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Abstract We examine so-called product-games. These are n-player stochastic
games played on a product state space S1 × · · · × Sn, in which player i controls
the transitions on Si . For the general n-player case, we establish the existence of
0-equilibria. In addition, for the case of two-player zero-sum games of this type, we
show that both players have stationary 0-optimal strategies. In the analysis of product-
games, interestingly, a central role is played by the periodic features of the transition
structure. Flesch et al. (Math Oper Res 33, 403–420, 2008) showed the existence of
0-equilibria under the assumption that, for every player i , the transition structure on
Si is aperiodic. In this article, we examine product-games with periodic transition
structures. Even though a large part of the approach in Flesch et al. (Math Oper Res
33, 403–420, 2008) remains applicable, we encounter a number of tricky problems
that we have to address. We provide illustrative examples to clarify the essence of the
difference between the aperiodic and periodic cases.
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264 J. Flesch et al.

1 Introduction

Stochastic games An n-player stochastic game is given by (1) a set of players N =
{1, . . . , n}, (2) a nonempty and finite set of states S, (3) for each state s∈S, a nonempty
and finite set of actions Ai

s for each player i, (4) for each state s∈S and each joint action
as ∈ ×i∈N Ai

s , a payoff r i
s (as) ∈ R to each player i, (5) for each state s ∈ S and each

joint action as ∈ ×i∈N Ai
s , a transition probability distribution psas = (psas (t))t∈S .

The game starts in an initial state s ∈ S and is to be played at stages in N in the
following way. At any stage m, in the current state sm ∈ S, every player i ∈ N has
to choose an action ai

m from his action set Ai
sm

, independently of the other players.
The chosen joint action am = (a1

m, . . . , an
m) induces a payoff r i

sm
(am) to each player

i , and a transition to a new state according to the transition probability distribution
psmam , where play will continue at stage m +1. We assume complete information (i.e.
the players know all the data of the stochastic game), full monitoring (i.e. the players
observe the current state and the actions chosen by all the players), and perfect recall
(i.e. the players remember all previous states and actions).

Strategies A mixed action xi
s for player i in state s∈S is a probability distribution on

Ai
s . The set of mixed actions for player i in state s is denoted by Xi

s . A mixed action is
called completely mixed, if it assigns a positive probability to each available action. A
(history dependent) strategy π i for player i is a decision rule that prescribes a mixed
action π i

s (h) ∈ Xi
s in the current state s as a function of the history h of play (i.e. the

sequence of all past states and all past actions chosen by all the players). We use the
notation �i for the set of strategies for player i. A strategy π i for player i is called
pure if π i prescribes, for every state and every possible history, one action to be played
with probability 1.

If the mixed actions prescribed by a strategy depend only on the current state then
the strategy is called stationary. Thus, the stationary strategy space for player i is
Xi = ×s∈S Xi

s . We use the notation xi for stationary strategies for player i, while xi
s

refers to the corresponding mixed action for player i in state s. Note that the set of
pure stationary strategies for player i is simply Ai = ×s∈S Ai

s .

Rewards For a joint strategy π = (π i )i∈N and initial state s ∈ S, the sequences of
payoffs are evaluated by the expected average reward, simply reward, which for player
i is

γ i
s (π) := lim inf

M→∞ Esπ

(
1

M

M∑
m=1

Ri
m

)
= lim inf

M→∞
1

M

M∑
m=1

Esπ

(
Ri

m

)
,

where Ri
m is the random variable for the payoff for player i at stage m, and where Esπ

stands for expectation with respect to the initial state s and the joint strategy π .

Equilibria A joint strategy π = (π i )i∈N is called a (Nash) ε-equilibrium for initial
state s ∈ S, for some ε ≥ 0, if

γ i
s

(
σ i , π−i

)
≤ γ i

s (π) + ε ∀σ i ∈ �i , ∀i ∈ N ,
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Stochastic games on a product state space 265

where π−i = (π j ) j∈N−{i}, which means that no player can gain more than ε by a
unilateral deviation. If π is an ε-equilibrium for all initial states, then we call π an
ε-equilibrium.

The game called the Big Match, introduced by Gillette (1957) and solved by Black-
well and Ferguson (1968), and the game in Sorin (1986) demonstrate that 0-equilibria
need not exist with respect to the average reward. In fact, history dependent strategies
are indispensable for establishing ε-equilibria, for ε > 0.

For two-player stochastic games, Vieille (2000a,b) managed to establish the exis-
tence of ε-equilibria, for all ε > 0. However, little is known about n-player stochastic
games. It is unknown whether these games always possess ε-equilibria, for all ε > 0,
and this question is the most challenging open problem in the field of stochastic
games. The main difficulties are caused by the discontinuity of the average reward on
the spaces of stationary strategies. Given these difficulties, interest arises in finding
equilibria in special classes.

The class of product-games A Markov transition structure �i for player i∈N is given
by (1) a nonempty and finite state space Si ; (2) a nonempty and finite action set Ai

si for

each state si ∈ Si ; (3) a transition probability distribution pi
si ai

si
over the state space

Si for each state si ∈ Si and for each action ai
si ∈ Ai

si . Note that, if we also assigned
a payoff in every state to every action, then we would obtain the well-known model
of a Markov decision problem for player i .

We consider a special type of n-player stochastic games, called product-games,
in which the transition structure is derived by taking the product of n Markov tran-
sition structures. A product-game G, associated to the Markov transition structures
�1, �2, . . . , �n , is an n-player stochastic game for which (1) the set of players is
N = {1, . . . , n} ; (2) the state space is S = S1 × · · · × Sn; (3) the action set for
each player i ∈ N in each state s = (s1, . . . , sn) ∈ S is Ai

s = Ai
si ; (4) the transition

probability distribution psas , for each state s = (s1, . . . , sn) ∈ S and for each joint
action as = (a1

s , . . . , an
s ) ∈ ×i∈N Ai

s, is

psas (s̄) =
∏
i∈N

pi
si ai

s
(s̄i )

for state s̄ = (s̄1, . . . , s̄n) ∈ S. Note that no condition is imposed on the payoff struc-
ture. As a consequence, play of the product game G can be viewed as simultaneous
play of the n Markov transition structures �1, . . . , �n , which are linked by payoff
functions r1, . . . , rn that may depend on all n current states as well as on all n actions
chosen by the players.

This kind of transition structure is natural, and has already been considered in appli-
cations. For applications in wireless networks, Altman et al. (2005) (see also Altman
et al. 2007a,b) examined two-player product-games, although in a somewhat different
fashion. They assumed that the sum of the payoffs is always equal to zero (zero-sum
games), and dropped the assumption of full monitoring by letting each player observe
only his own coordinate of the current state and the action chosen by himself. As a
result, both players have to make choices without knowledge of the other player’s
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266 J. Flesch et al.

behavior. They showed that a linear programming formulation is sufficient to solve
these games, i.e. to find the value and stationary optimal strategies (cf. the definitions
below). Other models related to product-games are certain types of multi-agent sys-
tems. These models use the same kind of transition structure as product-games, but
here the players (or agents) have a common goal. The main difficulty is caused by the
assumption that the players cannot fully monitor the other players’ behavior. We refer
to Becker et al. (2003), and all the references therein.

Note that stochastic games with a single controller (cf. Parthasarathy and Ragh-
avan 1981 or Filar and Vrieze 1996), i.e. when one player controls the transitions,
fall into the class of product-games. Indeed, a stochastic game which is controlled
by player i can be seen as a product-game in which S j is a singleton for all play-
ers j �= i . Finally, we wish to mention the class of stochastic games with additive
transitions (AT-games, cf. Flesch et al. 2007), i.e. when the transitions are additively
decomposable into player-dependent components, in contrast with a product decom-
position.

For the class of n-player product-games, we prove the existence of 0-equilibria (cf.
Theorem 1). This extends Flesch et al. (2008a), where aperiodicity was assumed on
the transition structure of the product-game (cf. Sect. 2, for a precise definition of
aperiodicity). The construction makes use of the fact that, in a product-game, player i
controls the i-th component of the transitions. This property will enable us to analyse
the Markov transition structure of each player separately.

Zero-sum games and optimality In the study of stochastic games, the class of zero-sum
stochastic games play a special role. These are two-player stochastic games for which
r2

s (as) = −r1
s (as), for each state s and for each joint action as . In these games the two

players have completely opposite interests. Thus, in a zero-sum game, player 1 wants
to maximize his own reward, while player 2 tries to minimize player 1’s reward. For
simplicity, let γ = γ 1. Mertens and Neyman (1981) showed that, for all s ∈ S,

sup
π1

inf
π2

γs(π
1, π2) = inf

π2
sup
π1

γs(π
1, π2) := vs ;

here vs is called the value for initial state s. A strategy π1 for player 1 is called
ε-optimal for initial state s ∈ S, for some ε ≥ 0, if γs(π

1, π2) ≥ vs − ε for any
strategy π2 of player 2, while a strategy π2 for player 2 is called ε-optimal for ini-
tial state s ∈ S if γs(π

1, π2) ≤ vs + ε for any strategy π1 of player 1. If π1 or
π2 is ε-optimal for all initial states, then we call π1 or π2 an ε-optimal strategy.
Mertens and Neyman (1981) proved that both players have ε-optimal strategies for
any ε > 0, though history dependent strategies may be necessary for ε-optimal-
ity.

For the class of zero-sum product-games, we show that both players have stationary
0-optimal strategies (cf. Theorem 2). In addition, we analyse the structure of the value
of these games.

The structure of the article In Sect. 2, we discuss preliminary concepts. In Sect. 3, we
present our main results and discuss the main difficulties which we encounter when
facing periodic product-games. The proofs are given in Sect. 4.
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Stochastic games on a product state space 267

2 Preliminary concepts

From now on, we use superscripts to index the player and subscripts for the state.
Whenever one of them is omitted, we mean a vector in the case of quantities and a
product in the case of sets, for all possible players or states, respectively. For exam-
ple, Ai denotes ×s∈S Ai

s . Finally, we denote the set of opponents of any player i by
−i := N − {i}. Then, −i in the upper-index will mean a vector or product for all
players j �= i . For example, S−i denotes × j∈N−{i}S j .

Minmax-levels Take an arbitrary n-player stochastic game. For any player i∈N and
initial state s ∈ S, let

vi
s := inf

π−i ∈�−i
sup

π i ∈�i
γ i

s (π i , π−i ). (1)

Here vi
s is called the minmax-level for player i in state s. Intuitively, this is the highest

reward that player i can defend against any strategies of the other players if the initial
state is s. Note that, in order to secure his minmax-level, (1) against different joint
strategies of players −i, player i may have to use different strategies and (2) for the
choice of the mixed action at stage m, player i does not need to know player −i’s joint
strategy for stages beyond m (cf. Neyman 2003). It is known that for any player i

vi
s = min

x−i
s ∈X−i

s

max
xi

s∈Xi
s

∑
t∈S

ps,(xi
s ,x

−i
s )

(t) vi
t . (2)

It is clear from the definition of the minmax-level v that if π is an ε-equilibrium then
γ i

s (π) ≥ vi
s − ε for each player i and each initial state s ∈ S. Moreover, for zero-sum

games, the value satisfies v = v1 = −v2, shown by Mertens and Neyman (1981).

Markov chains A joint stationary strategy x = (xi )i∈N induces a Markov-chain on
the state space S with transition matrix P(x), where the (s, s̄)th entry of P(x) gives
the transition probability psxs (s̄) for moving from state s to state s̄ when the joint
mixed action xs is played in state s. Associated with this Markov-chain, there are
transient and recurrent states. We can group the recurrent states into ergodic sets.
It is known that every state in an ergodic set W has the same period, which we
denote by λ(W ). When λ(W )=1, the set W is called aperiodic. Moreover, W can be
uniquely divided into λ(W ) pairwise-disjoint cyclic sets W 1, . . . , W λ(W ), i.e. when
starting in any s ∈ W l , the process will move through the cyclic sets in the order
W l , W l+1, . . . , W λ(W ), W 1, . . . , W l−1, W l , . . .. It is known that there exists a µ > 0
and a stage M such that at any stage m ≥ M, the process can be, with probability at
least µ, in any state of the cyclic set appropriate for the moment. We refer to Kemeny
and Snell (1960) for a more detailed discussion on Markov chains.

Some of the contents of the remainder of this section are very similar to the decom-
position presented in Ross and Varadarajan (1991) for Markov decision problems (i.e.
stochastic games with only one player). We also refer to Flesch et al. (2008a). For an
illustration of the concepts below, we refer to Example 1.
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268 J. Flesch et al.

Classification of states First, we analyse the Markov transition structure �i of each
player i separately. (Note that a separate analysis of the transition structure is possible
only because each player i controls the transitions on his own coordinate.) We distin-
guish between two basic types of states in the state space Si of �i . A state si∈Si is of
type 1 if it is transient for each stationary strategy xi of player i . Otherwise, si is of
type 2, in which case player i has a stationary strategy for which si is recurrent.

Maximal communicating sets Two states si
1 and si

2 of type 2 are said to communicate
with each other, if there exists a stationary strategy xi of player i such that si

1 and si
2

belong to the same ergodic set. We note that communication between states have been
used extensively in the literature of stochastic games (cf. Vieille 2000a,b; Solan and
Vohra 2002; Solan 2003).

This relationship of communication is an equivalence relation on the set of states of
type 2. As such, it induces equivalence classes, called maximal communicating sets.
Every maximal communicating set Ei has the following properties:

(1) Player i can go from any state in Ei to any other state in Ei , with probability
1, possibly in a number of steps without leaving Ei .

(2) If player i decides to leave Ei , the probability that he returns to Ei is strictly
less than 1, regardless of his strategy (and since the state and action spaces are finite,
these probabilities have an upper-bound strictly smaller than 1).

The latter observation further implies that:
(3) The total number of times during the whole play that player i switches from a

maximal communicating set to another one is finite with probability 1, regardless of
the initial state and player i’s strategy; (in fact, for every ρ > 0 there exists an Lρ ∈ N

such that the number of times that play moves from one maximal communicating set
to another is at most Lρ with probability at least 1 − ρ).

(4) There is at least one maximal communicating set which player i is unable to
leave, i.e. no transitions to states outside are possible.

(5) For any strategy of player i, regardless of the initial state, player i eventually
settles, with probability 1, in one of his maximal communicating sets Ei , i.e. after
finitely many stages, player i remains forever in Ei (it is possible that player i would
be able to leave Ei with a different strategy).

Let K i denote the index set for player i’s maximal communicating sets. We use the
notation Ei

ki , where ki ∈ K i , for a maximal communicating set for player i . In every

state si of Ei
ki , for every ki ∈ K i , let Āi

si denote the set of those actions ai
si ∈ Ai

si

which keep play in Ei
ki with probability 1. The sets Āi

si are clearly nonempty. For every

state s = (s1, . . . , sn) ∈ S, we also let Āi
s := Āi

si . Notice that, if xi is a stationary

strategy for player i which, in every state si ∈ Ei
ki , places a positive probability on all

actions in Āi
si and places probability zero on all actions in Ai

si − Āi
si , then Ei

ki is an

ergodic set for xi .

Periodicity and segments The period of Ei
ki , denoted by λi

ki , is defined as the period

of the Markov chain on Ei
ki associated with a stationary strategy xi of player i that

uses only completely mixed actions on Āi
si for all si ∈ Ei

ki . (Obviously, the period

is independent of the particular choice of xi .) The cyclic sets of Ei
ki are denoted by
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Stochastic games on a product state space 269

T i
ki (1), . . . , T i

ki (λ
i
ki ). For convenience, let T i

ki (u · λi
ki + w) := T i

ki (w) for all u ∈ N

and w ∈ {1, . . . , λi
ki }.

Let K :=×n
i=1 K i .Consider the product Ek :=×n

i=1 Ei
ki for some k = (k1, . . . , kn)∈

K . The period of Ek, denoted by λk, is defined as the period of the Markov chain
on Ek associated with a joint stationary strategy x that uses only joint completely
mixed actions on Ās for all s ∈ Ek . Clearly, λk equals the least common multiple of
λ1

k1, . . . , λ
n
kn . Notice that this Markov chain has no transient states and consists of a

number of ergodic sets, which we call segments. Each segment F has period λk and
is determined by the starting state. If s ∈ Ek is the starting state with si ∈ T i

ki (li ) for

some li ∈ {1, . . . , λi
ki }, for all i ∈ N , then the segment F containing state s has cyclic

sets of the form

TF (m) := T 1
k1(l1 + m − 1) × · · · × T n

kn (ln + m − 1), m = 1, . . . , λk . (3)

We remark that the number of segments within Ek equals the greatest common divisor
of λ1

k1, . . . , λ
n
kn . For convenience, let TF (u · λF + w) := TF (w) for all u ∈ N and

w ∈ {1, . . . , λF }.
Finally, the period of the whole product-game is defined as the least common

multiple of the periods of all its segments. In aperiodic product-games (i.e. which
have period 1), each set Ek is just one segment.

Restricted games Take an arbitrary segment F , within some Ek=×n
i=1 Ei

ki . By restrict-
ing the state space to F ⊂ S, and the action set of every player i in any state s ∈ F
to Āi

s, we obtain a restricted game Ḡ F . Note that Ḡ F is a stochastic game, but not
necessarily a product-game (the state space F of Ḡ F is only a product if F = Ek).

These restricted games play a key role in the analysis of product-games, due to
the following observation. Recall that, for any initial state and strategies of the play-
ers, each player i eventually settles in one of his maximal communicating sets Ei

ki ,

with probability 1. Hence, with probability 1, play will eventually settle in a segment
F ⊂ Ek in the corresponding restricted game Ḡ F . The study of these restricted games
is therefore of great importance.

For a restricted game Ḡ F , let v̄i
F,s denote the minmax-level of player i in Ḡ F for

initial state s ∈ F. If, for some player i, the inequality v̄i
F,s ≥ vi

s holds for all initial

states s ∈ F, then we call Ḡ F satisfactory for player i . Otherwise, Ḡ F is called unsat-
isfactory for player i. In words, if Ḡ F is satisfactory for player i , then player i weakly
prefers Ḡ F to G, as far as his minmax-level is concerned on F. Let F∗ denote the set
of segments F such that Ḡ F is satisfactory for all players. Further, let F[i] denote the
set of segments F such that Ḡ F is unsatisfactory for player i but Ḡ F is satisfactory
for all players j∈{1, . . . , i − 1}. Obviously, F∗,F[1], . . . ,F[n] forms a partition of
all segments.

Example 1 As an illustration, consider the product-game in Fig. 1 with two players.
This is a game with nine states. In each state, the actions of player 1 are represented
by the rows, and the actions of player 2 by the columns. So, each cell of each state
corresponds to a pair of actions. In each cell, the payoffs to the respective players
are given in the upper-left corner, while the next state is indicated in the bottom-right
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270 J. Flesch et al.

Fig. 1 Game of Example 1

corner. In this game all the transitions are pure, i.e. each transition probability distri-
bution assigns probability 1 to a certain state.

The underlying Markov transition structure for player 1 is given by state space
S1 = {1, 2, 3} , action sets A1

1 = {1, 2} , A1
2 = A1

3 = {1} , and transition probabilities

p1
11 = (1, 0, 0), p1

12 = (0, 1, 0), p1
21 = (0, 0, 1), p1

31 = (0, 1, 0).

So, in state 1, player 1 can either stay or leave for state 2, while he moves between state
2 and 3 back and forth. Regarding the classification of the states in S1, both E1

I := {1}
and E1

II := {2, 3} are maximal communicating sets, with index-set K 1 = {I, II } .

Moreover, E1
I is aperiodic (i.e. has periodicity 1) whereas E1

II has periodicity 2. As
for the actions which keep play in these maximal communicating sets, we obtain
Ā1

1 = Ā1
2 = Ā1

3 = {1}.
The underlying Markov transition structure for player 2 is identical. So, the state

space is S2 = {1, 2, 3} , the action sets are A2
1 = {1, 2} , A2

2 = A2
3 = {1} , and the

transitions are

p2
11 = (1, 0, 0), p2

12 = (0, 1, 0), p2
21 = (0, 0, 1), p2

31 = (0, 1, 0).

Further, E2
I := {1} and E2

II := {2, 3} are maximal communicating sets, with index-set
K 2 = {I, II } . The maximal communicating set E2

I is aperiodic, whereas E2
II has

periodicity 2, and Ā2
1 = Ā2

2 = Ā2
3 = {1}.

Note that E(I,I ) = EI × EI = {(1, 1)}, E(I,II ) = {(1, 2), (1, 3)} and E(II,I ) =
{(2, 1), (3, 1)} all consist of one segment, which we denote by F(I,I ), F(I,II ) and
F(II,I ), respectively, while E(II,II ) = {2, 3}2 falls apart into two segments, i.e. seg-
ment F(II,II ),1 = {(2, 2), (3, 3)} and segment F(II,II ),2 = {(2, 3), (3, 2)}.

There are five restricted games corresponding to these five different segments. For
instance, the restricted game Ḡ F(I,I ) consists of the top-left cell in state (1, 1), while
Ḡ F(II,I ) consists of the left cells of states (2, 1) and (3, 1). Note that, in every restricted
game, the reward is unique to every player.
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Stochastic games on a product state space 271

3 The main results

For the class of product-games, we present the following result concerning existence
of equilibria.

Theorem 1 There exists a 0-equilibrium in every n-player product-game.

In addition, for the special case of two-player zero-sum product-games, we derive
the existence of stationary solutions.

Theorem 2 In two-player zero-sum product-games, both players have a stationary
0-optimal strategy.

We focus on the Theorem 1 and its proof, as Theorem 2 will follow directly (cf.
end of Sect. 4.3).

Existence of stationary 0-equilibria Our construction for Theorem 1 will only provide
0-equilibria in history-dependent strategies. It remains unclear whether 0-equilibria
always exist within the class of stationary strategies. This question is already chal-
lenging in the case where each player i’s state space Si is just one aperiodic maximal
communicating set. In this case, the whole state space S is just one segment. Corol-
lary 8 below (through corollary 12) establishes for such games that all minmax-levels
are constant on the whole state space S. It is unclear how to exploit this fact.

The difference between the periodic and aperiodic cases Interestingly, the period of
the product-game plays a central role in the analysis. In Flesch et al. (2008a), the spe-
cial case of aperiodic product-games has been extensively studied, and the validity of
Theorem 1 has been shown for all aperiodic product-games. The approach presented
there is applicable to periodic product-games as well, but the periodic case poses a
number of additional problems that we address. In the periodic case, as discussed in
Sect. 2, if Ei

ki denotes a maximal communicating set for every player i , then the prod-

uct Ek = ×n
i=1 Ei

ki may split into a number of segments, which do not communicate
with each other. The main problems that we encounter are the following:

A. Several properties which Flesch et al. (2008a) derived for the sets Ek in the ape-
riodic case do not hold for the periodic case. Luckily, however, we are able to derive
similar properties for each segment of the sets Ek . (For example, the minmax-levels
of the players are no longer constants on the whole set Ek, just on each segment of
Ek separately, cf. Corollary 8 together with Corollary 12).

B. The central lemma of the aperiodic case is invalid for periodic product-games
and has to be modified. We refer to Lemma 5 and the remark after that.

C. In the aperiodic case, moving to a set Ek can be achieved by letting each player
i move to Ei

ki . This is insufficient for the periodic case, as we need to move to certain
segments within Ek . Note that the segment which the players enter in Ek will be deter-
mined by the collection (si , mi )n

i=1, where si ∈ Ei
ki is the state and mi is the stage at

which player i enters Ei
ki . Thus, it is crucial to arrive at the right segment within Ek .

See the proof of Lemma 5 and the example after that.

An attempt to transform periodic product-games into aperiodic ones In order to show
Theorem 1, one could try to transform every periodic product-game G into an ape-
riodic one G ′ and hope that the 0-equilibrium in G ′ reveals a 0-equilibrium for the
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272 J. Flesch et al.

original product-game G. For example, in the context of Markov chains, it is known
that if P is the transition matrix of a Markov chain on finitely many states, then for
any µ ∈ (0, 1], the transition matrix µ · P + (1−µ) · I, where I is the identity matrix,
induces the same ergodic structure and the same set of invariant distributions. This is
particularly interesting when P is periodic, as µ · P + (1 − µ) · I is aperiodic for all
µ ∈ (0, 1).

In periodic product-games, such transformations are bound to fail, for the following
reason. Consider a set Ek = ×n

i=1 Ei
ki , where Ei

ki denotes a maximal communicating
set for every player i. As discussed in Sect. 2, if the product-game is aperiodic, then
Ek is one segment and all states in Ek communicate. If the product-game is periodic,
then Ek may split into several segments, which do not communicate with each other.
Hence, any transformation which would unite these segments into one segment, would
change the structure of the game so radically that the 0-equilibrium that one finds in
G ′ will not generally correspond to a 0-equilibrium in the original product-game G.

4 The formal proofs of main Theorems 1 and 2

In this section, we provide proofs for Theorems 1 and 2. We will focus on Theorem 1,
as Theorem 2 will follow (cf. the end of Sect. 4.3). In Sect. 4.1, we examine restricted
games. In Sect. 4.2, we analyze the minmax-levels of the players in so-called simple
product-games, and then in Sect. 4.3 we extend this to the general case. By combining
these results, we prove Theorem 1 in Sect. 4.4.

4.1 Analysis of the restricted games

We know that, for any strategies of the players and for any initial state, play will
eventually settle in some restricted game, with probability 1. Therefore, it is essential
to know what perspectives each restricted game can offer to the players in terms of
minmax-levels and equilibrium rewards. Consider an arbitrary restricted game Ḡ F ,

corresponding to segment F . First, we analyse the minmax-levels of the players in
Ḡ F , and then we discuss possible equilibrium rewards within Ḡ F .

First, it turns out that each player i’s minmax-level in Ḡ F is constant. In addition,
players −i can make sure in Ḡ F that player i’s reward is at most his minmax-level
(i.e. the infimum is attained in (1) for the game Ḡ F ).

Lemma 3 Let G be a product-game. Consider the restricted game Ḡ F , corresponding
to some segment F, and an arbitrary player i. Then, the minmax-level v̄i

F of player
i in Ḡ F is constant, i.e. v̄i

F,s = v̄i
F,t (=: v̄i

F ) for all states s, t ∈ F. Moreover, in

Ḡ F , players −i have a joint stationary strategy x−i which guarantees that player i’s
reward from any initial state s∈F is at most his minmax-level v̄i

F .

The proof is analogous to the proof of lemma 3.1 for aperiodic product-games in
Flesch et al. (2008a). We also refer to Flesch et al. (2008b). Here, we provide a brief
outline. Consider a restricted game Ḡ F and a player i. Let αi := mint∈F v̄i

F,t , which is

the lowest minmax-level in the restricted game Ḡ F for player i . The idea of the proof
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is to find a set U ⊂ {t ∈ F |v̄i
F,t = αi } and a joint stationary strategy x−i (in Ḡ F )

such that, irrespective of the strategy of player i, the following hold: (1) once play
reaches U, it remains in U forever, and player i’s reward within U is at most αi , (2)
play reaches U with probability 1. Clearly, these properties will then imply that the
minmax-level v̄i

F of player i in Ḡ F equals the constant αi , and that x−i satisfies the
second part of the lemma. We remark that the existence of such U and x−i is based on
the work of Thuijsman and Vrieze (1991) on stationary strategies for particular initial
states, in combination with Neyman (2003).

As an illustration, we now revisit the game in Example 1. We find in accordance
with Lemma 3 that the minmax-levels of the players are constant in the restricted
games. Indeed, for player 1 we have that

v̄1
F(I,I )

= 1, v̄1
F(I,II )

= 0, v̄1
F(II,I )

= 0, v̄1
F(II,II ),1

= 1, v̄1
F(II,II ),2

= 0, (4)

while for player 2 that

v̄2
F = −v̄1

F (5)

for any segment F .
Given a strategy π i for player i and a history h, the strategy π i conditional on h,

denoted by π i [h], is the strategy which prescribes a mixed action π i
s [h](h′) in any cur-

rent state s for any history h′ as if h had happened before h′, i.e. π i
s [h](h′) = π i

s (h⊕h′),
where h ⊕ h′ is the history consisting of h concatenated by h′. In fact, π i [h] is just
the continuation strategy of π i after history h.

Next, we present a possible equilibrium for the restricted game Ḡ F . We show that
there exists a 0-equilibrium in Ḡ F in which, if no player deviates, the players’ future
expectations remain unchanged during the whole play. Note that Flesch et al. (1997)
(with three players) and Simon (2003) (with only two players) constructed examples
proving that such a result does not hold for all stochastic games.

Lemma 4 Let G be a product-game. Consider the restricted game Ḡ F , correspond-
ing to some segment F. Then, there exists a 0-equilibrium π in Ḡ F such that the
corresponding rewards are independent of the initial state and all the continuation
rewards remain unchanged with probability 1 during the whole play. More precisely,
the reward γ i

s (π [h]) is independent of the initial state s ∈ F and the history h, given
h occurs with a positive probability with respect to π.

The proof is the same as for lemma 3.7 in Flesch et al. (2008a). We also refer to
Flesch et al. (2008b). Here, we provide only a brief outline. Note:

(i) The minmax-levels of the players in Ḡ F are constant, by Lemma 3.
(ii) The set of feasible rewards in Ḡ F (i.e. the rewards that can be obtained by some

joint strategy) is the same from any initial state in F. This is an immediate
consequence of the fact that the players can move from any state in F to any
other one in F , in a finite number of steps.

(iii) The extreme points of the set of feasible rewards are induced by pure stationary
strategies. This is shown in Flesch et al. (2008a), based on Dutta (1995).
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Given these three observations, this game situation is almost identical to a repeated
game. The proof uses ideas and arguments that are standard in various kinds of Folk-
theorems.

4.2 The minmax-levels in simple product-games

A product-game G is called simple if, within every restricted game Ḡ F , every player i
has a unique payoff, i.e. r i

s (as) = r i
t (bt ) for all states s, t ∈ F and for all joint actions

as ∈ Ās , bt ∈ Āt . Let zi
F denote this unique payoff for player i in the restricted game

Ḡ F . Thus, in simple product-games, when play settles in one of the restricted games
Ḡ F , the rewards of the players will equal zF .

Example 2 Consider the simple product-game G with two players given in Fig. 2.
This game is obtained from the game in Example 1 by replacing all payoffs by 0 in the
restricted games corresponding to segments F(I,II ) = {(1, 2), (1, 3)} and F(II,I ) =
{(2, 1), (3, 1)}, and by replacing all payoffs for player 1 by 1 in the restricted game
corresponding to segment F(II,II ),1 = {(2, 2), (3, 3)}. This game is simple according
to the definition above.

Let us examine the players’ minmax-levels in G. For player 1, we argue that

v1
s =

{
0 if s∈F(II,I )∪F(II,II ),2 = {(2, 1), (3, 1), (2, 3), (3, 2)}
1 if s∈F(I,I ) ∪ F(I,II )∪F(II,II ),1 = {(1, 1), (1, 2), (1, 3), (2, 2), (3, 3)}. (6)

Obviously, v1
s = 0 for s ∈ {(2, 3), (3, 2)}, while player 1’s minmax-level is also 0

for initial states (2, 1) and (3, 1) in view of player 2’s first action. Now consider an
arbitrary other initial state s ∈ {(1, 1), (1, 2), (1, 3), (2, 2), (3, 3)}. Obviously, v1

s ≤ 1.

On the other hand, player 1 can guarantee reward 1 for state s by the pure stationary
strategy x1 which plays action 1 in states (1, 1) and (1, 2), while action 2 in state
(1, 3). Hence, v1

s = 1 indeed.

Fig. 2 Game of Example 2
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We similarly find that

v2
s = −v1

s (7)

for all s ∈ S.
Consider a state s ∈ S within a simple product-game, such that state si is of type 2

for player i . (Recall that a state is of type 2, if it belongs to a maximal communicating
set). Suppose that si belongs to a cyclic set T i

ki (m
i ) of a maximal communicating set

Ei
ki . Consider the situation in which player i can choose between one of the following

two options: (1) player i can choose any state t i in the next cyclic set T i
ki (m

i +1), and

the new state of the game becomes (t i , s−i ), or (2) player i can choose any action ai
s

in state si , and the new state of the game becomes (t i , s−i ), t i ∈ Si , with probability
pi

si ai
s
(t i ). Note that players −i remain in state s−i in either case. In the lemma below

we show that option 1 is always at least as good as option 2, as far as player i’s minmax-
level is concerned. We also show the validity of a similar statement for players −i .

The proof is far from straightforward. We provide an intuition for the lemma. Con-
sider player i and his two options described above. By taking option 1, player i is
certain to remain in the same maximal communicating set Ei

ki . On the other hand,

by playing an action ai
si in option 2, player i possibly leaves Ei

ki and strategically

restricts himself, as he will not be able to return to Ei
ki with probability 1 (cf. Property

2 of maximal communicating sets in Sect. 2). In this sense, waiting in Ei
ki provides

no worse future prospects.
As an illustration, we revisit the simple product-game in Example 2. Consider player

i = 1 and state s = (1, 1) belonging to the maximal communicating set E1
I = {1} for

player 1. As we know, E1
I is aperiodic, thus E1

I has only one cyclic set, i.e. E1
I . For

option 1 of player 1, consider t1=1 yielding state (1, 1); while for option 2, consider
action 2 yielding state (2, 1) with probability 1. As we know, v1

(1,1) = 1 ≥ 0 = v1
(2,1),

which means that option 1 is at least as good as option 2 indeed.

Lemma 5 Let G be a simple product-game. Take an arbitrary player i and a state
s = (si , s−i ) ∈ S.

(1) Suppose that state si is of type 2 for player i, and belongs to cyclic set T i
ki (m

i )

of some maximal communicating set Ei
ki . Consider any action ai

si ∈ Ai
si in state

si for player i. Then, for any state t i ∈ T i
ki (m

i + 1), we have

∑
ui ∈Si

pi
si ai

si
(ui ) vi

(ui ,s−i )
≤ vi

(t i ,s−i )
.

(2) Suppose that state s j is of type 2 for every player j �= i , and belongs to cyclic
set T j

k j (m
j ) of some maximal communicating set E j

k j . Thus, s−i ∈ T −i
k−i (m

−i ).

Consider any joint action a−i
s ∈ A−i

s for players −i. Then, for any joint state
t−i ∈ T −i

k−i (m
−i + 1), we have
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∑
u−i ∈S−i

p−i
s−i a−i

s−i
(u−i ) vi

(si ,u−i )
≥ vi

(si ,t−i )
.

Proof We only show part 1 of the lemma; part 2 can be proven similarly. Recall that λi
ki

denotes the period of the maximal communicating set Ei
ki . Let T i

ki (1), . . . , T i
ki (λ

i
ki )

denote the cyclic sets of Ei
ki , and suppose for simplicity that si ∈ T i

ki (1). Take an

action ai
si ∈ Ai

si and a state t i ∈ T i
ki (2). We need to prove that

∑
ui ∈Si

pi
si ai

si
(ui ) vi

(ui ,s−i )
≤ vi

(t i ,s−i )
. (8)

�
The idea of the proof Let ε > 0. We compare two specific games 
 and 
̃. The game

 is the original game G starting in state (t i , s−i ), whereas 
̃ is the game G which
starts in initial state (ui , s−i ) with probability pi

si ai
si
(ui ). We define two joint strategies

π for 
 and π̃ for 
̃ in such a way that the following properties hold:
Property (A) for π in 
: γ i

(t i ,s−i )
(π) ≤ vi

(t i ,s−i )
+ ε.

Property (B) for π̃ in 
̃: γ i
(ui ,s−i )

(π̃) ≥ vi
(ui ,s−i )

− ε, for every ui ∈ Si .
Property (C) for the rewards: π and π̃ yield the same expected rewards in, respec-

tively, 
 and 
̃, i.e.

γ i
(t i ,s−i )

(π) =
∑

ui ∈Si

pi
si ai

si
(ui ) γ i

(ui ,s−i )
(π̃).

It will then follow from properties (A), (B) and (C) that

∑
ui ∈Si

pi
si ai

si
(ui ) vi

(ui ,s−i )
≤

∑
ui ∈Si

pi
si ai

si
(ui ) (γ i

(ui ,s−i )
(π̃) + ε)

=
∑

ui ∈Si

pi
si ai

si
(ui ) γ i

(ui ,s−i )
(π̃) + ε

= γ i
(t i ,s−i )

(π) + ε

≤ vi
(t i ,s−i )

+ 2ε.

As ε > 0 was arbitrary, the proof will then be complete.

Construction of π−i in 
 Let π−i be a joint strategy for players −i in 
 such that
γ i
(t i ,s−i )

(π−i , σ i ) ≤ vi
(t i ,s−i )

+ ε for any strategy σ i for player i . Such a joint strategy

π−i exists by the definition of the minmax-level vi
(t i ,s−i )

. Thus, irrespective of the

choice of π i , property A will be satisfied.

Construction of π i for 
, and π̃−i and π̃ i for 
̃ These strategies are defined step by
step. Roughly speaking:
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(i) π̃−i for 
̃ is obtained by copying π−i in the sense of Lemma 14. Here, by copy-
ing we mean that the joint strategy π̃−i is going to “mimic” π−i by using the same
mixed actions. At this point, it is crucial that players −i start in s−i in both games 


and 
̃. This is discussed more precisely below. For the technical details, we refer to
Lemma 14 in Appendix.

(ii) π̃ i for 
̃ is then obtained by taking a strategy which defends player i’s minmax-
level v, up to ε, against π̃−i (cf. the discussion 1). Note that π̃ will satisfy property B.

(iii) π i for 
 is obtained by copying π̃ i in the sense of Lemma 14. Before starting
copying, though, π i is in an initial phase in which player i moves from state t i to si and
subsequently plays action ai

si , so that player i is in state ui with probability pi
si ai

si
(ui ),

just as in game 
̃. We now describe this initial phase more precisely. During this phase,
the strategy π i prescribes for player i to move from his initial state t i to state si , within
the maximal communicating set Ei

ki . This can be done by choosing according to the

uniform distribution an action from the set Āi
wi in every state wi ∈ Ei

ki . Note that, as

the game 
 starts in t i ∈ T i
ki (2), player i is in cyclic set T i

ki (1) at stages of the form

l · λi
ki , for all l ∈ N. So, si can be reached at stages l · λi

ki , for large l ∈ N. Recall that

λ denotes the period of the whole game G (so λ is also the period of 
 and 
̃). Thus,
λ is a multiple of λi

ki . Hence, si can also be reached at stages l · λ, for large l ∈ N.

Now, let π i prescribe to move to si this way, and when player i is in si at a stage l · λ,

then to play action ai
si . (It will be important for property C that player i uses a stage

of the form l · λ, and not only l · λi
ki . See the example after the proof).

Now, we define these strategies more precisely. Note that, as soon as π̃−i is defined
up to some stage m, so is π̃ i .

At stage 1: The history is empty. For all ui ∈ S, let

π̃−i
(ui ,s−i )

(∅) := π−i
(t i ,s−i )

(∅),

which means that, in any initial state (ui , s−i ) of 
̃, the joint strategy π̃−i prescribes
the same joint mixed action as π−i in the initial state (t i , s−i ) of 
. Note that in both
cases, players −i are in joint state s−i . Moreover, Lemma 14 would prescribe the same
mixed action for π̃−i , when copying π−i .

Given π̃−i at stage 1, we know π̃ i at stage 1 as well. At stage 1, π i is still in the
initial phase described in (iii). Hence, π i is defined at stage 1.

At an arbitrary stage m: Given (π i , π−i ) for stages up to m − 1, and π−i for stage
m, the joint strategy π̃−i copies π−i at stage m in the sense of Lemma 14. Given π̃−i

up to stage m, we know π̃ i up to stage m as well.
As for π i , there are three cases. (1) If player i has not reached si at a stage l ·λ, then

he continues trying to get to si as prescribed in (iii) above. (2) If he has just arrived
at si at stage m = l · λ, then he plays action ai

si , in accordance with (iii) above. (3)

Suppose that player i has reached si at a stage l ·λ and played action ai
si . Then, player

i was in state ui at stage l · λ + 1 with probability pi
si ai

si
(ui ), just as in the game 
̃ .

By regarding this as the initial state and stage, π i copies π̃ i in the sense of Lemma 14,
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based on (π̃ i , π̃−i ) up to stage m. (So, π i for stage m = l · λ + m′ is a copy of π̃ i at
stage m′).
The joint strategies satisfy properties A, B and C Now we verify properties A, B and
C, which will complete the proof of the lemma. As mentioned above, properties A
and B are satisfied due to the definitions of π−i and π̃ i , respectively.

It remains to verify property C. Consider the joint strategies π = (π i , π−i ) in 


and π̃ = (π̃ i , π̃−i ) in 
̃. We know that, with respect to any joint strategy and initial
state, play eventually settles in a segment (or equivalently, in a restricted game), with
probability 1. Since the game G (and therefore 
 and 
̃ too) is simple, by definition,
the payoffs are constant in each restricted game Ḡ F . Hence, in order to show C, it
suffices to show that the probability that play settles in a segment F (or in the corre-
sponding restricted game Ḡ F ) is the same with respect to π = (π i , π−i ) in 
 and
π̃ = (π̃ i , π̃−i ) in 
̃.

Take an arbitrary segment F within some Ek = ×n
j=1 E j

k j , where, as usual, E j
k j

denotes a maximal communicating set for player j . For any player j , state u j ∈ E j
k j

and stage m j , let ω j (u j , m j ) denote the event that player j settles in E j
k j in state

u j at stage m j . Since π̃−i is a copy of π−i , event ω j (u j , m j ), for any j �= i and
any u j ∈ E j

k j and stage m j , has the same probability with respect to π = (π i , π−i )

in 
 and with respect to π̃ = (π̃ i , π̃−i ) in 
̃. By construction, π i is also a copy
of π̃ i , with a “delay” of l · λ stages. Therefore, event ωi (ui , mi ), for any ui ∈ Ei

ki

and stage mi , has the same probability with respect to π̃ = (π̃ i , π̃−i ) in 
̃ as event
ωi (ui , mi + l ·λ) with respect to π = (π i , π−i ) in 
. Since λ, the period of the whole
game, is a multiple of the period λi

ki , so is the “delay” l ·λ. Hence, the probability that

play settles in F is the same with respect to π = (π i , π−i ) in 
 and π̃ = (π̃ i , π̃−i )

in 
̃. This completes the proof.
As an illustration of the proof of Lemma 5, consider the game with two players

given in Fig. 3. The underlying Markov transition structure for player 1 is as follows.
Player 1 has 5 states, corresponding to the rows. He can move along the cycles on
states {1, 2} or on states {3, 4, 5}. Additionally, he can move from state 1 to state 3. As
for player 2, he has 6 states, corresponding to the columns. Player 2 can move from
state 1 to states 2 and 3, from state 2 to state 1, and from state 3 to states 1 and 4.
Further, player 2 has a cycle on states {4, 5, 6}. As there are cycles of lengths 2 and
3, the game has period λ = 6. We want to focus on the transitions, so the payoffs are
omitted.

Consider part 1 of Lemma 5, and take player i = 2 and state s = (1, 1). Note that
{1, 2, 3} is a maximal communicating set of player 2, with cyclic sets {1} and {2, 3}.
Consider the action for player 2 in state 1, say action a2

1 , which moves him to state 3.
Then, according to part 1 of Lemma 5, we should have v2

(1,3) ≤ v2
(1,2).

Suppose, as in the proof of the lemma, that the game 
 starts in state (1, 2), while
the game 
̃ starts in state (1, 3). In the picture, the x-path will show how play develops
in 
̃, while the y-path will show how play develops in 
 before joining the x-path.
Suppose that π1 = π−i in 
 prescribes for player 1 in state (1, 2) to move to state
3. As, afterwards, player 1 can only move along the cycle {3, 4, 5}, the strategy π1 is
unique for the rest of play. As π̃1 = π̃−i is a copy of π1, the strategy π̃1 prescribes in
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Fig. 3 Illustration for Lemma 5


̃ for player 1 in state (1, 3) to also move to state 3, and subsequently to move along
the cycle {3, 4, 5}. Assume that π̃2 = π̃ i in 
̃ prescribes for player 2 in state (1, 3)

to move to state 4. Afterwards, player 2 can only move along the cycle {4, 5, 6} for
the rest of play. Now, as described in the proof, the strategy π2 = π i in 
 will copy
π̃2 after an initial phase. In this initial phase, player 2 has to reach state 3 at a stage
of the form l · λ + 1, where 
̃ started. Recall that λ = 6. In Fig. 3, in the y-path,
player 2 arrives at state 3 at stage 7 = 6+1. After this, player 2 will copy strategy π̃2,
and accordingly, he moves to state 4 and then follows the cycle {4, 5, 6}. As we can
see, play in 
 (the y-path moving onto the x-path) and play in 
̃ (the x-path) come
together in the same segment, i.e. segment {(3, 4), (4, 5), (5, 6)}.

It is essential that player 2 waits for a stage l · λ + 1 before closing the initial phase
of π2. In our case, player 2’s first visit to state 3 is at stage 3, when play in 
 is in
state (4, 3). If player 2 decided to start copying π̃2, then, after state (4, 3), the y-path
would continue (5, 4), (3, 5), and so on, yielding a different segment, i.e. segment
{(3, 5), (4, 6), (5, 4)}.

Remark A special case of Lemma 5 arises when the product-game is aperiodic. Con-
sider part 1 of the Lemma 5. Then, as T i

ki (m
i ) = T i

ki (m
i + 1) = Ei

ki , we obtain for

every action ai
si of player i that

∑
ui ∈Si

pi
si ai

si
(ui ) vi

(ui ,s−i )
≤ vi

(si ,s−i )
. (9)

This means that even if player i had a solitary move, i.e. he could play an arbitrary
action ai

si in state (si , s−i ), while every other player j remains in the same state s j ,
he would not be able to improve on his minmax-level in expectation. This was in fact
the central result for the aperiodic case in Flesch et al. (2008b) (cf. Lemma 3.2).
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This is, however, no longer valid for periodic product-games. In the game in exam-
ple 2, for instance, a solitary move for player 1 in state (3, 2) would lead to state (2, 2),

improving player 1’s minmax-level. Hence, inequality ( 9) would not hold.
Suppose player i is in a state of type 2 within a maximal communicating set Ei

ki .

We show that, irrespective of the joint action chosen by players −i , the actions which
keep him in Ei

ki with probability 1 provide the best expected minmax-level after the
transition.

Lemma 6 Let G be a simple product-game. Take an arbitrary player i.

(1) Let s ∈ S be such that si is of type 2. Consider any actions ai
s ∈ Āi

s and bi
s ∈ Ai

s
for player i and any joint action a−i

s ∈ A−i
s for players −i. Then,

∑
t∈S

ps,(ai
s ,a

−i
s )

(t) vi
t ≥

∑
t∈S

ps,(bi
s ,a

−i
s )

(t) vi
t .

(2) Let s ∈ S be such that s j is of type 2 for all players j �= i . Consider any joint
actions a−i

s ∈ Ā−i
s and b−i

s ∈ A−i
s for players −i and any action ai

s ∈ Ai
s for

player i. Then,

∑
t∈S

ps,(ai
s ,a

−i
s )

(t) vi
t ≤

∑
t∈S

ps,(ai
s ,b

−i
s )

(t) vi
t .

Proof We prove part 1; the proof of part 2 is similar.
Since si is of type 2, si belongs to a cyclic set T i

ki (m
i ) of some maximal communi-

cating set Ei
ki . Then, by playing action ai

s , player i actually moves to the next cyclic

set T i
ki (m

i + 1). Hence, by part 1 of Lemma 5, for any t−i ∈ S−i we have

∑
t i ∈Si

pi
si ai

s
(t i ) vi

(t i ,t−i )
≥

∑
t i ∈Si

pi
si bi

s
(t i ) vi

(t i ,t−i )
.

Therefore,

∑
t∈S

ps,(ai
s ,a

−i
s )

(t) vi
t =

∑
t−i ∈S−i

p−i
s−i a−i

s
(t−i )

⎡
⎣ ∑

t i ∈Si

pi
si ai

s
(t i ) vi

(t i ,t−i )

⎤
⎦

≥
∑

t−i ∈S−i

p−i
s−i a−i

s
(t−i )

⎡
⎣ ∑

t i ∈Si

pi
si bi

s
(t i ) vi

(t i ,t−i )

⎤
⎦

=
∑
t∈S

ps,(bi
s ,a

−i
s )

(t) vi
t ,

completing the proof. �
Lemma 6 has useful implications. Suppose that player i is in a state of type 2

within a maximal communicating set Ei
ki . By using Lemma 6, we can deduce that
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any action of player i, which keeps him in Ei
ki with probability 1, guarantees that his

minmax-level cannot decrease in expectation after a transition. A similar result holds
for players −i .

Corollary 7 Let G be a simple product-game. Take an arbitrary player i.

(1) Let s ∈ S be such that si is of type 2. Consider any action ai
s ∈ Āi

s for player i
and any joint action a−i

s ∈ A−i
s for players −i. Then,

∑
t∈S

ps,(ai
s ,a

−i
s )

(t) vi
t ≥ vi

s .

(2) Let s ∈ S be such that s j is of type 2 for all players j �= i . Consider any joint
action a−i

s ∈ Ā−i
s for players −i and any action ai

s ∈ Ai
s for player i. Then,

∑
t∈S

ps,(ai
s ,a

−i
s )

(t) vi
t ≤ vi

s .

Proof We prove part 1; the proof of part 2 is similar. Take a state s, action ai
s and

joint action a−i
s as in part 1. From part 1 of Lemma 6, we have for any joint action

b−i
s ∈ A−i

s that

∑
t∈S

ps,(ai
s ,b

−i
s )

(t) vi
t = max

bi
s∈Ai

s

∑
t∈S

ps,(bi
s ,b

−i
s )

(t) vi
t .

Hence, by linearity, we may conclude for mixed actions x−i
s ∈ X−i

s for players −i in
state s that

∑
t∈S

ps,(ai
s ,x

−i
s )

(t) vi
t = max

bi
s∈Ai

s

∑
t∈S

ps,(bi
s ,x

−i
s )

(t) vi
t = max

xi
s∈Xi

s

∑
t∈S

ps,(xi
s ,x

−i
s )

(t) vi
t .

Therefore,

∑
t∈S

ps,(ai
s ,a

−i
s )

(t) vi
t ≥ min

x−i
s ∈X−i

s

∑
t∈S

ps,(ai
s ,x

−i
s )

(t) vi
t

= min
x−i

s ∈X−i
s

[
max
xi

s∈Xi
s

∑
t∈S

ps,(xi
s ,x

−i
s )

(t) vi
t

]

= vi
s,

where the last equality is due to (2). �
The next corollary derives an important property of the minmax-levels on segments.

Corollary 8 Let G be a simple product-game, and F a segment. Then, the minmax-
level vi of every player i is constant on F, i.e. vi

s = vi
t (=: vi

F ) for all s, t ∈ F.
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Proof Take a player i and let αi := maxs∈F vi
s , which is the highest minmax-level on

F for player i . Let U = {s ∈ F |vi
s = αi }. We need to show that U = F . Suppose

by way of contradiction that U � F . Since all states within segment F communicate
through joint actions as ∈ Ās, s ∈ F, there must exist a state s ∈ U and a joint action
as ∈ Ās such that as induces a transition to F − U with a positive probability. But
then ∑

t∈S

psas (t) vi
t < vi

s,

which contradicts part 1 of Corollary 7. Hence, U = F . �
As an illustration, consider the simple product-game in Example 2. In view of (6)

and (7), we find, in accordance with the corollary above, that both players minmax-
levels are constant on each segment.

Lemma 9 Let G be a simple product-game. Take an arbitrary player i.

(1) Consider a cyclic set T i
ki (m) of some maximal communicating set Ei

ki for player

i . Then, for any two states si , t i ∈ T i
ki (m) and any joint state s−i∈S−i of players

−i, the minmax-level of player i satisfies vi
(si ,s−i )

= vi
(t i ,s−i )

.

(2) Consider a cyclic set T j
k j (m

j ) of some maximal communicating set E j
k j for all

players j �= i . Then, for any two joint states s−i , t−i ∈ × j �=i T
j

k j (m
j ) and any

state si ∈ Si of player i, the minmax-level of player i satisfies vi
(si ,s−i )

= vi
(si ,t−i )

.

Proof We prove part 1; the proof of part 2 is similar.
Take any joint state s−i∈S−i for players −i . Let si∈T i

ki (m) be such that vi
(si ,s−i )

≤
vi
(wi ,s−i )

for all wi ∈ T i
ki (m), and let t i ∈ T i

ki (m). It suffices to show that vi
(si ,s−i )

=
vi
(t i ,s−i )

.

Take any state ui ∈ T i
ki (m − 1), with T i

ki (0) := T i
ki (λ

i
ki ), and an action ai

ui ∈ Āi
ui

such that ai
ui in state ui induces transition to state t i with a positive probability (obvi-

ously, such a state and action exist, due to the definitions of cyclic sets). Note that part
1 of Lemma 5 yields

∑
wi ∈Si

pi
ui ai

ui
(wi ) vi

(wi ,s−i )
≤ vi

(si ,s−i )
.

As action ai
ui in state ui only induces transition to states in T i

ki (m), by the choice of si ,

we have vi
(si ,s−i )

= vi
(wi ,s−i )

for all wi ∈ Si for which pi
ui ai

ui
(wi ) > 0. In particular,

vi
(si ,s−i )

= vi
(t i ,s−i )

, which completes the proof. �

Recall that, in simple product-games, zi
F denotes the unique payoff for player i in

the restricted game Ḡ F . When zi
F ≥ vi

F for every player i , i.e. when the restricted
game Ḡ F is satisfactory for all players, then we can let the players stay in F and collect
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the individually rational rewards zF . However, we still have to examine what happens
in the situation where zi

F < vi
F for some player i , i.e. when the restricted game Ḡ F

is unsatisfactory for player i . The next lemma proposes a way for player i to exit Ḡ F ,
by playing a certain action ai

s in one of the cyclic sets of F . A similar result holds for
players −i .

Lemma 10 Let G be a simple product-game, and F a segment within some Ek=×n
i=1

Ei
ki for some k = (k1, . . . , kn) ∈ K . Suppose that F has cyclic sets of the form (cf. 3)

TF (m) := T 1
k1(m) × · · · × T n

kn (m), m = 1, . . . , λk .

Consider player i . Let zi
F denote player i’s unique payoff in the restricted game Ḡ F ,

and vi
F be player i’s minmax-level on F in the game G (a constant, cf. Corollary 8).

(1) Suppose zi
F < vi

F . Then, for player i , there exists an m ∈ {1, . . . , λk}, a state
si ∈ T i

ki (m), and an action ai
si ∈ Ai

si − Āi
si in state si such that if player i plays

action ai
si in any state s = (si , s−i )∈TF (m), then player i’s minmax-level cannot

decrease in expectation from state s, regardless of the actions played by players −i .
More precisely, for any a−i

s ∈ A−i
s we have

∑
t∈S

ps,(ai
si ,a

−i
s )

(t) vi
t ≥ vi

F .

(2) Suppose zi
F > vi

F . Then, for players −i , there exists an m ∈ {1, . . . , λk}, a
joint state s−i ∈ T −i

k−i (m), and a joint action a−i
s−i ∈ A−i

s−i − Ā−i
s−i (i.e. at least one

player j �= i plays outside Ā j
s j ) in joint state s−i such that if players −i play joint

action a−i
s−i in any state s = (si , s−i ) ∈ TF (m), then player i’s minmax-level cannot

increase in expectation from state s , regardless of the action played by player i . More
precisely, for any ai

s ∈ Ai
s we have

∑
t∈S

ps,(ai
s ,a

−i
s−i )

(t) vi
t ≤ vi

F .

The proof is analogous to the proof of lemma 3.6 for aperiodic product-games in
Flesch et al. (2008a). We also refer to Flesch et al. (2008b). Here, we provide only a
brief outline for part 1; the proof of part 2 is similar. In part 1, due to zi

F < vi
F , when

starting in segment F, player i can only defend his minmax-level vi
F if he leaves F.

Therefore, there must be at least one state s∗ ∈ F, joint action a−i
s∗ ∈ Ā−i

s∗ for players
−i and action ai

s∗ ∈ Ai
s∗ − Āi

s∗ for player i such that

∑
t∈S

ps∗,(ai
s∗ ,a−i

s∗ )
(t) vi

t ≥ vi
F .

Take the unique m ∈ {1, . . . , λF } for which s∗ ∈ TF (m). One can show that this m,
state s∗i and action ai

s∗ satisfy part 1 of the lemma. Notice that, as ai
s∗ guarantees for
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player i in state s∗ a minmax-level of at least vi
F against a−i

s∗ ∈ Ā−i
s∗ , based on part 2

of corollary 6, it cannot do worse against other joint actions of players −i in state s∗.
It is not very difficult to verify this for all states of the form s = (s∗i , s−i ) ∈ TF (m).

As an illustration for part 1 of Lemma 10, we revisit the simple product-game in
Example 2. Consider the segment F(I,II ) = {(1, 2), (1, 3)}, where v1

F(I,II )
= 1 >

0 = z1
F(I,II )

, by (6). Segment F(I,II ) has period 2 and two cyclic sets, i.e. TF(I,II ) (1) =
{(1, 2)} and TF(I,II ) (2) = {(1, 3)}. Notice that player 1 can exit F(I,II ) through action
2 in state (1, 3), and by doing so, play moves to state (2, 2), where his minmax-level
is v1

(2,2) = 1. Note that v1
(2,2) ≥ v1

(1,3), in accordance with part 1 of the lemma. Thus,

one can choose m = 2, s1 = 1 and a1
s1 = 2.

4.3 The minmax-levels in general product-games

Take an arbitrary product-game G. The next lemma presents a natural way of trans-
forming G into a simple product-game G̃, by replacing payoffs by minmax-levels,
and claims that the minmax-levels of the players remain unchanged under this trans-
formation. The idea to replace payoffs by minmax-levels, in the context of stochastic
games, also appeared in Solan (1999) and in a more sophisticated way in Solan and
Vohra (2002).

Lemma 11 Take an arbitrary product-game G, with vi
s denoting the minmax-level

for every player i in every state s ∈ S. Let v̄i
F denote player i’s minmax-level in

every restricted game Ḡ F (which is constant, cf. lemma 3). Let G̃ denote the simple
product-game which is derived from G by replacing every player i’s payoffs in every
restricted game Ḡ F by his minmax-level v̄i

F . Further, let wi
s denote every player i’s

minmax-level in G̃ in state s.
Then, the minmax-levels of the product-games G and G̃ are equal, i.e. vi

s = wi
s for

all players i and for all states s ∈ S.

The proof is analogous to the proof of lemma 3.6 in Flesch et al. (2008a). We also
refer to Flesch et al. (2008b). Here, we provide only an outline of the proof. We will
argue that vi

s ≤ wi
s for all states s ∈ S. Since vi

s ≥ wi
s for all s ∈ S follows in a similar

fashion, the proof will then be complete.
In order to show that vi

s ≤ wi
s for all s ∈ S, we will prove for the game G that

players −i have a joint stationary strategy x−i which guarantees that player i’s reward
from any initial state s ∈ S is at most wi

s, i.e. for all strategies π i for player i we have

γ i
s (π i , x−i ) ≤ wi

s . (10)

By applying Corollary 8 to the game G̃, we deduce that the minmax-level wi
s equals

some constant wi
F on every segment F . We construct the joint stationary strategy x−i

by distinguishing three mutually exclusive cases.
Case 1: States s ∈ S which do not belong to any segment: in this case, let x−i

s ∈ X−i
s

be a joint mixed action for players −i such that for any mixed action xi
s ∈ Xi

s of player
i we have
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∑
t∈S

ps,(x−i
s ,xi

s )
(t) wi

t ≤ wi
s .

By expression (2) for player i’s minmax-level wi in G̃, such a joint mixed action exists.
Case 2: In a segment F with v̄i

F ≤ wi
F : In this case, players −i play a joint station-

ary strategy in the corresponding restricted game Ḡ F (which is a part of the original
game G) as in lemma 3.

Case 3: In a segment F with v̄i
F > wi

F : In this case, part 2 of Lemma 10 (for the
game G̃ with minmax-level wi for player i) provides a joint “exit” state and a joint
“exit” action for players −i . So, in this state players −i play this “exit” action, while
in all other states s ∈ F they play an arbitrary joint completely mixed action on Ā−i

s .
Take an arbitrary strategy π i for player i, and consider (π i , x−i ) with an arbitrary

initial state s ∈ S. As we know, play will eventually settle in a restricted game Ḡ F .
Observe that (1) the minmax-level wi cannot increase in expectation until settling in
Ḡ F (in case 1 by the definition of x−i , while in cases 2 and 3 by part 2 of Corollary 7
and part 2 of Lemma 10); and (2) the segment F can only belong to case 2 (due to
the exits in case 3), offering player i a reward of at most v̄i

F ≤ wi
F . Combining these

two observations, it follows easily that player i’s reward is at most wi
s in expectation,

proving (10).
For an illustration of the above lemma, we refer to the games in Examples 1 and 2.

Indeed, the product-game in Example 1 (which is now game G with minmax-levels v)
leads to the simple product-game in Example 2 (which is now game G̃ with min-
max-levels w). Just as in the proof of the above lemma, we can construct a stationary
strategy y1 for player 1 (y1 being x−2 for players −i with i = 2) which guarantees in
G that player 2’s reward is not more than w2

s for all initial states s ∈ S. Recall from
(7) and (6) that

w̄2
F(I,I )

= −1, w̄2
F(I,II )

= −1, w̄2
F(II,I )

= 0, w̄2
F(II,II ),1

= −1, w̄2
F(II,II ),2

= 0.

and from (5) and (4) that player 2’s minmax-levels within the restricted games are

v̄2
F(I,I )

= −1, v̄2
F(I,II )

= 0, v̄2
F(II,I )

= 0, v̄2
F(II,II ),1

= −1, v̄2
F(II,II ),2

= 0.

Following the proof, as the segments F(I,I ), F(II,I ) and F(II,II ),1 and F(II,II ),2 all
belong to case 2 (i.e. v̄2

F ≤ w2
F when F equals any of these four segments F), the

strategy y1 has to guarantee in the corresponding restricted games that player 2’s
reward in G is not more than v̄2

F . Also, y1 has to leave F(I,II ), belonging to case 3
(i.e. v̄2

F(I,II )
> w2

F(I,II )
). It is easy to see that the pure stationary strategy y1 which

plays action 1 in states (1, 1) and (1, 2), while action 2 in state (1, 3) satisfies all these
requirements.

Lemma 11 (and its proof) has useful consequences.

Corollary 12 The results of Lemmas 5 and 6, Corollaries 7 and 8, and Lemma 9 are
valid for any general product-game G. Lemma 10 extends as well if one interprets zi

F
as the minmax-level v̄i

F of player i in the restricted game Ḡ F .
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Also, in view of the joint stationary strategy x−i in the proof of Lemma 11, the
infimum in expression (1) of the minmax-levels is attained at stationary strategies, for
all product-games. This is stated next.

Corollary 13 (of the proof of lemma 11) Take a product-game G and an arbitrary
player i . Then, players −i have a joint stationary strategy x−i which guarantees that
player i’s reward from any initial state s ∈ S is at most his minmax-level vi

s, i.e. for
all strategies π i for player i we have

γ i
s (π i , x−i ) ≤ vi

s .

With the help of this corollary, we are now ready to prove Theorem 2, which claimed
that, in every two-player zero-sum product-game, both players have a stationary
0-optimal strategy.

Proof of Theorem 2 Take an arbitrary two-player zero-sum product-game, and take
player i = 1. By corollary 13, there exists a stationary strategy x−1 for player 2 (as
players −1 is simply player 2) which guarantees that player 1’s reward is not more
than v1

s for any initial state s ∈ S. Hence, x−1 is 0-optimal for player 2. One finds
similarly a stationary 0-optimal strategy for player 1, which completes the proof.

Thus, in our illustrative game in Example 1, the pure stationary strategy y1 for
player 1 which plays action 1 in states (1, 1) and (1, 2), while action 2 in state (1, 3)

is 0-optimal. �

4.4 The construction of 0-equilibria in product-games

This section is devoted to the proof of theorem 1. The proof is analogous to the proof
for the aperiodic case in Flesch et al. (2008a). We also refer to Flesch et al. (2008b).

We provide a general idea of the construction of a 0-equilibrium η. The equilibrium
η will prescribe that all players follow a joint strategy π , unless some player i deviates
by playing an action outside the support of π i (i.e. an action on which π i puts prob-
ability zero). If player i deviates in such a way, then from the next state, say state s,
players −i switch to a joint stationary strategy y−i as in Corollary 13 and push down
player i’s reward to his minmax-level vi

s . In fact, y−i acts as a threat strategy, whose
task is to force player i to follow the prescriptions of π i . Finally, our construction
will guarantee that no deviation inside the support of π i (such deviations are hard to
detect) is profitable for any player i .

Now let us briefly describe the construction of π , which also shows a number of
similarities with the construction in Vieille (2000a,b). The joint strategy π prescribes
play in the following way:

(1) When entering some segment F, with F ∈ F∗ (i.e. the corresponding restricted
game Ḡ F is satisfactory for all players): In this case, π will prescribe to stay on F and
play an equilibrium in Ḡ F as in Lemma 4. Here, the players have no reason to leave
and collect “high” payoffs. (Cf. solvable sets in Vieille 2000a,b).

(2) When entering some segment F, with F ∈ F[i] (i.e. the corresponding restricted
game Ḡ F is unsatisfactory for player i ): In this case, π will prescribe for players −i
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to play a joint stationary strategy as in Lemma 3, whereas for player i to leave Ei
ki

(and thereby to leave F) through moving to his “exit” state and subsequently to play
his “exit” action provided by part 1 of 10. Note that player i is happy to leave F as he
recieves at most v̄i

F if he stays in F due to players −i strategies, while v̄i
F < vi

F as
F ∈ F[i]. (Cf. controlled sets in Vieille 2000a,b).

(3) Outside all joint maximal communicating sets: In these states, which are tran-
sient, π will let the players play for their future perspectives, given their behavior in
the segments according to (1) and (2) above.

Note that, according to π , play will surely settle in a restricted game belonging to
case (1).

Finally, let us revisit the game in Example 1. As we know, the minmax-levels of
this game coincide with the minmax-levels of the game in Example 2, hence by (6)
and (7), we have that

v1
F(I,I )

= 1, v1
F(I,II )

= 1, v1
F(II,I )

= 0, v1
F(II,II ),1

= 1, v1
F(II,II ),2

= 0

and v2
F = −v1

F for all segments F . Recall from (4) and (5) that the players minmax-
levels within the restricted games are

v̄1
F(I,I )

= 1, v̄1
F(I,II )

= 0, v̄1
F(II,I )

= 0, v̄1
F(II,II ),1

= 1, v̄1
F(II,II ),2

= 0

and v̄2
F = −v̄1

F for all segments F . Hence, regarding which segments are satisfactory,
we obtain that F(I,I ), F(II,I ) and F(II,II ),1 and F(II,II ),2 all belong to F∗ (i.e. v̄F ≤ vF

when F equals any of these four segments), whereas F(I,II ) belongs to F∗[1].
Consider the stationary strategy x1 for player 1 which plays action 1 in states (1, 1)

and (1, 2), while action 2 in state (1, 3), and the stationary strategy x2 for player 2
which plays action 1 in all states. This pair (x1, x2) actually could play the role of π in
this example. Indeed, in each restricted game Ḡ F corresponding to segments F ∈ F∗,
the pair (x1, x2) lets the players play a 0-equilibrium, while x1 leaves segment F(I,II ).

Notice that no threat strategies are needed here, so (x1, x2) is a 0-equilibrium.

Appendix

Consider an arbitrary (non-empty) collection of players N ′ ⊂ N . Then, by a history
for players N ′ we mean the sequence of past joint states of players N ′ and the past joint
actions played by players N ′. Formally, if the history is h = (u1, a1, . . . , um, am),
where ul and al denote the state and joint action for any stage l = 1, . . . , m, then the
history of players N ′ is simply hN ′ = (uN ′

1 , aN ′
1 , . . . , uN ′

m , aN ′
m ).

Take a joint strategy π with some initial state s ∈ S. Then, π from state s generates
a probability distribution on all possible histories for players N ′. The following lemma
claims that, given players N ′ start in state s N ′

, they can generate this probability dis-
tribution on their histories, even against other strategies of players outside N ′. This
lemma is hardly surprising as, in a product-game, each player controls play on his own
coordinate only.
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Lemma 14 Let π be an arbitrary joint strategy, and s ∈ S be some initial state. Con-
sider an arbitrary (non-empty) collection of players N ′ ⊂ N . Then, there exists a joint
strategy σ N ′ = (σ i )i∈N ′ for players in N ′ such that for any state t N−N ′ ∈ SN−N ′

and
any joint strategy σ N−N ′ = (σ i )i∈N−N ′ for players outside N ′, we have

P
(s N ′

,t N−N ′
),σ

(hN ′
m ) = Psπ (hN ′

m ) (11)

for any joint history hN ′
m of players in N ′, up to any stage m ∈ N. Moreover, the joint

mixed actions prescribed by σ N ′
in any state u ∈ S at any stage m only depend on

uN ′
, on the history of players N ′, and on the joint mixed actions prescribed by π at

stages 1, . . . , m − 1 and by π N ′
at stage m.

Proof The construction of σ i for each player i ∈ N ′ is simple. Consider some current
state um ∈ S at stage m and some history hm = (s1, a1, . . . , sm−1, am−1). If the prob-
ability that hN ′

m occurs and uN ′
m becomes the current state for players N ′ is zero, with

respect toπ and initial state s, then the mixed actionσ i
um

(hm) is arbitrary. Otherwise, let

σ i
um

(hm)(ai
m) :=

∑
h̃m ,̃um

Psπ (̃hm, ũm | hN ′
m , uN ′

) · π i
ũm

(̃hm)(ai
m) = Psπ (ai

m | hN ′
m , uN ′

m );

(12)

that is, player i should play action ai
m with the same probability as according to the

joint strategy π conditionally on joint history hN ′
m and current state uN ′

m for players N ′.
Given σ N ′ = (σ i )i∈N ′ , one can show (11) by using induction on m. �
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