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a b s t r a c t

We consider a class of stochastic games, where each state is identified with a player. At any moment dur-
ing play, one of the players is called active. The active player can terminate the game, or he can announce
any player, who then becomes the active player. There is a non-negative payoff for each player upon ter-
mination of the game, which depends only on the player who decided to terminate. We give a combina-
torial proof of the existence of subgame-perfect equilibria in pure strategies for the games in our class.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

We consider a class of stochastic games with perfect information and deterministic transitions. Only upon termination the players re-
ceive a payoff, which depends only on the player who terminated. Available results in literature do not tell whether subgame-perfect equi-
libria exist for the games in our class. In this article, we provide an explicit description of a subgame-perfect equilibrium in pure strategies
in two simple rules of play.

Proving the existence of subgame-perfect equilibria for undiscounted stochastic games is generally considered a tough problem. Due to
a result by Liggett and Lippman (1969), stationary subgame-perfect equilibria in pure strategies are known to exist for two-player zero-
sum games with perfect information. Thuijsman and Raghavan (1996) use Liggett and Lippman’s result to prove the existence of pure
Nash-equilibria for n-player games with perfect information. These equilibria are not subgame-perfect, since they involve threats where
n� 1 players must cooperate to minimize a deviating player, without regard to their own payoff. Solan and Vieille (2003), Solan (2005)
and Mashiah-Yaakovi (2008) prove the existence of subgame-perfect �-equilibria for classes of n-player perfect information games, where,
like in our class, payoffs are at termination and are determined by the terminating player. The main difference with our class is that the
transitions for these classes are not influenced by the players. Solan and Vieille (2003) consider a class where the order of active players is
predetermined, and Solan (2005) considers a class where each player becomes active according to a fixed probability distribution. Mashiah-
Yaakovi (2008) generalizes the result by Solan (2005) to the case of a periodic probability distribution. In contrast to these papers, this arti-
cle uses purely combinatorial arguments. The proof is rather specialized to the class under consideration, but may initiate further results in
this area.

For a certain class of coalition formation games with deterministic transitions and payoffs at termination, Bloch (1996) claims the exis-
tence of subgame-perfect equilibria. His approach is to approximate the undiscounted games with discounted ones. Due to a result by
Fudenberg and Levine (1983), the existence of pure subgame-perfect equilibria for the discounted games is guaranteed, so it is a matter
of showing that the limit of subgame-perfect discounted equilibria is a subgame-perfect undiscounted equilibrium. This approach seems
feasible for our class of games as well, given the similarities between the two classes. In his proof, Bloch claims the existence of an infinite
subsequence of the discounted subgame-perfect equilibria that is constant. Bloch deduces this from the fact that there are a finite number
of subgame-perfect equilibria outcomes, but we believe this reasoning is incorrect. Even if it were possible to complete Bloch’s approach, it
would not reveal much of the structure of the subgame-perfect equilibria. This is in contrast to our approach, which allows the easy com-
putation of a subgame-perfect equilibrium. The results in this article do not easily extend to the class of games considered by Bloch.
ll rights reserved.
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In Section 2, we introduce our game formally, and we show by example that a subgame-perfect equilibrium may not exist among sta-
tionary strategies. In Section 3, we introduce the set of persistent players that can appear as the outcome of subgame-perfect equilibrium
play. We provide intuitive motivations for the definitions, and we derive the relevant mathematical properties of that set. Section 4 con-
tains the description of subgame-perfect equilibrium strategies in two rules of play, one rule for persistent players and another rule for
non-persistent players.
2. Free transition games and illustrative example

Let N be a finite set of players. A payoff vector is associated with each player n 2 N, denoted by vðnÞ 2 RN , and which satisfies vðnÞP 0.
At any moment during play, one of the players is called active. The active player, say n, always has the option to terminate the game. In this
case, players receive payoffs according to vðnÞ. The active player can also announce any player (including himself), who then becomes the
new active player. If a new active player is announced there is no payoff. The stochastic game defined in this way is called a free transition
game, as the model places no restrictions on the choice of an active player.

A history of the free transition game is a finite sequence of players. It can be interpreted as the list of active players during play in chro-
nological order. The first player in the history of the game is the initial player, and the last player represents the active player.

For n 2 N, let Hn denote the set of all possible histories ending with n. Let D denote the set of all probability vectors over N [ fquitg. A
strategy for n 2 N is a function rn : Hn ! D. It can be interpreted as a prescription for play for player n for every possible situation (history)
he might face. The strategy is pure if, for every h 2 Hn;rnðhÞ prescribes one of the actions in N [ fquitg with probability 1. The strategy is
stationary if rnðhÞ ¼ rnðh0Þ for all h;h0 2 Hn. Joint strategies ðrnÞn2N are a strategy profile. The strategy profile is called pure/stationary if rn is
pure/stationary for all n 2 N.

Let n 2 N denote the initial player of the game. For a strategy profile r, let EnðrÞ 2 RN denote the vector of expected outcomes (payoffs if
the game terminates and zeros otherwise) when all players play according to r. Notice that EnðrÞ is well defined, since for each m 2 N, the
probability of termination at m is well defined by r. For a strategy profile r and a player m 2 N, say that a strategy profile p is an m-devi-
ation from r if all players, except possibly m, have the same strategy in p and r. Notice that r is an m-deviation from r for every m 2 N. A
strategy profile r is a Nash-equilibrium if, for every initial player n 2 N and every m 2 N, we have
Plea
tiona
EnðrÞm ¼maxfEnðpÞmjp is an m-deviation from rg:
For the games in our class a trivial pure stationary Nash-equilibrium is constructed as follows. The initial player is supposed to terminate
always. All other players are supposed to announce the initial player always (if they ever get their turn). Notice that the initial player cannot
improve himself by deviating, since the game will never terminate (which yields a payoff of 0) if he always refuses to terminate. The other
players cannot improve by changing their strategy either, since the initial player will terminate the game before they get their turn.

For a strategy profile r and a history h ending at player n, denote by rjh the strategy profile that, when play starts at player n, prescribes
the players to play according to r, but as if history h had preceded the actual history. The strategy profile r is a subgame-perfect equilibrium
if, for every history h;rjh is a Nash-equilibrium.

Consider the following example with three players. Let N ¼ f1;2;3g, and let payoff vectors be given by
vð1Þ ¼
2
1
4

0
B@

1
CA; vð2Þ ¼

4
2
1

0
B@

1
CA; vð3Þ ¼

1
4
2

0
B@

1
CA:
Let us denote the earlier given construction of a Nash-equilibrium for this example by r. We first show that r is not a subgame-perfect equi-
librium. Let 1 be the initial player and let h ¼ ð3;1Þ. According to rjh, players should act as if 3 is the initial player. Thus, according to rjh,
player 1 is supposed to announce 3 and player 3 will then terminate. Obviously rjh is not a Nash-equilibrium, since it is better for player 1 to
quit.

We now show that the example admits no subgame-perfect equilibrium in stationary strategies. Obviously, for such an equilibrium, a
player should announce himself with probability strictly smaller than 1, as otherwise his payoff will be 0 if he becomes active. We can even
assume that a player places probability 0 on announcing himself. If this probability is positive, say p, then it can be set to 0, and the prob-
abilities on the other three actions can be multiplied by 1

1�p. This adaptation of the strategy does not change the expected outcome or the
existence of profitable deviations. Further, for a subgame-perfect equilibrium, at least one of the players must place positive probability on
quitting. Because of symmetry, we may assume that player 1 quits with positive probability, and we may even assume that this probability
is at least as high as for any other player. Then it is straightforward to prove that the expected payoff for player 3 will be strictly higher than
2 if he announces 1 always. For a stationary equilibrium, it must then be true that player 3 does not quit. Subsequently, it follows that
player 2 should quit with probability 1, as any other action would lead to a payoff of 1 with positive probability, and never to a payoff
of 4. Next we conclude that player 1 should never quit, since only this would give player 1 the maximal payoff 4. This contradicts that
we were allowed to assume a positive probability on quitting for player 1.

Fix an arbitrary player s who is going to be the ‘scapegoat’ at the start of the game. Now consider the following way of playing the game.
At any time during play, the active player is supposed to quit if he is the scapegoat or if quitting yields 1 for the scapegoat. Otherwise, the
active player is supposed to announce the player where the scapegoat receives 1. If the active player does not play according to this plan, he
will become the new scapegoat. Since it is possible to uniquely determine the scapegoat for any preceding history h, the plan describes a
pure but history dependent strategy profile.

If players follow the rule, then the game will terminate after at most one announcement. Following the rule yields at least 2 for the
active player: He will receive 2 if the rule tells him to quit and he will receive 4 if the rule tells him to announce another player. If a player
deviates from the rule, he will receive at most 2. This is trivial if a player quits when he is not supposed to do so. Any other deviation results
in becoming the scapegoat, and this also yields at most 2. As this works for every possible preceding history, the plan constitutes a sub-
game-perfect equilibrium.
se cite this article in press as: Kuipers, J. et al., Pure subgame-perfect equilibria in free transition games, European Journal of Opera-
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3. The persistent set

For two players n;m 2 N, we say that m punishes n if vðmÞn 6 vðnÞn. Let Q # N. For n 2 N and m 2 N n Q , we say that (n,m) is a safe step
with respect to Q if for all q 2 Q such that q punishes n,q punishes m. For m 2 Q , we say that (n,m) is a safe step with respect to Q if the pre-
vious condition holds and if moreover m does not punish n. Notice that (n,n) is a safe step for all n R Q , and that (n,n) is not a safe step for all
n 2 Q . It is straightforward to prove that safe steps are transitive, i.e. if (n,m) and (m,p) are safe steps with respect to Q, then (n,p) is a safe
step with respect to Q. Call n 2 Q persistent with respect to Q if (n,m) is not safe for every m 2 Q . Denote the set of persistent players with
respect to Q by PðQÞ# Q . Now define the sequence ðPkÞk2N by P0 ¼ N and Pk ¼ PðPk�1Þ for k > 0. Notice that the sequence ðPkÞk2N converges
in a finite number of steps, since Pkþ1 # Pk for all k P 0. We denote the limit by P�. We call P� the persistent set, and we speak of a safe step,
when the step is safe with respect to P�.

To have an interpretation of the definitions, assume that play can be expected to terminate at a player in Q. Suppose that n 2 N is active
and that (n,m) is a safe step with respect to Q. Consider what happens if player n decides to announce m as the new active player. If player
m quits the game, which ‘implies’ that m 2 Q , then player n will not regret his decision to announce m, since m does not punish n. If player
m continues the game, then we trust him to let play terminate at a player in Q that does not punish m. The transitivity of safe steps ensures
that such a player does not punish n either. Therefore, also if m continues the game, player n will not regret his decision to announce m.

We interpret the set PðQÞ as the subset of Q, where termination will actually take place. Notice that for any q 2 Q n PðQÞ, a safe step to
another player in Q is possible, by definition of PðQÞ. After this step, not even a sequence of safe steps back to q exists. Otherwise, it would
follow by transitivity that also (q,q) is safe, contradicting our earlier observation that (q,q) is not safe for every q 2 Q . Now, if we assume
that none of the players will risk playing a step that is not safe with respect to Q, it follows that termination at q cannot happen anymore
once q has played safe.

Now merely assume that the game will terminate. According to our interpretation of PðQÞ, we can then expect the game to actually
terminate in P1 ¼ PðP0Þ. We can repeat this reasoning and restrict further to P2; P3; . . ., etc. Hence, once we assume that the game will ter-
minate, our interpretations ‘force’ us to believe that it will actually terminate in P�.

To further illustrate the definitions, consider the following example. Let N ¼ f1;2;3;4g, and let payoff vectors be given by
Pleas
tiona
vð1Þ ¼

1

1

1

3

0
BBBB@

1
CCCCA; vð2Þ ¼

1

1

1

1

0
BBBB@

1
CCCCA; vð3Þ ¼

2

1

2

1

0
BBBB@

1
CCCCA; vð4Þ ¼

1

2

1

2

0
BBBB@

1
CCCCA:
Notice that every player punishes 3 and that 3 does not punish 1. Therefore, the step (1,3) is safe with respect to N. This is also the only safe
step with respect to N. Therefore, P1 ¼ f2;3;4g. Now notice that every player in {2,3,4} punishes 4 and that 4 does not punish 2. Therefore,
the step (2,4) is safe with respect to {2,3,4}. The steps (1,3) and (2,4) are the only safe steps with respect to {2,3,4}. Therefore, P2 ¼ f3;4g. It
easily verified that the steps (1,3) and (2,4) are the only two safe steps with respect to {3,4}. Hence, P3 ¼ P2 ¼ f3;4g. This shows that the
persistent set in this example is P� ¼ f3;4g, and that the safe steps are (1,3) and (2,4). Our interpretation of P� is supported here by the fact
that the example has a stationary subgame-perfect equilibrium, where the two players of P� always quit, and where the other two players
always play their only available safe step. (Although in this example all players in P� always quit, this is not true in general for our construc-
tion of subgame-perfect equilibria.)

The relevant mathematical properties of PðQÞ are listed in the following proposition.

Proposition 1. Let Q # N and Q–;. Then

(a) PðQÞ–;.
(b) For every q 2 Q n PðQÞ; p 2 PðQÞ exists such that (q,p) is safe with respect to Q.
(c) For every p 2 PðQÞ and every q 2 Q, the step (p,q) is not safe with respect to Q.

Proof. Notice that (c) is true by definition and that (a) is a corollary of (b). Therefore, we only prove (b). Let q 2 Q n PðQÞ. Starting at q,
construct a sequence of players in Q, such that each step in the sequence is safe with respect to Q. This sequence is continued as long
as players are visited that are not persistent with respect to Q. We observed before that no sequence of safe steps in Q returns to the same
player. Hence, the sequence is without cycles. It is therefore finite and it terminates at p 2 PðQÞ. Transitivity implies that (q,p) is safe with
respect to Q. h

The relevant mathematical properties of P� are in the following proposition.

Proposition 2

(a) P�–;.
(b) For every n R P�; p 2 P� exists such that (n,p) is safe.
(c) For every p 2 P� and every n 2 N, the step (p,n) is not safe.
Proof. Notice that (a) follows from repeated application of Proposition 1, part (a). To prove (b) and (c), it is sufficient to prove the following
two claims for all k P 1.

1. For every n R Pk; p 2 Pk exists such that (n,p) is safe with respect to Pk�1.
2. If p 2 Pk and n 2 N, then (p,n) is not safe with respect to Pk�1.
e cite this article in press as: Kuipers, J. et al., Pure subgame-perfect equilibria in free transition games, European Journal of Opera-
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We prove claim (1) by induction. That the claim is true for k ¼ 1, follows directly from Proposition 1, claim (b), applied with Q ¼ N ¼ P0.
Now assume the claim is true for some k > 0. To prove claim (1) for kþ 1, let n R Pkþ1. If n 2 Pk, then a safe step with respect to Pk to a player
in Pkþ1 exists, by Proposition 1, claim (b), and we are done. If n R Pk, then by the induction hypothesis, p 2 Pk exists such that (n,p) is a safe
step with respect to Pk�1. This step is also safe with respect to Pk, since Pk # Pk�1, so we are done immediately if p 2 Pkþ1. If p R Pkþ1, then by
Proposition 1, claim (b), there is a safe step ðp; p0Þ with respect to Pk, such that p0 2 Pkþ1. By transitivity, ðn; p0Þ is safe with respect to Pk.

We prove claim (2) by contradiction. Let p 2 Pk and n 2 N, and suppose that (p,n) is a safe step with respect to Pk�1. If n 2 Pk�1, then
we obtain an immediate contradiction with Proposition 1, claim (c). If n R Pk�1 (which implies k P 2), then p0 2 Pk�1 exists, such that ðn; p0Þ
is a safe step with respect to Pk�2, by claim (1) which we just proved. The step ðn; p0Þ is also safe with respect to Pk�1, since Pk�1 # Pk�2.
By the transitivity of safe steps, it now follows that ðp; p0Þ is a safe step with respect to Pk�1. This contradicts Proposition 1, claim
(c). h
4. A subgame-perfect equilibrium

Under the rules that we present in this section, a non-persistent player is always required to play a safe step, and a persistent player is
either supposed to terminate by himself, or to announce the (persistent) player who should terminate.

The rules keep track of a list of players who deviated by playing a step that is not safe. The players on this list are treated much like the
scapegoat player of the example in Section 2. An active persistent player is supposed to terminate only if there is no persistent player who
punishes one of the players on the list and who does not punish the active player. Otherwise, the rightmost player in the list who can be
punished without punishing the active player is selected. The active player is then supposed to announce his favorite player for termination
among the players that punish the selected scapegoat.

To formalize these ideas, define for n R P�,
Plea
tiona
PðnÞ ¼ fp 2 P�jðn;pÞ is a safe stepg;
and for n;m 2 N, such that (n,m) is not safe, define
Qðn;mÞ ¼ fp 2 P�jp punishes n and ðp ¼ m or p does not punish mÞg:
Notice that PðnÞ and Qðn;mÞ are nonempty under the given conditions.
For n 2 N and p 2 P�, such that (n,p) is not safe, choose
�qðn;pÞ 2 argmaxfvðqÞpjq 2 Qðn;pÞg:
Thus, �qðn;pÞ represents a player that is most favorable for the persistent player p to punish player n with. Notice that vð�qðn;pÞÞp P vðpÞp.
For a list of players s ¼ s1 � s2 � � � � � sk and p 2 P�, define
qðs;pÞ ¼
p if ðsi;pÞ is safe for all i 2 f1; . . . ; kg
�qðsj; pÞ if ðsj;pÞ is not safe and ðsi; pÞ is safe for all i 2 fjþ 1; . . . ; kg:

�

Notice that qð�;pÞ ¼ qðp;pÞ ¼ p for all p 2 P�. Here, � denotes the empty list.
For a list s and m R P�, choose
pðs;mÞ 2 argmaxfvðqðs;pÞÞmjp 2 PðmÞg:
Thus, pðs;mÞ represents a best safe persistent player for m R P�, under the assumption that play will terminate at qðs;pðs;mÞÞ. Notice that
vðqðs;pðs;mÞÞÞm > vðmÞm.

A description of subgame-perfect equilibrium play can now be given. Define a game situation as a pair hs,mi, where s is a list of players,
and m represents the active player of the game. End of game is indicated by h�,�i. The rules distinguish between m 2 P� and m R P�. They
tell the active player m what he is supposed to do, and they describe how the game situation changes, depending on m’s action.

R1
(a) Game situation: hs,mi with m 2 P�.
(b) Action:

i. If m–qðs;mÞ: Announce qðs;mÞ.
ii. If m ¼ qðs;mÞ: Quit.
(c) New game situation:
i. If r ¼ qðs;mÞ is announced: h�,ri.

ii. If r–qðs;mÞ is announced: hm,ri.
iii. If the game is terminated: h�,�i.

R2
(a) Game situation: hs,mi with m R P�.
(b) Action: Announce pðs;mÞ.
(c) New game situation:

i. If r is announced such that ðm; rÞ is safe: hs,ri.
ii. If r is announced such that ðm; rÞ is not safe: hs�m; ri.

iii. If the game is terminated: h�,�i.
se cite this article in press as: Kuipers, J. et al., Pure subgame-perfect equilibria in free transition games, European Journal of Opera-
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Notice that everyone is either supposed to quit or to announce a persistent player. Therefore, if all players follow the rules, rule R2 will
be applied at most once. Rule R1 will be applied atmost twice: If the first application is an announcement, then the game situation becomes
h�,riwith r 2 P�. Since q(�,n) = n for all n 2 P�, player r is supposed to quit at the next application of R1. Hence, the game always terminates
after at most two announcements if players follow the rules.

Only one scapegoat player is necessary for the example of Section 2 in order to play a subgame-perfect equilibrium. To understand the
use of lists, consider the following example with ten players, given by the payoff matrix below, where the columns correspond to the payoff
vectors vðnÞ;n ¼ 1; . . . ;10. The lowest possible payoff at termination is 1. To highlight the other payoffs, the lowest payoff is denoted by ‘�’
in the matrix.
Pleas
tiona
Notice that the persistent set for this example is P� ¼ P1 ¼ f5;6;7;8;9;10g. For the non-persistent players 2 and 4, every step to a player in P�

is safe. For player 1, the steps to 5, 6, and 7 are safe, as well as the step to 10. For player 3, the steps to 8, 9, and 10 are safe, as well as the step
to 7.

We are interested in pð3;1Þ; pð1;2Þ and pð3� 1;2Þ. To find pð3;1Þ, we first calculate qð3; pÞ for p 2 Pð1Þ ¼ f5;6;7;10g. We have
qð3; pÞ ¼ p for p ¼ 5;7;10 and qð3;6Þ ¼ 5. Then vðqð3; pÞÞ1 ¼ 2 for all p 2 Pð1Þ. Therefore, we may choose pð3;1Þ 2 Pð1Þ arbitrarily. We
choose pð3;1Þ ¼ 5. To find pð1;2Þ, it is sufficient to observe that qð1;6Þ ¼ 6 and that 6 is the unique player where the payoff to player 2
is the maximum of 3. Since 6 2 Pð2Þ, it follows that pð1;2Þ ¼ 6. To find pð3� 1;2Þ, notice that qð3� 1;6Þ ¼ �qð3;6Þ ¼ 5. For p 2 Pð2Þ; p–6,
we have qð3� 1; pÞ–6, since 6 does not punish either of the two players on the list. It then follows that vðqð3� 1; pÞÞ2 ¼ 2 for all
p 2 Pð2Þ, so we can choose pð3� 1;2Þ arbitrarily in Pð2Þ ¼ f5;6;7;8;9;10g. We choose pð3� 1;2Þ ¼ 8.

If the game situation is h3,1i, then player 1 is supposed to announce pð3;1Þ ¼ 5, and the game situation becomes h3,5i. Since qð3;5Þ ¼ 5,
player 5 is now supposed to terminate. This yields 2 for player 1. If the game situation is h1,2i, then player 2 is supposed to announce 6 after
which the game situation becomes h1,6i. Since qð1;6Þ ¼ 6, player 6 is then supposed to terminate. This yields 3 for player 1. We see that
game situation h1,2i leads to a better outcome for player 1 than game situation h3,1i, if players follow rules R1 and R2.

If the game situation is h3,1i and player 1 announces player 2, in violation of rule R2, then the new game situation becomes h3� 1;2i.
Assuming that the other players still follow the rules, player 2 will subsequently announce pð3� 1;2Þ ¼ 8 and the game situation becomes
h3� 1;8i. Since qð3� 1;8Þ ¼ �qð1;8Þ ¼ 8, play will then terminate at 8 and player 1 will receive the minimal payoff of 1. We see that player
1 is punished for his violation of the rules, as required. Notice however that this is because player 3 is still on the list. If player 1 had replaced
3 as the only scapegoat, then player 2 would have announced pð1;2Þ ¼ 6, and play would have terminated there, with the maximal payoff
of 3 for player 1. The use of lists makes this kind of manipulations impossible.

We claim that rules R1 and R2 constitute a subgame-perfect equilibrium for the general case. The following lemma is helpful.

Lemma 3. Let the game situation be hs,mi, where s 2 P� is the rightmost element of s. Suppose that all players, except possibly s, play according to
rules R1 and R2. Then the game will terminate at r 2 P� with vðrÞs 6 vðsÞs or, after at least one announcement, it will reach a game situation ht, si
with s as the rightmost element of t or with t ¼ �.

Proof. If m 2 P� n fsg, then player m will follow rule R1. Since (s,m) is not safe, he will announce �qðs;mÞ, and the game situation becomes
h�; �qðs;mÞi. We are done if s ¼ �qðs;mÞ. Otherwise, player �qðs;mÞ will terminate, in which case the lemma follows from the fact that �qðs;mÞ
punishes s.

If m R P�, then player m will play according to R2. The game will therefore continue to the game situation hs; pðs;mÞi. If pðs;mÞ ¼ s, we
are done. If pðs;mÞ–s, the lemma also follows, since we just proved the lemma for game situations hs,mi with m 2 P� n fsg.

If m ¼ s and s quits, the lemma trivially follows. If m ¼ s and s announces s, then the game situation becomes h�,si, since
s ¼ �qðs; sÞ ¼ qðs; sÞ. So also in this case the lemma follows. If m ¼ s and s announces m0–s, then s did not announce qðs; sÞ, so the game
situation becomes hs;m0i. We already proved the lemma for such game situations. h

We now prove our main result.

Theorem 4. The strategy profile determined by the rules R1 and R2 constitutes a pure subgame-perfect equilibrium.

Proof. We check, for both rules, that the active player cannot gain by deviating from the rule, assuming that all other players follow the
rules.

R1. Let the game situation be hs,mi with m 2 P�. If player m follows rule R1, the game will terminate at qðs;mÞ, and player m receives at
least vðmÞm.Suppose that m decides to deviate from R1. We check, for the three possible types of deviation, that m’s payoff will be at
most vðmÞm.
e cite this article in press as: Kuipers, J. et al., Pure subgame-perfect equilibria in free transition games, European Journal of Opera-
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i. If m announces r ¼ qðs;mÞ, it is a deviation only if qðs;mÞ ¼ m. In that case, the game situation becomes h�,mi and player m is
again supposed to terminate. Player m may decide to deviate again, but since Lemma 3 applies when he announces someone
other than himself, play will either terminate at a player that punishes m, or reach again a game situation ht,mi with t ¼ � or
with m as the rightmost element of t. Hence, m’s payoff will be at most vðmÞm.

ii. If m announces r–qðs;mÞ, then the new game situation will be hm,ri. By Lemma 3, the game will either terminate at a player that
punishes m, or it will reach a game situation ht,mi with t ¼ � or with m as the rightmost element of t. We have proved already
that this game situation yields at most vðmÞm for player m.

iii. If the game is terminated, player m receives exactly vðmÞm.

R2. Let the game situation be hs,mi with m R P�. Player m is supposed to announce pðs;mÞ, and play will subsequently terminate at

qðs; pðs;mÞÞ. Recall that vðqðs; pðs;mÞÞÞm > vðmÞm. Suppose player m deviates from R2.
i. If player m announces r such that (m,r) is not safe, then the new game situation will be hs�m; ri. The step (m,r) is not safe and

m R P�, which implies r–m, so r will play according to the rules.
– If r 2 P�, player r will play according to R1, and the game will eventually terminate at qðs�m; rÞ. Since (m,r) is not safe, it fol-

lows that qðs�m; rÞ ¼ �qðm; rÞ 2 Qðm; rÞ. Hence, termination is at a player that punishes m: this is no improvement for m.
– If r R P�, player r will follow rule R2, and the game will eventually terminate at qðs�m; pðs�m; rÞÞ.
� If ðm; pðs�m; rÞÞ is not safe, then qðs�m; pðs�m; rÞÞ ¼ �qðm; pðs�m; rÞÞ 2 Qðm; rÞ, so then the game will terminate at a

player that punishes m: no improvement.
� If ðm; pðs�m; rÞÞ is safe, then qðs�m; pðs�m; rÞÞ ¼ qðs; pðs�m; rÞÞ. Since
Please cite
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vðqðs;pðs�m; rÞÞÞm 6 maxfvðqðs; pÞÞmjp 2 PðmÞg ¼ vðqðs;pðs;mÞÞÞm;

it follows that this is no improvement for m either.

ii. If m announces r such that (m,r) is safe, then the new game situation will be hs,ri.
– If r 2 P�, then r–m, so player r will play according to R1. The game will subsequently terminate at qðs; rÞ. This is no improve-
ment for m, since
vðqðs; rÞÞm 6 maxfvðqðs; pÞÞmjp 2 PðmÞg ¼ vðqðs;pðs;mÞÞÞm:
– If r R P�, it could be that r ¼ m, in which case the game situation did not change. This will not lead to an improvement. If r–m,
then r will follow rule R2, and the game will terminate at qðs; pðs; rÞÞ. Notice that the step ðm; pðs; rÞÞ is safe, by the fact that
(m,r) and ðr; pðs; rÞÞ are both safe and by the transitivity of safe steps. Therefore,
vðqðs;pðs; rÞÞÞm 6maxfvðqðs;pÞÞmjp 2 PðmÞg ¼ vðqðs;pðs;mÞÞÞm:

We see that this is no improvement for m either.

iii. Finally, if player m quits, he receives vðmÞm: no improvement. h
The results in this article can easily be extended to games, where players control more than one state, provided that transitions remain
free.

Zero-equilibria do not necessarily exist when payoffs are negative. A simple example of this is given by Solan and Vieille (2003).
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