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Abstract In this paper we examine an extension of the fictitious play process for
bimatrix games to stochastic games. We show that the fictitious play process does not
necessarily converge, not even in the 2 × 2 × 2 case with a unique equilibrium in
stationary strategies. Here 2 × 2 × 2 stands for 2 players, 2 states, 2 actions for each
player in each state.
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1 Introduction

A bimatrix game is given by a set of players I = {1, 2}, a set A = {1, 2, . . . , n A} of
pure actions for player 1 and, similarly, a set B = {1, 2, . . . , nB} of pure actions for
player 2, and a payoff function r : A × B → R

2. Independently of each other the
players have to choose actions. They are allowed to randomize over their actions, so
player 1 would generally choose a mixed action from F , which is the set of proba-
bility distributions over A, and similarly player 2 chooses actions from G, the set of
probability distributions over B. We shall write f and g to denote elements of F and
G. Clearly, pure actions can be seen as mixed actions as well. When the action pair
(a, b) ∈ A × B is played, then player i ∈ I receives a payoff ri (a, b). If the players
play the mixed actions f and g, then the expected payoff to player i is

ri ( f, g) :=
∑

a∈A

∑

b∈B

f (a)g(b)ri (a, b)
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316 G. Schoenmakers et al.

The fictitious play process for bimatrix games is based on the assumption that the
bimatrix game is played repeatedly at stages n ∈ {1, 2, 3, . . .}, where at stage n player
i plays a best reply against the “observed behavior” of his opponent. This means
that if player 2 has played b(1), b(2), b(3), . . . , b(n) ∈ G at stages 1, 2, 3, . . . , n,
then player 1 has observed the action frequencies g(n) = 1

n

∑n
m=1 b(m). He may

deduce that player 2 is playing according to the mixed action g(n) and play a best
reply a(n + 1) at stage n + 1. Player 2 is assumed to respond similarly by playing at
stage n + 1 a best reply b(n + 1) against the action frequencies f (n) based on the
observed actions a(1), a(2), a(3), . . . , a(n) by player 1. The process is initiated by
taking a(1) = b(1) = 1.

The fictitious play process is said to converge if ( f (n), g(n))∞n=1 converges. A
game has the fictitious play property if every fictitious play process converges to an
equilibrium.

Fictitious play processes were introduced by Brown (1951) and Robinson (1951),
who proved the fictitious play property for two-player zero-sum games. Miyasawa
(1961) proved the fictitious play property for generic 2 × 2-games. A geometric proof
for this class of games is provided by Metrick and Polak (1994). Convergence was
also shown by Monderer and Shapley (1996) for n-player games in which all play-
ers have the same number of actions and identical payoff functions. Shapley (1964),
however, provided an example of a bimatrix game where each player has three actions
and where the fictitious play process does not converge.

In this paper we use a discrete fictitious play process. For continuous fictitious play
processes we refer to Krishna and Sjöström (1998) and Sela (2000).

The 2-player stochastic game model was introduced by Shapley (1953). It can be
described as follows: let I = {1, 2} be the set of players and let S be a finite set of
states. For each state s ∈ S there are finite sets of actions As and Bs for players 1 and
2, respectively. Play can start in any state s. If in state s player 1 chooses as and player
2 chooses bs , then two things happen: (1) player i receives a payoff ri,s(as, bs) and
(2) with probability ps(t |as, bs) play moves to state t ∈ S, where actions have to be
chosen at the next stage. The number of stages is assumed to be infinite. Again, each
player is allowed to randomize over his pure actions in each state. Both players are
assumed to evaluate the infinite sequence of payoffs by means of a limiting average
reward. We shall use the following notations. The set of joint pure actions of player 1
is denoted by A = ×s∈S As . An element a ∈ A is called a joint pure action of player
1. For player 2 the set B is defined analogously. Furthermore fs ∈ Fs shall denote a
mixed action of player 1 in state s, where Fs is the set of all mixed actions of player
1 in state s. For player 2 we use gs and Gs . We write F = ×s∈S Fs for the set of joint
mixed actions f of player 1, and G for player 2. A strategy π of player 1 is an infinite
sequence of joint actions: π = ( f (n))∞n=1, where for all n the joint action f (n) may
depend on the history up to stage n − 1. Likewise σ = (g(n))∞n=1 denotes a strategy
for player 2. A stationary strategy is a strategy, which prescribes the same joint mixed
action each stage: x = ( f )∞ and y = (g)∞. The limiting average reward for player

i is defined by γi (s, π, σ ) = lim inf
m→∞

1
m

m∑
n=1

Esπσ (Ri (n)), where s is the starting state,

Ri (n) the random variable payoff to player i at stage n, and E is the expectation.
A pair of strategies (π, σ ) is called an equilibrium if γ1(s, π ′, σ ) ≤ γ1(s, π, σ ) and
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Fictitious play in stochastic games 317

γ2(s, π, σ ′) ≤ γ2(s, π, σ ) for all s, for all π ′ and for all σ ′, i.e. π and σ are best replies
against each other for all initial states.

Generally, equilibria fail to exist in stochastic games, a famous example of which
was provided by Gillette (1957). If, instead of considering best replies one consid-
ers ε-best replies (ε > 0), then ε-equilibria are known to exist for the 2-player
case (cf. Vieille 2000a,b). These ε-equilibria generally require the use of history-
dependent strategies. Equilibria, 0-equilibria that is, are known to exist only for clas-
ses of stochastic games that have some additional structure on the payoffs and/or
transitions.

It is well-known that against a fixed stationary strategy the opponent always has a
pure stationary strategy as a best reply (cf. Hordijk et al. 1983).

We now define a fictitious play process for stochastic games as a generalization
of the fictitious play process described above: f (1) = a(1) and g(1) = b(1) are the
joint actions for players 1 and 2, respectively, that consist of action 1 in each state.
Let a(2) be a joint action for player 1 with the property that (a(2))∞ is a best reply
to (g(1))∞, and define f (2) = 1

2 a(1) + 1
2 a(2); define b(2) and g(2) analogously.

Continue recursively for n ≥ 3 by letting a(n) denote a joint action for player 1 with
the property that (a(n))∞ is a best reply to (g(n−1))∞. Similarly b(n)will be defined

as a best reply to ( f (n − 1))∞. Next, f (n) = 1
n

n∑
m=1

a(m) and g(n) = 1
n

n∑
m=1

b(m)

can be used to derive a(n + 1) and b(n + 1) analogously.
We would like to emphasize that this fictitious play process does not correspond to

any play of the game itself. Nevertheless, for one-state stochastic games this exten-
sion coincides with the original fictitious play process for bimatrix games. We would
also like to stress that this definition of fictitious play is different from the one intro-
duced by Vrieze and Tijs (1982). In their paper a ficititious play process is defined
for so-called β-discounted zero-sum stochastic games, in which the stage payoffs
are evaluated by discounting. Their approach uses the fact that in any stochastic
game stationary β-discounted optimal strategies exist and can be derived from related
auxiliary matrix games. Such is not possible for limiting average reward stochastic
games.

In this paper we examine a particular example of a 2 × 2 × 2 stochastic game. Here
2×2×2 stands for 2 players, 2 states, 2 actions for each player in each state. We show
for this example that the fictitious play process does not converge, even though the
game has a unique equilibrium in stationary strategies. Moreover the example is a so-
called irreducible single-controller stochastic game with state independent transitions,
i.e. with probability 1 both states will be visited infinitely often in any play, only one
player’s actions determine the transition probabilities and the transition probabilities
are independent of the states. It is well known for irreducible stochastic games and for
single controller stochastic games that stationary equilibria always exist (cf. Rogers
1969; Sobel 1971; Filar 1981).

2 The example

Consider the following 2 × 2 × 2 stochastic game:
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2, 1

(0.9; 0.1)

4, 0

(0.9; 0.1)
0, 0

(0.1; 0.9)

7, 1

(0.1; 0.9)
state 1

0, 1

(0.9; 0.1)

2, 0

(0.9; 0.1)
2, 0

(0.1; 0.9)

4, 1

(0.1; 0.9)
state 2

In each state the rows and the columns are the actions of player 1 and player 2,
respectively. In each cell the numbers in the upper-left part are the payoffs to play-
ers 1 and 2, respectively, and the numbers in the lower-right part are the transition
probabilities to states 1 and 2, respectively. Notice that the transition probabilities in
this game depend only on the action of player 1 and they are independent of the state.
Furthermore the game is irreducible, which means that irrespective of the players’
strategies both states will be visited infinitely often with probability 1 and the limiting
average rewards of the game do not depend on the starting state.

We now show that this game has a unique equilibrium in stationary strategies
( f ∗, g∗) where f ∗ = (( 1

2 ,
1
2 ), (

1
2 ,

1
2 ))

∞ and g∗ = (( 1
5 ,

4
5 ), (

9
20 ,

11
20 ))

∞.
Suppose player 1 plays stationary strategy f = (( f1, 1 − f1), ( f2, 1 − f2))

∞ and
player 2 plays g = ((g1, 1 − g1), (g2, 1 − g2))

∞. Given these strategies the invariant
distribution over the states, i.e. the proportions of time that the states are being visited,
is given by

(
1

10 + 4
5 f2

1 − 4
5 f1 + 4

5 f2
,

9
10 − 4

5 f1

1 − 4
5 f1 + 4

5 f2

)

and, using the expected payoffs in each of these states, it follows that

γ1( f, g) =
1

10 + 4
5 f2

1 − 4
5 f1 + 4

5 f2
(5 f1g1−3 f1−7g1+7)+

9
10 − 4

5 f1

1 − 4
5 f1 + 4

5 f2

×(4−2 f2−2g2)

γ2( f, g) =
1

10 + 4
5 f2

1 − 4
5 f1 + 4

5 f2
(1− f1−g1+2 f1g1)+

9
10 − 4

5 f1

1 − 4
5 f1 + 4

5 f2

×(1− f2−g2+2 f2g2)

It is straightforward to verify that there are no equilibria in which at least one player
uses a pure stationary strategy.

To see that ( f ∗, g∗) is an equilibrium observe that, if h1 = ((1, 0), (1, 0))∞,
h2 = ((1, 0), (0, 1))∞, h3 = ((0, 1), (1, 0))∞ and h4 = ((0, 1), (0, 1))∞, then

γ1(h1, g∗) = γ1(h2, g∗) = γ1(h3, g∗) = γ1(h4, g∗) = γ1( f ∗, g∗) = 3.35

γ2( f ∗, h1) = γ2( f ∗, h2) = γ2( f ∗, h3) = γ2( f ∗, h4) = γ2( f ∗, g∗) = 0.5
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Fictitious play in stochastic games 319

Because all pure stationary strategies of player 1 are best replies against g∗, we con-
clude that f ∗ is a best reply as well. Similarly for player 2. Therefore, ( f ∗, g∗) is an
equilibrium. Uniqueness of this equilibrium follows straightforwardly from the best
reply structure, which is examined in more detail in the next section.

Now we state our main theorem.

Theorem The fictitious play process for 2 × 2 × 2 stochastic games does not need to
converge.

The proof of this theorem, which is based on an analysis of the best reply structure
in the stationary strategy spaces, is given in the next section. The key of the proof is the
observation of a cyclic pattern in the fictitious play process for the example presented.

3 The proof

We examine the best reply structure for stationary strategies in the example. We start
with player 1. Take a fixed stationary strategy g = ((g1, 1 − g1), (g2, 1 − g2))

∞ of
player 2. Then player 1 faces the following Markov Decision Problem (MDP):

2g1 + 4(1 − g1)

(0.9; 0.1)
7(1 − g1)

(0.1; 0.9)
state 1

2(1 − g2)

(0.9; 0.1)
2g2 + 4(1 − g2)

(0.1; 0.9)
state 2

Let v(a1,a2) denote player 1’s limiting average reward in the above MDP, when she
plays the pure stationary strategy (a1, a2)

∞. Notice that (a1, a2)
∞ is a best reply to g

if and only if v(a1,a2) is maximal.
We can calculate v(1,1) as follows. Suppose player 1 plays (1, 1)∞, then state 1

will, in expectation, be visited 9 stages out of 10 and

v(1,1) = 0.9(2g1 + 4(1 − g1))+ 0.1 × 2(1 − g2)

= 3.8 − 1.8g1 − 0.2g2.

The other values are:

v(1,0) = 4 − g1 − g2

v(0,1) = 4.5 − 3.5g1 − g2

v(0,0) = 4.3 − 0.7g1 − 1.8g2.

Now we calculate the values of g1 and g2 for which player 1 is indifferent between
some of her pure stationary strategies:

v(1,1) = v(1,0) ⇐⇒ 3.8 − 1.8g1 − 0.2g2 = 4 − g1 − g2,
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Fig. 1 Best reply structure for stationary strategies

hence

v(1,1) = v(1,0) ⇐⇒ g2 = g1 + 1

4
.

Analogously

v(1,1) = v(0,1) ⇐⇒ g2 = −17

8
g1 + 7

8

v(1,0) = v(0,0) ⇐⇒ g2 = 3

8
g1 + 3

8

v(0,1) = v(0,0) ⇐⇒ g2 = 7

2
g1 − 1

4
.

From these equations we deduce the left part of Fig. 1, showing the best replies
of player 1 against g. The lines in this figure correspond with the equations above.
The lines divide the square into four regions. If (g1, g2) is in one of the regions, then
the pure stationary strategy mentioned in the region is the pure best reply for player
1 against g = ((g1, 1 − g1), (g2, 1 − g2))

∞. The common point of these regions
corresponds to the equilibrium strategy g∗.

Since player 2 can only maximize her one-shot payoff we can easily deduce the
right part of Fig. 1 showing the best replies of player 2 against an arbitrary stationary
strategy f = (( f1, 1 − f1), ( f2, 1 − f2))

∞ of player 1. The two relevant indifference
lines are f1 = 1

2 and f2 = 1
2 .

Notice that Fig. 1 also indicates that (1, 1)∞ and (0, 0)∞ can only be best replies
simultaneously at the equilibrium point. The same holds for (1, 0)∞ and (0, 1)∞.
From Fig. 1 it is clear that for each player there is a unique stationary strategy against
which all pure strategies of the opponent are best replies. This implies the uniqueness
of the stationary equilibrium ( f ∗, g∗).
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Fictitious play in stochastic games 321

We will now derive some properties on how the fictitious play process evolves. This
will be done in terms of so-called runs:

Definition 1 A run [(a1, a2), (b1, b2)] is a part ((a(n1), b(n1)), (a(n1 + 1), b(n1
+ 1)), . . . , (a(n2), b(n2))) of the fictitious play process (a(n), b(n))∞n=1, such that
(a(n), b(n))= ((a1, a2), (b1, b2)) for all n ∈ {n1, . . . , n2}, whereas equality fails for
n = n1 − 1 and for n = n2 + 1.

The next lemma shows how the different runs follow each other.

Lemma 1 The following runs will succeed each other cyclically: first [(1, 1), (1, 1)],
then [(1, 0), (1, 1)], then [(1, 0), (1, 0)], then [(0, 0), (1, 0)], then [(0, 0), (0, 0)], then
[(0, 1), (0, 0)], then [(0, 1), (0, 1)], then [(1, 1), (0, 1)] and then we return to [(1, 1),
(1, 1)] and start a new cycle.

Proof The proof is based on the fact that if we are in run [(a1, a2), (b1, b2)] at stage
n, then the action frequencies will change in the following way:

f (n) = n − 1

n
· f (n − 1)+ 1

n
(a1, a2)

g(n) = n − 1

n
· g(n − 1)+ 1

n
(b1, b2).

So, as n increases, f (n) and g(n) move along a straight line in the direction of the
corner points (a1, a2) resp. (b1, b2).

Recall that the fictitious play process starts with a [(1, 1), (1, 1)]-run, hence both
f (1) and g(1) are (1, 1). So at stage 2 a [(1, 0), (1, 1)]-run is started, hence f moves
in the direction of (1, 0) and g stays at (1, 1). At a certain stage in the right part of
Fig. 1 the line f2 = 1

2 will be crossed and g starts moving towards (1, 0), causing
a [(1, 0) , (1, 0)]-run to start. During this run both f and g move towards (1, 0). But
then at a certain stage in the left part of Fig. 1 the line between the (1, 0)-part and
the (0, 0)-part will be crossed and the (0, 0)-part will be entered, which causes a
[(0, 0), (1, 0)]-run to start. Analogous reasonings can be held to prove the occurrence
of the other switches of run types. 
�

We will prove the nonconvergence of the fictitious play process by defining other
processes on the left part of Fig. 1, called trajectories. We will show that these tra-
jectories do not converge to the equilibrium point and that the fictitious play process
follows lines that run even further away from the equilibrium point than the trajectories
do.

Definition 2 Consider Fig. 2. A trajectory t is a set of four connected line segments
that satisfies the following conditions:

(1) A trajectory starts and ends at line segment a, which corresponds to the equation
q2 = 3

8 q1 + 3
8 , where q1 ∈ [ 1

5 , 1]. The starting point of a trajectory t is called s(t)
and the end point e(t).

(2) In areas A, B, C and D the trajectory moves in the direction of the respective
corner points (0, 0), (0, 1), (1, 1) and (1, 0).
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322 G. Schoenmakers et al.

Fig. 2 Areas and trajectories

A trajectory t is called an orbit if s(t) = e(t). An orbit t̄ , with s(t̄) = e(t̄) = ψ is stable
if for some small δ > 0 the following contraction property holds: for all trajectories
t �= t̄ , if ||s(t)− ψ || < δ, then ||e(t)− ψ || < ||s(t)− ψ ||.

Lemma 2 There are precisely 2 orbits, a stable one with starting point ( 15
19 ,

51
76 ) and

a non-stable one being the equilibrium point ( 1
5 ,

9
20 ).

Proof Finding orbits boils down to finding fixed points of a function h that assigns
the finishing value e(t) to the starting value s(t) for each trajectory t .

For an arbitrary trajectory we have s(t) = ( 1
5 +ε, 9

20 + 3
8ε)with ε ∈ [0, 4

5 ], which is
at line segment a in Fig. 2, corresponding to the equation q2 = 3

8 q1 + 3
8 . The trajectory

enters area A and moves in the direction of (0, 0). As long as the trajectory is in area

A it moves on the line q2 = 9
20 + 3

8 ε
1
5 +ε q1. The trajectory leaves area A at line segment b,

which corresponds to the equation q2 = 7
2 q1 − 1

4 . So at that moment we have

q1 =
1
5 + ε

1 + 12 1
2ε

and q2 =
9

20 + 3
8ε

1 + 12 1
2ε

and the trajectory enters area B. As long as the trajectory is in area B it moves on

the line 1 − q2 = 11
20 +12 1

8 ε
1
5 +ε q1. The trajectory leaves area B and enters area C at line

segment c, corresponding to the equation q2 = − 17
8 q1 + 7

8 , so at that moment we have

q1 =
1
5 + ε

1 + 80ε
and q2 =

9
20 + 67 7

8ε

1 + 80ε
.
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As long as the trajectory is in area C it moves on the line 1−q2 = 11
20 +12 1

8 ε
4
5 +79ε

(1−q1). The

trajectory leaves area C and enters area D at line segment d, which has q2 = q1 + 1
4

as its equation, meaning that at that moment we have

q1 =
1
5 + 188 1

2ε

1 + 267 1
2ε

and q2 =
9

20 + 255 3
8ε

1 + 267 1
2ε
.

As long as the trajectory is in area D it moves on the line q2 = 9
20 +255 3

8 ε
4
5 +79ε

(1 − q1). At

the end of the trajectory we are back on line segment a, so at that moment

q1 =
1
5 + 301ε

1 + 380ε
and q2 =

9
20 + 255 3

8ε

1 + 380ε
.

Hence the function h is as follows:

h

(
1

5
+ ε,

9

20
+ 3

8
ε

)
=

(
1
5 + 301ε

1 + 380ε
,

9
20 + 255 3

8ε

1 + 380ε

)
.

We have h( 1
5 +ε, 9

20 + 3
8ε) = ( 1

5 +ε, 9
20 + 3

8ε) if and only if ε = 0 or ε = 56
95 . Therefore

there are precisely 2 orbits with starting points ( 1
5 ,

9
20 ), which is the equilibrium point,

and ( 15
19 ,

51
76 ).

For all ε ∈ (0, 56
95 ) we have that ( 15

19 ,
51
76 ) > h( 1

5 + ε, 9
20 + 3

8ε) > ( 1
5 + ε, 9

20 + 3
8ε)

and for all ε ∈ ( 56
95 ,

4
5 ] we have that ( 15

19 ,
51
76 ) < h( 1

5 + ε, 9
20 + 3

8ε) < ( 1
5 + ε, 9

20 + 3
8ε).

Hence the orbit starting at the point ( 15
19 ,

51
76 ) is stable and the equilibrium point by

itself is a non-stable orbit. 
�
Now we need a few notations and definitions. Let e∗ be the equilibrium point:

e∗ = ( 1
5 ,

9
20 ). In view of Lemma 4 there is a stable orbit t∗ with starting point ( 15

19 ,
51
76 ).

For each x, y ∈ [0, 1]2 let l[x, y] denote the line segment starting at x and finishing at
y. Let t∗(X) be the part of t∗, which is in part X in Fig. 2 for each X ∈ {A, B,C, D}
and let t∗l be the point where t∗ and line segment l ∈ {a, b, c, d} intersect in Fig. 2.
Notice that t∗(A) = l[t∗a, t∗b] ⊂ l[t∗a, (0, 0)]; similarly for the regions B,C, D. We
say that a point x ∈ [0, 1]2 is outside t∗ if l[x, e∗] ∩ t∗ �= ∅.

Lemma 3 g(n) is outside t∗ for each n.

Proof Since g(1) = (1, 1) is outside t∗, it is sufficient to show that if g(n) is outside
t∗, then g(n +1) is outside t∗. Suppose g(n) is outside t∗. Suppose also that g(n) ∈ A.
For the other areas similar proofs can be given. Notice that by Lemma 2, if the fic-
titious play process is in area A, then the current run can only be [(0, 0), (1, 0)] or
[(0, 0), (0, 0)]. Consequently either

g(n + 1) = n

n + 1
g(n)+ 1

n + 1
(0, 0) or g(n + 1) = n

n + 1
g(n)+ 1

n + 1
(1, 0),
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324 G. Schoenmakers et al.

so g can only move towards (0, 0) or (1, 0). In the latter case g(n+1) is clearly outside
t∗, while in the former case g(n + 1) ∈ l[(0, 0), g(n)].

Suppose first that g(n +1) ∈ A.Observe that l[(0, 0), g(n)] and l[(0, 0), t∗a] inter-
sect in a single point, namely (0, 0), which is not in A. Also observe that t∗(A) ⊂
l[(0, 0), t∗a], while both g(n) and t∗a are in A. Hence, we have that g(n +1) is outside
t∗. Secondly, if g(n + 1) ∈ B, then notice that ( 1

14 , 0) = (l[(0, 0), (1, 0)] ∩ b) ∈ B
and g(n + 1) ∈ ConvHull{(0, 0), ( 1

14 , 0), t∗b}. The latter set is completely in B and
each of the extreme points is outside t∗. Hence g(n + 1) is outside t∗. 
�
Proof of main theorem According to Lemma 2 the different runs follow each other
cyclically. This means that if the fictitious play process converges, then it must con-
verge to the unique common point of the areas in Fig. 1, which is the equilibrium
point. However, according to Lemma 5 the fictitious play process is always outside
the stable orbit t∗. Therefore it cannot converge at all. 
�

4 Concluding remarks

In general the best reply structure in stochastic games is non-linear. In the model exam-
ined above it is the single-controller condition that guarantees the linearity. Moreover,
we also had the additional structures of irreducibility and state independent transitions.
Even so, the fictitious play process does not converge. An interesting question would
be to find payoff and/or transition structure that do imply the fictitious play property.
The question of convergence of the process for zero-sum stochastic games is open for
future research.
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