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1. Introduction. A multiplayer perfect-information game is a sequential game with perfect information and
without chance moves. The payoff of each player is a function of the infinite sequence of actions that the players
choose. Perfect-information games were introduced by Gale and Stewart [3], who studied two-player zero-sum
games where the payoff function is the indicator of some set. In other words, player 1 wins if the play generated
by the players is in a given set of plays, and player 2 wins otherwise. Martin [10] proved that if the winning set
of player 1 is Borel measurable, then the game is determined: either player 1 has a winning strategy or player 2
has a winning strategy. This result implies that every two-player zero-sum perfect-information game has a value,
provided the payoff function is bounded and Borel measurable.
Mertens and Neyman (see Mertens [12]) used the existence of the value in two-player zero-sum perfect-

information games to prove that for every �> 0, every multiplayer non-zero-sum perfect-information game has a
pure �-equilibrium, provided the payoff functions are bounded and Borel measurable. Roughly, the �-equilibrium
strategies constructed by Mertens and Neyman are as follows: each player i starts by following an �/2-optimal
strategy in an auxiliary two-player zero-sum game Gi, where the payoff is that of player i, player i is the
maximizer, and the other players try to minimize player i’s payoff. This goes on as long as no player deviates.
Once some player, say, player i, deviates, the other players switch to an �/2-optimal strategy of the minimizers
in the game Gi.
Thus, the players start by generating a play that yields all of them a high payoff and, if a player deviates, he is

punished with a low payoff. This construction has the disadvantage that in the punishment phase, the punishers
play without regard to their own payoffs. Therefore, in real-life situations, players may be reluctant to follow
the �-equilibrium strategies constructed by Mertens and Neyman.
To deal with such noncredible threats of punishment, Selten [16, 17] introduced the concept of subgame-

perfect equilibrium. A strategy vector is a subgame-perfect �-equilibrium if it induces an �-equilibrium after any
possible finite history of actions. Ummels [22] proved the existence of a subgame-perfect equilibrium in pure
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strategies for multiplayer perfect-information games when the payoff function of each player is the indicator of
some Borel set (for a more general result, see Grädel and Ummels [5]). His proof is based on the following
recursive construction. First, one identifies all finite histories that are a winning position to at least one of the
players; that is, if this finite history occurs, one of the players can ensure that his payoff is 1. After such finite
histories, one instructs every winning player to play a winning strategy. This leads to a pruned game where
all moves that are excluded by these winning strategies are eliminated. One subsequently identifies winning
positions to the players in this new game and prunes it in a similar way. The process repeats itself, until it reaches
a stable state. Ummels proves that a combination of remaining strategies is a subgame-perfect equilibrium of
the original game.
In this paper we show that every multiplayer perfect-information game with bounded and lower-

semicontinuous payoffs admits a subgame-perfect �-equilibrium in pure strategies, for every � > 0. This result
complements Example 3 in Solan and Vieille [20], which shows that when the payoff function of at least one
player is not lower-semicontinuous, a subgame-perfect �-equilibrium in pure strategies need not exist.1 Our proof
makes use of transfinite induction; as we use the axiom of choice, our proof is valid within the ZFC framework.
A different type of transfinite construction was used by Maitra and Sudderth [8] to prove the existence of the
value in a certain class of stochastic games. In §4.2 we point at another possible application of our technique.
The determinacy of perfect-information games has attracted a lot of attention in descriptive set theory (see,

e.g., Schilling and Vaught [15] and Kechris [6]). A rich literature identifies winning positions for the two players
in the class of games that are played on graphs (see Grädel [4] for a survey). Two-player zero-sum perfect-
information games were used in the computer science literature to study reactive nonterminating programs (see,
e.g., Thomas [21]) and model checking in �-calculus (see, e.g., Emerson et al. [1]) and in economics to show
that measurable tests are manipulable (Shmaya [18]).
Our result also relates to the game theoretic literature that studies the existence of a subgame-perfect �-equili-

brium in various classes of infinite games, see, e.g., Mertens and Parthasarathy [13], Solan and Vieille [20],
Maitra and Sudderth [9], Mashiah-Yaakovi [11], Kuipers et al. [7], or Flesch et al. [2]. In particular, our result
generalizes some of the results in Flesch et al. [2]. Recently, Purves and Sudderth [14], using ideas different from
ours, complemented our result by showing that a subgame perfect �-equilibrium exists if the payoff processes
are bounded and upper-semicontinuous.
The paper is organized as follows. The model and the main result appear in §2. Section 3 contains the proof

of the main result, and §4 concludes with comments.

2. The model and the main result
Definition 2.1. An n-player perfect-information game is a quadruple �I
A
 i
 �uj�j∈I � where I =

�1
2
 � � � 
 n� is the set of players; A is a nonempty set2 of actions; i�
⋃
t∈NAt−1→ I is a function3 that assigns

an active player to each finite sequence of actions; and uj � AN →R is the payoff function, for every player j ∈ I .
A perfect-information game is a sequential game, where at each stage t ∈ N, knowing the past history ht =

�a1
 a2
 � � � 
 at−1�, player i�ht�, the active player at stage t, chooses an action at ∈A. The payoff to each player
j ∈ I is uj�a1
 a2
 � � � �. The description of the game is common knowledge among the players.
Remark 2.1. The assumption that the action set is the same for all players and for all stages is made for

simplicity of notations only. Nothing that is said below would be affected if the action sets were to depend on
the player, on the stage, or even on the whole past play.
The set of finite histories where player j is the active player is

� j �= i−1�j�=
{
h ∈ ⋃

t∈N
At−1� i�h�= j

}
�

The set of all finite histories is then � �=⋃
j∈I � j .

Definition 2.2. A (pure) strategy for player j is a function �j� � j → A. A (pure) strategy profile is a
vector of strategies � = ��j�j∈I .

1 The game presented in Solan and Vieille [20] is the following two-player perfect-information game in which the players play alternately.
The set of actions of each player is A= �c
 s�. If both players always choose c, the payoff to each player is 0. Otherwise, let k be the first
player who plays action s. If k= 1, the payoff vector is �−1
2�, while if k= 2 the payoff vector is �−2
1�.
2 The set of actions A may be finite or infinite.
3 By convention, the initial history is the empty history h1 =�, and A0 = ���.
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In the present paper we discuss only pure strategies, and by a strategy or by a strategy profile we will always
mean a pure one. Note that there are no measurability considerations in the definition of a strategy. We denote
by �j the strategy space of player j , and by � �=×j∈I �j the set of all strategy profiles.
An infinite sequence of actions p ∈AN is called a play. Every strategy profile � ∈� determines a unique play

p���= �at�t∈N ∈AN recursively as follows:

at �= �i�ht��ht�
 where ht �= �a1
 a2
 � � � 
 at−1�
 ∀ t ∈N�

We denote by uj���= uj�p���� the payoff of player j when the players follow � .
For j ∈ I we denote by −j = I\�j� the set of all players excluding j . If � is a strategy profile and j is a

player, then �−j = ��k�k∈I\�j�.
Definition 2.3. Let �≥ 0. A strategy profile �∗ = ��j∗�j∈I is an �-equilibrium if uj��∗�≥ uj��−j

∗ 
�
j�− �

for every player j ∈ I and every strategy �j ∈�j .
Throughout the paper we endow A with the discrete topology and AN with the product topology.
A two-player, perfect-information game is called zero-sum if u1�p�+ u2�p�= 0 for every p ∈AN. The result

of Martin [10] implies that in zero-sum games, an �-equilibrium exists for every � > 0 under quite general
conditions.

Theorem 2.1. If the game is zero-sum, and if u1 is bounded and Borel measurable, then an �-equilibrium
exists for every �> 0.

This result implies the existence of an �-equilibrium in every multiplayer perfect-information game with
bounded and Borel measurable payoffs.

Theorem 2.2 (Mertens and Neyman; see Mertens [12]). If uj is bounded and Borel measurable for every
player j ∈ I , then an �-equilibrium exists for every �> 0.

A stronger notion of equilibrium is the notion of subgame-perfect equilibrium. Every finite history h =
�a1
 a2
 � � � 
 al� ∈ � , together with a strategy profile � , determines an infinite play p�� � h� = �bt�t∈N ∈ AN

recursively as follows:

bt �= at
 1≤ t ≤ l

bt �= �i�ht��ht�
 where ht �= �b1
 b2
 � � � 
 bt−1�
 l < t�

This is the play that � generates, given that the history h occurred. We denote by uj�� � h�= uj�p�� � h�� the
payoff of player j at this play.
Definition 2.4. Let �≥ 0. A strategy profile �∗ = ��j∗�j∈I is a subgame-perfect �-equilibrium if for every

finite history h ∈� , one has

uj��∗ � h�≥ uj���−j
∗ 
�

j� � h�− � ∀ j ∈ I ∀�j ∈�j�
In other words, a strategy profile is a subgame perfect �-equilibrium if it induces an �-equilibrium in all

subgames. Here, a subgame is a game played after a finite history h with payoff function uj�· � h� for player j ∈ I .
We say that a finite history h= �at�lt=1 is a prefix of the play p= �bt�t∈N ∈AN, or that p is an extension of h, if

at = bt for every t ∈ �1
2
 � � � 
 l�, and we denote it by h≺ p. We say that a finite history h= �at�lt=1 is a prefix
of the finite history h′ = �bt�mt=1, or that h′ is an extension of h, if l≤m and at = bt for every t ∈ �1
2
 � � � 
 l�,
and we denote it by h� h′.
Because A is endowed with the discrete topology, and AN is endowed with the product topology, a sequence

�pk�k∈N of plays converges to a limit p if and only if every prefix h of p is a prefix of all the plays �pk�k∈N
except, possibly, of finitely many of them.
Definition 2.5. The payoff function uj is lower-semicontinuous if for every sequence �pk�k∈N of plays in

AN that converges to a limit p one has
lim inf
k→�

uj�pk�≥ uj�p�� (1)

Note that every lower-semicontinuous function is Borel measurable. Our main result is the following.

Theorem 2.3. If the payoff function uj is bounded and lower-semicontinuous for every player j ∈ I , then
the game admits a subgame-perfect �-equilibrium in pure strategies for every �> 0.
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This result is tight, in the sense that if the payoff function of one of the players is not lower-semicontinuous,
then the game need not admit a subgame-perfect �-equilibrium for every � > 0 (see Solan and Vieille [20,
Example 3] or Footnote 1).
Theorem 2.3 was recently complemented by Purves and Sudderth [14], who proved that the statement remains

valid if lower-semicontinuity is replaced by upper-semicontinuity (i.e., when the inequality in (1) is reversed for
every player j).

3. Proof of Theorem 2.3 and a Folk Theorem. We first argue that we can assume w.l.o.g. that the range
of the payoff functions �uj�j∈I is finite. Indeed,4 let ûj �p� be the highest multiple of � that is strictly smaller
than uj�p�:

ûj �p� �= �
⌊
uj�p�

�

⌋
�

Note that if uj is bounded, then ûj has finite range, and if uj is lower-semicontinuous, then so is ûj . More-
over, every subgame-perfect �-equilibrium in the game with payoff functions �ûj �j∈I is a subgame-perfect
2�-equilibrium in the game with payoff functions �uj�j∈I . Therefore, for the proof of Theorem 2.3, we may
assume w.l.o.g. that the payoff functions have finite range.
From now on, we assume that the payoff functions �uj�j∈I have finite range and are lower-semicontinuous.

Under these assumptions we will prove the existence of a subgame-perfect 0-equilibrium. In the proof, we use
the finiteness of the range of the payoffs to have a maximal payoff and a minimal payoff in every nonempty
subset of payoffs. The lower-semicontinuity of the payoff functions, on the other hand, will be used to obtain
the following property: when the players are supposed to play according to a strategy profile � = ��!�!∈I , if
some player j cannot deviate profitably by not playing the action prescribed by �j finitely many times, then he
cannot deviate profitably by disobeying �j infinitely many times either.

3.1. Constructing some sequences. In this subsection we define for every finite history h ∈ � and every
ordinal ", (a) a real number #"�h� and (b) a set P"�h� of plays. The sequence �#"�h��" will be a nondecreasing
sequence of lower bounds to the set of subgame-perfect 0-equilibrium payoffs for player i�h� in the subgame
that starts at h. The sequence �P"�h��" will be a nonincreasing (by inclusion) sequence of sets of plays; a play
that is not in P"�h� cannot be induced by a subgame-perfect 0-equilibrium in the subgame that starts at h.
We will in fact prove a Folk Theorem: max" #"�h� will be the minimal subgame-perfect 0-equilibrium payoff

of player i�h� in the subgame that starts at h, and a play will be in all the sets �P"�h��" if and only if it is
induced by some subgame-perfect 0-equilibrium in the subgame that starts at h.
For every finite history h ∈� set

P0�h� �=
{
p ∈AN� h≺ p}
 (2)

#0�h� �= min
p∈P0�h�

ui�h��p�� (3)

The set P0�h� consists of all plays that extend h, and the quantity #0�h� is a naive lower bound to the set of
subgame-perfect 0-equilibrium payoffs in the subgame that starts at h. The minimum in (3) exists because the
payoff functions have finite range.
If h= �at�lt=1 is a finite history with length l, and a ∈A, we denote by �h
a�= �a1
 a2
 � � � 
 al
 a� the finite

history of length l+ 1 that starts with h and ends with a.
For every successor ordinal "+ 1 and every finite history h ∈� define

#"+1�h� �=max
a∈A

min
p∈P"�h
a�

ui�h��p�
 (4)

P"+1�h� �=
{
p ∈ ⋃

a∈A
P"�h
a�� u

i�h��p�≥ #"+1�h�
}
� (5)

As we will show, a play that is not in P"�h
a� cannot be induced by a subgame-perfect 0-equilibrium in the
subgame that starts at �h
a�. Therefore, when player i�h� considers the subgame that starts at h, he can ignore
the plays that are not in

⋃
a∈A P"�h
a�. In particular, when player i�h� plays optimally at h, the quantity #"+1�h�

is a lower bound to his payoff in subgame-perfect 0-equilibria in the subgame that starts at h, and a play that is
not in P"+1�h� cannot be induced by a subgame-perfect 0-equilibrium in this subgame.

4 For every real number x, we denote by �x� the largest integer that is strictly smaller than x.
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For every limit ordinal " and every finite history h ∈� define

P"�h� �=
⋂
&<"

P&�h�
 (6)

#"�h� �= min
p∈P"�h�

ui�h��p�� (7)

As we will show, a play that is not in P&�h� for some & < " cannot be induced by a subgame-perfect
0-equilibrium in the subgame that starts at h. Therefore, the same holds for any play that is not in P"�h�.
Moreover, the quantity #"�h� is then a lower bound to the payoff of player i�h� in subgame-perfect 0-equilibria
in the subgame that starts at h.

3.2. Properties of the sequences �#"�h��" and �P"�h��" . We first list a few simple properties of the
sequences �#"�" and �P"�" that easily follow from the definitions and that we will use later.

Lemma 3.1. Let " be an ordinal and let h be a finite history.
(i) #"�h�=minp∈P"�h� ui�h��p�. In particular, there is a play p ∈ P"�h� such that ui�h��p�= #"�h�.
(ii) Let a ∈ A be an action that achieves the maximum in the right-hand side of (4). If p ∈ P"�h
a�, then

p ∈ P"+1�h�.
(iii) Suppose that " = 0 or " is a limit ordinal. Let p ∈ P"�h� and let h′ be a finite history that satisfies

h� h′ ≺ p. Then p ∈ P"�h′�.
Proof. Part (i) follows from the definition (3) for " = 0, from the definitions (4) and (5) for successor

ordinals, and from definition (7) for limit ordinals.
Part (ii) follows from the definitions (4) and (5).
We now prove Part (iii). For " = 0, the claim follows from definition (2). So, assume that " is a limit ordinal

and let p ∈ P"�h�. We will show that p ∈ P"�h
a�, where a ∈ A is the action in p right after h. Let & be an
ordinal such that &< ". As &+1< ", it follows from definition (6) that p ∈ P&+1�h�. Hence, by definition (5), we
have p ∈ P&�h
a�. Because &< " was arbitrary, it follows that p ∈ P"�h
a�. The proof for any finite history h′
that satisfies h≺ h′ ≺ p follows by induction. �

The following theorem states additional properties of the sequences �#"�h��" and �P"�h��" , which play a
crucial role in the proof of Theorem 2.3.

Theorem 3.1. The following holds for every h ∈� :
(i) The set P"�h� is not empty for every ordinal ".
(ii) The sequence �P"�h��" is monotonic nonincreasing (by inclusion).
(iii) The sequence �#"�h��" is monotonic nondecreasing.

Before proving the theorem we define another property of plays, "-monotonicity, that will be used in the
proof of Theorem 3.1.
Definition 3.1. Let h be a finite history and p a play that extends h. The play p is called "-monotonic at

h if the sequence �P"�h
′��h�h′≺p is nonincreasing:

P"�h
′�⊇ P"�h′′�
 ∀h′
 h′′ such that h� h′ � h′′ ≺ p�

Proof [Proof of Theorem 3.1]. The proof will follow once we prove by transfinite induction that the
following properties hold for every ordinal ":
Property Q1. P"�h� is not empty for every history h ∈� . Moreover, if " = 0 or " is a limit ordinal, there

is a play p ∈ P"�h� that is "-monotonic at h.
Property Q2. P"�h�⊆ P&�h� for every ordinal &< " and for every history h ∈� .
Property Q3. #"�h�≥ #&�h� for every ordinal &< " and for every history h ∈� .

As we will see, most of the properties easily follow from the definitions. The proof of Q1 for a limit ordinal is
the most challenging part of the whole proof.
For " = 0: Property Q1 follows from the definition (2). Properties Q2 and Q3 hold because there is no ordinal

smaller than 0.
For a successor ordinal "+ 1: Property Q1 follows from the definitions (4) and (5) and from the induction

hypothesis (Property Q1).
The proof that Properties Q2 and Q3 hold is divided into two cases. Assume first that " = '+ 1 is itself a

successor ordinal. By the induction hypothesis Q2, P"�h
a�⊆ P'�h
a� for every history h ∈� and every a ∈A,
so that by (4) it follows that Property Q3 holds, and therefore by (5) Property Q2 holds as well.
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Assume now that either " = 0 or " is a limit ordinal. By the induction hypothesis (Property Q1) there is a play
�p ∈ P"�h� that is "-monotonic at h. Let a0 be the first action in �p after h. Then P"�h�⊇ P"�h
a0�. Therefore,
by (4) and (7),

#"+1�h� = max
a∈A

min
p∈P"�h
a�

ui�h��p�≥ min
p∈P"�h
a0�

ui�h��p�

≥ min
p∈P"�h�

ui�h��p�= #"�h�


and Q3 holds.
We now prove that Property Q2 holds. For " = 0 this follows trivially from (2). We therefore assume that " is

a limit ordinal. Let p ∈ P"+1�h�. By (5) we have p ∈ P"�h
a0�, where a0 is the first action in p after h. By (6),
p ∈ P&�h
a0� for every ordinal &< ". Because we already proved that Property Q3 holds for "+ 1,

ui�h��p�≥ #"+1�h�≥ #&+1�h�

so that by (5), p ∈ P&+1�h� for every &< ". It follows by (6) that p ∈ P"�h�, as desired.
For a limit ordinal ": Property Q2 follows from definition (6), and hence Lemma 3.1(1) implies that Prop-

erty Q3 holds as well. It remains to prove that Property Q1 holds for every limit ordinal ". The rest of this
section is dedicated to this proof.
Fix a limit ordinal ". It will be sufficient to prove that if Properties Q1-Q3 hold for every ordinal & smaller

than ", and Properties Q2 and Q3 hold for " as well, then Property Q1 also holds for the ordinal ". The
following lemma follows from Properties Q2 and Q3.

Lemma 3.2. For every finite history h, the sequence �#&�h��&≤" is monotonic nondecreasing, and the
sequence �P&�h��&≤" is monotonic nonincreasing (by inclusion).

For every finite history h define
�#"�h� �=max

&<"
#&�h�� (8)

The maximum in (8) exists because the payoff functions have finite range. By Lemma 3.2, �#"�h�≤ #"�h�.
Fix a finite history h. We are going to generate a play that extends h, and we will show that it is in P"�h�

and that it is "-monotonic at h. The play will be generated in iterations; the output of the first iteration is an
extension of h, and the output of each subsequent iteration extends the output of the previous iteration. The
construction in odd iterations differs from the construction in even iterations. We will then prove that an infinite
play is generated after an even number of iterations. Finally we will show that this play is in P"�h� and that it
is "-monotonic at h.
Odd iterations: Let h1 be the finite history at the beginning of the odd iteration. For the first iteration, h1 = h.

For all other odd iterations, it is the finite history generated by the previous even iteration.
Consider the following algorithm that generates a finite history or a play that extends h1.
(i) Let "1 < " be a successor ordinal that satisfies �#"�h1�= #"1�h1�. Such an ordinal exists because (a) the

range of payoffs is finite and (b) every nonempty set of ordinals has a minimal element.
(ii) Let a1 be an action of player i�h1� that achieves the maximum in (4) for h1 and "1, that is,

#"1�h1�= min
p∈P"1−1�h1
 a1�

ui�h1��p��

Set h2 = �h1
 a1�.
(iii) Let "2 ≥ "1 − 1 be the minimal ordinal that satisfies �#"�h2� = #"2�h2�. Note that because " is a limit

ordinal, "2 < ".
(iv) If "2 is a successor ordinal, let a2 be an action of player i�h2� that achieves the maximum in (4) for h2

and "2, that is,
#"2�h2�= min

p∈P"2−1�h2
 a2�
ui�h2��p��

Set h3 = �h1
 a1
 a2�.
(v) Continue this way to create a sequence �h1
 "1
 a1
 h2
 "2
 a2
 � � � �. The iteration ends when either "m=0

or "m is a limit ordinal; in this case, the output of the odd iteration is the finite history hm = �h1
 a1

a2
 � � � 
 am−1�. If "m > 0 is a successor ordinal for every m ∈N, the iteration never ends.
Note that every ordinal "k generated along an odd iteration satisfies "k < ". As the next lemma states, odd

iterations are finite.
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Lemma 3.3. There is m ∈N such that either "m = 0 or "m is a limit ordinal.

Proof. Assume that the algorithm never terminates: "m > 0 is a successor ordinal for every m ∈N, so that
the algorithm generates an infinite sequence �h1
 "1
 a1
 h2
 "2
 a2
 � � � �.
We first argue that for every m ∈N one has

P"m�hm�⊇ P"m−1�hm+1�⊇ P"m+1�hm+1�� (9)

Indeed, the first inclusion holds by Lemma 3.1(ii), whereas the second inclusion holds by Lemma 3.2 and
because "m− 1≤ "m+1.
By (9), for every player j

min
p∈P"m �hm�

uj�p�≤ min
p∈P"m−1�hm+1�

uj�p�≤ min
p∈P"m+1 �hm+1�

uj�p�� (10)

Because the payoffs are discrete, the inequalities in (10) can be strict only finitely many times, for every
player j . That is, there is M ∈N sufficiently large such that for every player j ∈ I and every m≥M ,

min
p∈P"m �hm�

uj�p�= min
p∈P"m−1�hm+1�

uj�p�= min
p∈P"m+1 �hm+1�

uj�p�� (11)

Let m
m′ be two integers satisfying (a) M ≤m<m′ and (b) i�hm�= i�hm′�. By repeated use of Equation (11),

�#"�hm� = #"m�hm�= min
p∈P"m �hm�

ui�hm��p�= min
p∈P"m′−1−1�hm′ �

ui�hm��p�

= min
p∈P"m′ �hm′ �

ui�hm��p�= #"m′ �hm′�= �#"�hm′��

Hence by Lemma 3.1(i) and by i�hm�= i�hm′�

#"m′−1−1�hm′�= min
p∈P"m′−1−1�hm′ �

ui�hm��p�= #"m′ �hm′�)

thus it follows that "m′ = "m′−1− 1. Because this equality holds for every m′ sufficiently large, there is m such
that either "m = 0 or "m is a limit ordinal, as desired. �

Even iterations: Let h1 be the finite history that is the output of the previous odd iteration and denote by &
the last ordinal "m generated by the previous odd iteration. In particular, either &= 0 or & is a limit ordinal, and
&< ". Moreover, �#"�h1�= #&�h1�.
By the induction hypotheses of Property Q1 (for either &= 0 or a limit ordinal 0< & < "), there is a play

p ∈ P&�h1� that is &-monotonic at h1.
By the definition of �#"�h′�, we have �#"�h′�≥ #&�h′� for every prefix h′ of p that extends h1. If �#"�h′�= #&�h′�

for every prefix h′ of p that extends h1, the even iteration is infinite and its output is p. Otherwise, the output
of the even iteration is the shortest prefix h′ of p that extends h1 for which �#"�h′� > #&�h′�, and in this case we
proceed with the next odd iteration.
Denote by p∗ the play that extends h, which is generated by (a possibly infinite) use of odd and even iterations.

We will now show that p∗ is "-monotonic at h and that it is in P"�h�.
Let �hm�m∈N denote all finite prefixes of p∗ that extend h, so that h1 = h. We partition these prefixes into the

sets � odd and � even, depending on whether the action after the prefix is induced in an odd respectively even
iteration. Denote by "m the ordinal that is attached to hm in the construction of p∗; it is a successor ordinal if
hm ∈� odd and a limit ordinal or 0 if hm ∈� even.
Note that if hm ∈ � even and hm+1 ∈ � odd, i.e., when we switch from an even iteration to an odd iteration,

we have

#"m�hm+1� < �#"�hm+1�= #"m+1�hm+1�� (12)

Lemma 3.4. For any m ∈N, we have

P"m�hm�⊇ P"m+1�hm+1�� (13)
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Proof. Let m ∈N. We distinguish three cases. Assume first that hm ∈� odd. Then "m is a successor ordinal,
and (13) follows from

P"m�hm�⊇ P"m−1�hm+1�⊇ P"m+1�hm+1�� (14)

Indeed, the first inclusion holds by Lemma 3.1(ii), whereas the second inclusion holds by Lemma 3.2 and
because "m− 1≤ "m+1.
Assume now that hm
hm+1 ∈� even. Then (13) follows because "m = "m+1 (both are equal to the ordinal & of

this even iteration) and the part of the play added in this even iteration is "m-monotonic.
Assume finally that hm ∈� even and hm+1 ∈� odd. Then by construction "m < "m+1. Hence, (13) follows from

the "m-monotonicity of the part of the play added in the even iteration and Lemma 3.2. �

Lemma 3.5. The play p∗ is "-monotonic at h.

Proof. Let m≥ 1, and let p ∈ P"�hm+1�. We will prove that p ∈ P"�hm�. By (6) it follows that p ∈ P*�hm+1�,
for every * < ", and in particular p ∈ P"m+1�hm+1�. Then, by Lemma 3.4, we have p ∈ P"m�hm�. Hence, we have

ui�hm��p�≥ #"m�hm�= �#"�hm�≥ #*+1�hm�

for every ordinal * < ". Because p ∈ P*�hm+1�, definition (5) implies that p ∈ P*+1�hm� for every * < ", so that
by (6) we have p ∈ P"�hm�. �

We are now ready to prove Property Q1 for a limit ordinal ".

Lemma 3.6. p∗ ∈ P"�h�.
Proof. Suppose first that the number of iterations is finite, so that the last even iteration is infinite. Denote

by hm the history at the beginning of the last even iteration, i.e., hm−1 ∈ � odd and hm′ ∈ � even for all m′ ≥m.
Then "m = "m+1 = · · · =� &, where & is a limit ordinal. Moreover, p∗ ∈ P&�hm� by the properties of an even
iteration. We will show that p∗ ∈ P"�hm�, so that by the "-monotonicity of p∗ (Lemma 3.5) it will follow that
p∗ ∈ P"�h�, as desired. Note that by the definition of even iterations, �#"�hm′�= #&�hm′� for every m′ ≥m.
Assume to the contrary that p∗ �∈ P"�hm�. Let * be the smallest ordinal such that p∗ �∈ P*�hm′� for some

m′ ≥m. Note that * > &: because p∗ ∈ P&�hm�, by Lemma 3.1(iii) we have p∗ ∈ P&�hm′� for every m′ ≥m. By
definition (6), * cannot be a limit ordinal, so that * is a successor ordinal. It follows that p∗ ∈ P*−1�hm′� for
every m′ ≥m. To derive a contradiction we argue that p∗ ∈ P*�hm′� for every m′ ≥m. Indeed, for every m′ ≥m,
because p∗ ∈ P&�hm′�, �#"�hm′�= #&�hm′�, and " > * , it follows that

ui�hm′ ��p∗�≥ #&�hm′�= �#"�hm′�≥ #*�hm′�


so that by definition (5) we have p∗ ∈ P*�hm′�, as claimed.
We now show that the number of iterations cannot be infinite. From Lemma 3.4 it follows that for every

m ∈N and every player j ,
min

p∈P"m �hm�
uj�p�≤ min

p∈P"m+1 �hm+1�
uj�p�� (15)

Because the range of the payoffs is finite, the inequality (15) can be strict only finitely many times, for every
player j .
Assume that hm ∈� even and hm+1 ∈� odd. Then

min
p∈P"m �hm�

ui�hm+1��p�≤ min
p∈P"m �hm+1�

ui�hm+1��p� < min
p∈P"m+1 �hm+1�

ui�hm+1��p�
 (16)

where the weak inequality holds because the part of p∗ generated by the even iteration is "m-monotonic, and
the strict inequality holds because of (12) and Lemma 3.1(i). In particular, by Equation (15), because the range
of the payoffs is finite and because there are finitely many players, Equation (16) can hold only finitely many
times, so there can be only finitely many even iterations. �

The proof of Theorem 3.1 is now complete. �

The next theorem states that the process of defining the sequences �#"�h��" and �P"�h��" reaches a fixed
point.

Theorem 3.2. There is an ordinal "∗ such that for every finite history h ∈ � we have #"∗�h�= #"∗+1�h�,
and P"∗�h�= P"∗+1�h� �= �.

In §4.1 we provide an example which shows that "∗ can be any ordinal.
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Proof. Denote by + the cardinality of the set of functions that assign to each finite history h ∈� a subset
of AN. For every finite history h ∈� , the sequence �P"�h��" is nonincreasing. Moreover, if P"�h�= P"+1�h� for
every h ∈ � , then P"+1�h�= P"+2�h� for every h ∈ � , which implies that P"�h�= P*�h� for every h ∈ � and
every ordinal * > ". It follows that for every ordinal " whose cardinality is larger than +, P"�h�= P"+1�h� for
every h ∈� .
By Lemma 3.1(i) it follows that for each such ordinal ", #"�h� = #"+1�h� for every h ∈ � , and the result

follows. �

3.3. Proof of Theorem 2.3. We now construct a strategy profile �∗ = ��j∗�j∈I and show that it is a subgame-
perfect 0-equilibrium.
For the initial history �, choose an arbitrary play p��� ∈ P"∗���. For every other finite history h= �al�l<t ,

denote by h− = �al�l<t−1 the prefix of h excluding the last action. Choose a play p�h� ∈ P"∗�h� that extends h
and that satisfies

ui�h
−��p�h��= min

p∈P"∗ �h�
ui�h

−��p�� (17)

If player j deviates, and h is the finite history right after the deviation (so that j = i�h−�), then p�h� is a play
at h that minimizes player’s j’s payoff within P"∗�h�.
Let �j∗ be the following strategy: Follow the play p��� as long as all other players follow p���. Suppose

that at stage t1 player j1 deviates from p���. From stage t1+ 1 and on follow the play p�ht1+1� as long as all
other players follow p�ht1+1�. Suppose that at stage t2 > t1 player j2 deviates from p�ht1+1�. From stage t2+ 1
and on follow the play p�ht2+1� as long as all other players follow p�ht2+1�. Continue this way.
We now show that �∗ is a subgame-perfect 0-equilibrium. To this end, we fix a finite history h ∈� , and we

show for an arbitrary player j that

uj��−j
∗ 
�

j � h�≤ uj��∗ � h�
 ∀�j ∈�j�

Let �j ∈ �j be any strategy of player j . Let p∗ = p��∗ � h� be the play induced by �∗ given h. This is the
play that is generated given h if player j does not deviate. Let p = p��−j

∗ 
�
j � h� be the play given h when

player j deviates to �j .
Denote by t1
 t2
 � � � the stages where �

j and �j∗ differ along p; in those stages all the players observe the
deviations of player j . The sequence �tk�k may be finite or infinite. Denote by pk = p�htk+1� the play that the
players start to follow from stage tk+ 1 on, for each k.
We complete the proof by showing that

uj�p�≤ uj�p∗�� (18)

It is sufficient to show that

uj�pk�≤ uj�p∗�
 ∀k� (19)

Indeed, if �j and �j∗ differ only finitely many times along p, Equation (18) follows from Equation (19) applied
to the last k; if �j and �j∗ differ infinitely many times along p, then the sequence �pk�k∈N converges to p, so
that Equation (18) follows from Equation (19) and the lower-semicontinuity of uj . This is the only place in the
proof where the lower-semicontinuity of the payoff functions is used.
The proof of (19) is by induction on k. Because of the construction and Lemma 3.1(iii), we have p∗ ∈ P"∗�h�.

Hence, Lemma 3.1(iii) and Equation (17) imply that uj�p1�≤ uj�p∗�. For every k≥ 1, because pk ∈ P"∗�htk �, and
by Lemma 3.1(iii) and Equation (17), uj�pk+1�≤ uj�pk�, which is at most uj�p∗� by the induction hypothesis.
The proof is now complete.

3.4. A Folk Theorem. Our construction enables us to characterize the set of plays that can arise in a
subgame-perfect 0-equilibrium in the game with discrete payoffs.

Theorem 3.3. A play p is induced by some subgame-perfect 0-equilibrium if and only if p ∈ P"∗���.
It follows from this result that for every h ∈� , #"∗�h� is the lowest subgame-perfect 0-equilibrium payoff in

the subgame that starts at h, and that p is the play induced by some subgame-perfect 0-equilibrium if and only
if ui�h��p�≥ #"∗�h� for every prefix h of p.
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Proof. If p is in P"∗���, then the construction in §3.3 shows that it is the play that is induced by some
subgame-perfect 0-equilibrium.
To see that the converse is true, we show that if �∗ is a subgame-perfect 0-equilibrium, then p��∗ � h� is in

P"�h�, for every ordinal " and every finite history h. The proof is by transfinite induction on ".
Because every play that extends h is in P0�h�, the claim holds for " = 0.
Suppose now that the claim holds for a given ordinal ". Let h be any finite history. Because the claim holds

for ", the play p��∗ � �h
a�� is in P"�h
a� for every action a. Therefore, with respect to �∗, the payoff to player
i�h� is at least #"+1�h� in the subgame that starts at h. This implies that p��∗ � h� is in P"+1�h�, for every h.
Finally, the definition of P"�h� for limit ordinals " implies that if p��∗ � h� is in P&�h� for every ordinal &< ",

then it is also in P"�h�. �

3.5. An example. In this section we illustrate the construction presented in the proof of Theorem 2.3.
Consider the following two-player perfect-information game, where the set of actions is A = �c
 s� and the
players play alternately. If both players always choose c, the payoff to each player is 0. Otherwise, let k be the
first player who plays action s. If k= 1, the payoff vector is �1
2�, while if k= 2, the payoff vector is �2
1�.
Note that the payoff functions are lower-semicontinuous.
We now construct the sequences �#"�h��" and �P"�h��" . Note that if h ∈ � contains the action s, then the

payoff is independent of the continuation play, and therefore for every ", #"+1�h�= #"�h� �= 0 and P"+1�h�=
P"�h�. Moreover, each profile in the subgame that starts at h is a subgame perfect 0-equilibrium.
Assume next that h= �c
 c
 � � � 
 c�. For " = 0, P0�h� is the set of all plays that extends h, including the play

in which both players always play c. It follows that #0�h�= 0.
We continue with the ordinal " = 1. If player i�h� plays action s, then he receives payoff 1. On the other hand,

if he plays action c, then play continues in P0�h
 c�, with 0 as the worst possible payoff. Therefore, #1�h�= 1,
and P1�h� consists of all plays that extend h in which at least one of the players plays s.
We now turn to the ordinal " = 2. Again, action s yields 1 to player i�h�, whereas action c results in a

continuation play in P1�h
 c� with 1 as the worst possible payoff. Hence #2�h�= #1�h�= 1 and P2�h�= P1�h�.
Consequently, for every " ≥ 1, #"+1�h� = #"�h� = 1 and P"+1�h� = P"�h�. It follows that "∗ = 2, and for

every finite history h ∈� one has #"∗�h�= 1, and P"∗�h� consists of all plays that extend h where at least one
of the players plays s (at least once). Thus, each play p ∈ P"∗�h� is induced by the following subgame perfect
0-equilibrium in pure strategies: follow p as long as no player deviates. If a player deviates to action s, then
switch to an arbitrary continuation play. If, on the other hand, a player deviates to action c, then switch to a
continuation play in which this very same player is the first one to play action s.

4. Concluding remarks

4.1. How large can "∗ be? A natural question is whether the ordinal "∗ of Theorem 3.2 is at most the first
infinite ordinal ,, or whether it can be larger than ,. In this section we present an example that demonstrates
that "∗ can be any ordinal. Moreover, a variant of this game shows that "∗ can be larger than ,, even when the
number of actions is finite.

4.1.1. "∗ can be any ordinal. Let * be any ordinal. We will now construct a game G* for which "∗ = * .
For simplicity of exposition, in this game the set of actions is history dependent. Roughly speaking, G* is a
two-player game in which players I and II choose a nonincreasing sequence �at�

�
t=0 of ordinals, with a0 = * ,

according to the following rules. If the current ordinal at−1 is a successor ordinal, then player I chooses at from
�at−1
 at−1− 1�. If the current ordinal at−1 is a limit ordinal, then player II chooses any ordinal at smaller than
at−1. Finally, if at−1 = 0, then all further choices �am�m≥t will be 0 as well. The payoff for player I equals 1 if
the sequence �at�t eventually reaches 0 and equals 0 otherwise. The payoff for player II equals 0 for every play.
The idea of this game G* is that player I can make sure that the sequence �at�

�
t=0 eventually reaches 0

and thereby obtain the best payoff 1, but the number of stages needed to reach 0 depends on player II. More
precisely, if player I, whenever he is the active player, always lowers the current ordinal by 1, then at < at−1
holds as long as at−1 > 0. Because there is no infinite decreasing sequence of ordinals, this strategy of player
I guarantees that at = 0 for some t ∈ N, regardless the actions that player II chooses. Still, if &1 and &2 are
two limit ordinals such that &2 < &1 ≤ * , there is no bound on the number of stages needed to descend from
&1 to &2, as player II can choose the ordinal &2 + k for any k ∈ N when the current ordinal is &1. As we will
show, one needs * steps in our iterative method to realize that the sequence �at�t eventually reaches 0 whatever
ordinals player II chooses.
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Now we provide a formal definition of the two-player perfect-information game G* . For any history5 h =
�a0
 a1
 � � � 
 at−1�, the active player i�h� and his action set A�h� are defined as follows:
• If at−1 is a successor ordinal, i�h�= I and A�h�= �at−1
 at−1− 1�.
• If at−1 is a limit ordinal, i�h�= II and A�h�= �all ordinals smaller than at−1�.
• If at−1 = 0, i�h�= I and A�h�= �0�.6

Let W denote the set of all plays p = �at�t≥0 such that at = 0 for some t. For an arbitrary play p, the payoff
to player I is as follows: uI�p� = 1 if p ∈W , and uI�p� = 0 otherwise. The payoff to player II is uII�p� = 0
for every play p. Because there is no infinite strictly decreasing sequence of ordinals, the payoff functions are
lower-semicontinuous.
We claim that for every finite history h= �a0
 a1
 � � � 
 at−1�:
(a) If " < at−1 and at−1 is a successor ordinal, then �h
at−1
 at−1
 � � � � ∈ P"�h�\W . If " < at−1 and at−1 is a

limit ordinal, then �h
+
+
 � � � � ∈ P"�h�\W for every successor ordinal + satisfying "+ 1≤ +< at−1.
(b) If " ≥ at−1, then P"�h�⊆W .

In particular, this will imply that "∗ = a0 = * . The proof of the claim is by transfinite induction on ".
For " = 0, the claim is obvious.
Assume that the claim holds for some ordinal ". We will now prove the claim for "+ 1.
Suppose that "+ 1< at−1. If at−1 is a successor ordinal, then whichever action at ∈ �at−1
 at−1− 1� player I

chooses, we have " < at , and therefore the induction hypothesis implies that P"�h
at�\W is nonempty. Hence,
#"+1�h�= 0 and �h
at−1
 at−1
 � � � � ∈ P"+1�h�\W . If at−1 is a limit ordinal, because player II can choose any
successor ordinal + satisfying "+ 1≤ +< at−1, we obtain �h
+
+
 � � � � ∈ P"+1�h�\W .
Suppose that " + 1≥ at−1. If " ≥ at−1 then, by the induction hypothesis and because the sequence �P+�h��+

is monotonic nonincreasing (by inclusion), we obtain P"+1�h� ⊆ P"�h� ⊆ W . Assume then that " + 1 = at−1.
Because player I can choose the action at = ", and because P"�h
 "�⊆W by the induction hypothesis, it follows
that P"+1�h�⊆W .
Finally, let " be a limit ordinal, and assume that the claim holds for all ordinals & < ". If either " < at−1 or

" > at−1, then the respective parts of the claim for " follow by (6). Suppose then that " = at−1 and take any
play p ∈ P"�h�. We will show that p ∈W . Let at denote the action in p right after h. Because p ∈ P"�h� and
at < ", we have p ∈ Pat+1�h�, and hence p ∈ Pat �h
at�. By the induction hypothesis, p ∈W as desired.

4.1.2. "∗ can be larger than , even with finitely many actions. We will now show that "∗ can be larger
than ,, the first infinite ordinal, even when the number of actions is finite. We will do so by examining the
following variant of the game G* for * =,+ 1, which was described in the previous section.
The action set is A= �c
 s�. Again, players I and II choose a nonincreasing sequence �at��t=0 of ordinals, with

a0 =,+ 1, according to the following rules. If the current ordinal at−1 is a successor ordinal, i.e., at−1 =,+ 1
or 0 < at−1 < ,, then player I is the active player, and he can set either at = at−1 by playing action c or
at = at−1 − 1 by playing action s. If the current ordinal at−1 is ,, say for the kth time, then player II is the
active player, and he can set either at = , by playing action c or at = k by playing action s. If the current
ordinal is zero, then only zero can be announced at all further stages.
The payoff for player I equals 1 if there is a T such that at = 0 for all t ≥ T or at =, for all t ≥ T , and his

payoff is zero otherwise. The payoff for player II equals 0 for every play.
This game differs from G,+1 in the sense that, if the current ordinal becomes ,, then player II is no longer

able to choose all finite ordinals immediately. In the new game, if player II wants to move to finite ordinal k,
then he first has to play action c precisely k−1 times and then to play action s. It can be verified very similarly
to G,+1 that we need ,+ 1 iterations to achieve a fixed point, so that "∗ =,+ 1 as desired.

4.2. Other applications of the technique. The driving force behind the proof is the following property,
which holds in games with perfect information. Denote by h the current finite history. Suppose that for every
possible action a, v�h
a� is the minimal continuation payoff possible for the decision maker at h if he chooses a,
and suppose that if the decision maker chooses the action a0, he is supposed to get a payoff x, which is at least
maxa∈A v�h
a�. Then even if the decision maker at h will eventually receive a payoff higher than x after playing
a0 at h, one can construct a strategy profile that ensures that he plays a0 and is punished by v�h
a� otherwise.
This property does not hold, e.g., for mixed equilibria in sequential games with simultaneous moves, because

in such games, if the continuation payoffs change, then the set of mixed actions that form a Nash equilibrium in

5 To simplify notations, we denote the initial history by h1 = �a0�.
6 In this case, it makes no difference which player is the active player.
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the one-shot game with these continuation payoffs may change as well, and a deviation from the original mixed
equilibrium may not be detected.
The property does hold for extensive-form correlated equilibria in games with simultaneous moves. In this

type of equilibrium, a mediator sends a private signal to each player at every stage. If the signal contains a
recommended action for the current stage, as well as the recommendations made to all players in the previous
stage, then a deviation from the recommendation is detected immediately and can be punished. We hope that
our approach can be used to prove the existence of an extensive-form correlated equilibrium in multiplayer
perfect-information games with simultaneous moves.

4.3. Tightness of the result. It is well known that a 0-equilibrium, and therefore also a subgame-perfect
0-equilibrium, may fail to exist when the range of the payoff functions is not finite.
As the following example shows, when there are infinitely many players, a subgame-perfect 0-equilibrium

need not exist, even when the range of the payoff functions is finite. Suppose that the set of players is the set
N of natural numbers, and the set of actions is A= �a
 b�. Each player t ∈N plays only once, at stage t. The
payoff of player t is 1 if he played b, 2 if he played a and some player j > t played b, and 0 if he played a
and every player j > t also played a.
This game has a 0-Nash equilibrium, where player 1 starts by playing b, and each other player t > 1 plays b

only if every player j < t also played b; otherwise, player t plays a. On the other hand, there is no subgame-
perfect 0-equilibrium in this game. Indeed, suppose to the contrary that � is a subgame-perfect 0-equilibrium.
Because every player can guarantee 1 by playing the action b, it cannot happen in any subgame that � prescribes
all players that have not played yet to play action a. This means in particular that, with respect to � , infinitely
many players play action b and receive 1. However, then each of those players is better off by deviating to a
and receiving 2.

4.4. Chance moves. Perfect information games are deterministic, and the sequence of actions chosen by
the players uniquely determines the outcome. In many situations there are chance moves along the game, where
actions are chosen according to a known probability distribution. This situation is equivalent to the case in
which there is an additional player who follows a specific nondeterministic strategy, whatever the other players
play. There are indications that our proof can be adapted to this more general situation, and this will be done
elsewhere.

4.5. Positive recursive perfect-information games. Recursive perfect-information games are games in
which some finite histories are terminating, in the sense that once they occur the payoff is determined (and the
play that follows them does not affect the players’ payoffs), and the payoff of every infinite (nonterminating)
play is 0. Various positional games that are studied in the computer science literature have this form. The signifi-
cance of this class of games to game theory was exhibited in the context of stochastic games by Vieille [23, 24],
who used it as a step to proving the existence of an equilibrium payoff in every two-player stochastic game.
A recursive perfect-information game is called positive if the terminal payoffs are positive for both players.
Flesch et al. [2] studied positive recursive perfect-information games with finitely many states; these are

positional games that are played on a finite directed graph, where each vertex is controlled by some player,
and when the game reaches some vertex, the controlling player can choose whether to terminate the game or
whether to continue the game by choosing one of the edges that leaves the vertex. The terminal payoff, which
is positive for all players, depends only on the vertex where termination occurred, not on the whole past play.
Flesch et al. [2] prove that every such game admits a subgame-perfect 0-equilibrium.7 In their proof, they

define for every vertex s a sequence �#k�s��k∈N that is similar to our sequence �#"�h��" , they prove that this
sequence is nondecreasing and, because there are finitely many vertices, they deduce that there is k∗ ∈N such that
#k∗+1�s�= #k∗�s� for every vertex s. They then use a similar construction of the subgame-perfect 0-equilibrium
as the one that we used.
In perfect-information games every history is a different vertex. Therefore, one needs to use a much more

delicate construction, which differs from the one in Flesch et al. [2] in two respects. First, when the number
of vertices is infinite, there need not be k∗ ∈ N such that #k∗+1�s� = #k∗�s� for every vertex s, and therefore
�#"�h��" should be defined for every ordinal. Second, because play never terminates, one has to deal with plays
of infinite length and introduce the sets �P"�h��" .
It turns out that for positive recursive perfect-information games our construction can be simplified, and a

single odd iteration is sufficient to show that P"�h� is not empty for limit ordinals ".

7 When transitions are random, Flesch et al. [2] prove the existence of a subgame-perfect �-equilibrium, for every �> 0.
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4.6. Perfect information games with general payoffs. Example 3 in Solan and Vieille [20, see also Foot-
note 1] shows that without the condition that payoffs are lower-semicontinuous, a subgame-perfect �-equilibrium
need not exist. However, Solan and Vieille [20] show that in their example a subgame-perfect �-equilibrium does
exist if one allows behavior strategies. The existence of a subgame-perfect �-equilibrium in behavior strategies
was proved in other setups where the payoff functions are not lower-semicontinuous, see, e.g., Mertens and
Parthasarathy [13], Solan [19], Maitra and Sudderth [9], and Mashiah-Yaakovi [11].
In our proof, the lower-semicontinuity of the payoff functions was used only in the last part to show that

any deviation �j that differs from �j∗ infinitely many times cannot be profitable, as soon as any deviation �
j

that differs from �j∗ finitely many times is not profitable. We do not know how the proof should be adapted to
handle general payoff functions.
In fact, the following example shows that our definition of #" and P" is not appropriate for general perfect-

information games. Consider a two-player perfect-information game where the players play alternately, and with
A= �a
 b�. The payoff functions of the two players are as follows:

Condition u1�h� u2�h�

Both players played b finitely many times 2 2
Only player 1 played b finitely many times 2 1
Only player 2 played b finitely many times 1 2
No player played b finitely many times 0 0

Note that u1 and u2 are not lower-semicontinuous. Playing b finitely many times is a dominant strategy for
both players, so that the unique subgame-perfect 0-equilibrium payoff is �2
2�. However, one can verify that for
every finite history h and every ordinal ", P"�h� contains all plays in which at least one player plays b finitely
many times, so that the Folk Theorem, Theorem 3.3, does not hold, and our construction of the subgame-perfect
0-equilibrium in the proof of Theorem 2.3 is invalid.
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