exit (2, 2∗). The only relevant plan
(2∗, . . . ) does not α1-satisfy player 1, and thus meets the
second condition, nor does it α1-satisfy player 2, which
makes this a non-trivial α1-exit.

6.2 Stable vectors and α-exit sequences
For a semi-stable vector α, it is guaranteed that a single
update on it remains finite. The resulting vector may
however not be semi-stable. This is related to the fact
that a threat may depend on a second threat. A situation
can occur where a player cannot make the direct threat
that he would profit from, but he can threaten a third
player into making said threat. The definition of a stable
vector α accounts for these chains of threats.

The concept of an (α,Z)-exit generalizes that of an
α-exit described in Subsection 6.1. For a semi-stable
vector α ∈ RN , X ⊆ N and Z ⊆ X, an edge (x, y) of the
state graph with x ∈ X and y ∈ S \X is an (α,Z)-exit
if for every plan g ∈ viable(y, α), one of the following
conditions holds.

(i) The player x is α-satisfied by g.
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(ii) There exists a player who can make a safe step out-
side of X or who is in Z, who is not α-satisfied
by g.

This generalization accounts for the fact that there
may be a set of players that cannot safely exit X di-
rectly but for whom there exist safe exits by other players
that are enforced by threats. Now, a sequence of edges
(xi, yi)

k
i=1 is defined to be an α-exit sequence from X

if every edge (xi, yi) is an (α, {x1, . . . , xi−1})-exit from
X.This corresponds to a chain of threats where each
threat may require the preceding ones.

An α-exit sequence is said to be positive if it includes
a player xi with a positive α-value. Finally, a vector α ∈
RN is stable if for every player x, safestep(x, α) 6= ∅
and if for every X ∈ X (α), there exists a positive α-exit
sequence.
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(a) A game with three players and three non-absorbing ac-
tions.
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(b) All possible sequences of α-updates for the game.

Figure 12: A game that illustrates the concept of an
alpha-exit sequence.

Consider the game in Figure 12 and the vector α2 =
(0, 2, 0). The set X = {1, 2, 3} is the only element of
X (α2).

Only player 1 can safely exit X, which makes the
edge (1, 1∗) is trivial α2-exit. The edge (3, 3∗) is a non-
trivial α2-exit because the plan (3∗, . . . ) does not satisfy
player 1. However, player 3 is α2-satisfied by the non-
absorbing plan (1, 2, 3, 1, 2, 3, . . . ), so he has no reason
to place any positive probability on absorbing and risk a
reward of -1. An effective threat structure must involve
a player with a positive α2-value who needs to enforce
an exit out of X, i.e. absorption. The only such player,
player 2, cannot create any direct threat against player 1,
who is α2-satisfied by plans that absorb at 2.

Even though player 2 does not want player 3 to play
his absorbing action, he can still create a threat against
3 by playing the action 2∗ with a very small positive

probability. Player 3 is not α2-satisfied by absorbing,
but he can in turn place a very small probability ε > 0 on
doing so, which poses a threat against player 1. Notice
that player 1 would profit from absorption at 2. Player 2
will want to place an even smaller probability ε2 on his
absorbing action so that play would eventually absorb at
3 rather than 2 with a very high probability. This will
finally cause player 1 to play his absorbing action and
results in rewards equal to α2.

This corresponds to the positive α2-exit sequence
((3, 3∗), (2, 2∗)). As mentioned above, (3, 3∗) is an α2-
exit and therefore an (α2, ∅)-exit. The edge (2, 2∗) is an
(α2, {3})-exit because the plan (2, 2∗) does not α2-satisfy
player 3.

7 Conclusion
This thesis presents an approach to the implementation
of the algorithm by Kuipers et al. that is based on ex-
haustively generating game plans. This method is gen-
eral enough that it can be adapted to variations of the
algorithm for similar models. At the same time, it is ef-
ficient enough for finding large collections of games with
desired properties.

The alternative approach of generating α-viable
plans in a backward direction appeared promising but
proved to be less efficient in practice. Improving the
corresponding algorithm for the detection of redundant
cycles could be a topic of future research.

This implementation has allowed for the discovery of
unexpectedly simple examples of games. Most notably,
it showed that an α-exit sequence of multiple edges can
exist in a game with only three players. These examples
have contributed to a better understanding of the model
and the algorithm.
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