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1. Introduction Stochastic games and product-games. An n-player stochastic game is given
by (1) a set of players N = {1, . . . , n}, (2) a nonempty and finite set of states S, (3) for each state
s ∈ S, a nonempty and finite set of actions Ai

s for each player i, (4) for each state s ∈ S and each joint
action as ∈ ×i∈NAi

s, a payoff ri
s(as) ∈ R to each player i, (5) for each state s ∈ S and each joint action

as ∈ ×i∈NAi
s, a transition probability distribution psas

= (psas
(t))t∈S .

The game is to be played at stages in N in the following way. Play starts at stage 1 in an initial state,
say in state s1 ∈ S. In s1, each player i ∈ N has to choose an action ai

1 from his action set Ai
s1

. These
choices have to be made independently. The chosen joint action a1 = (a1

1, . . . , a
n
1 ) induces an immediate

payoff ri
s1

(a1) to each player i. Next, play moves to a new state according to the transition probability
distribution ps1a1

, say to state s2 ∈ S. At stage 2, a new action ai
2 ∈ Ai

s2
has to be chosen by each player

i in state s2. Then, given action combination a2 = (a1
2, . . . , a

n
2 ), player i receives payoff ri

s2
(a2) and the

play moves to some state s3 according to the transition probability distribution ps2a2
, and so on. We

assume complete information (i.e. the players know all the data of the stochastic game), full monitoring
(i.e. the players observe the present state and the actions chosen by all the players), and perfect recall
(i.e. the players remember all previous states and actions).

A Markov transition structure Γi for player i ∈ N is given by (1) a nonempty and finite state space Si;
(2) a nonempty and finite action set Ai

si for each state si ∈ Si; (3) a transition probability distribution
pi

siai

si

over the state space Si for each state si ∈ Si and for each action ai
si ∈ Ai

si . Note that, if we also

assigned a payoff in every state to every action, then we would obtain the well-known model of Markov
decision problems for player i.

We will now consider a special type of n-player stochastic games, called product-games, in which the
transition structure is derived by taking the product of n Markov transition structures. A product-game
G, associated to the Markov transition structures Γ1,Γ2, . . . ,Γn, is an n-player stochastic game for which
(1) the set of players is N = {1, . . . , n} ; (2) the state space is S = S1×· · ·×Sn; (3) the action set for each
player i ∈ N in each state s = (s1, . . . , sn) ∈ S is Ai

s = Ai
si ; (4) the transition probability distribution

psas
, for each state s = (s1, . . . , sn) ∈ S and for each joint action as = (a1

s, . . . , a
n
s ) ∈ ×i∈NAi

s, is

psas
(s̄) =

∏

i∈N

pi
siai

s
(s̄i)

for state s̄ = (s̄1, . . . , s̄n) ∈ S. Note that there is no condition imposed on the payoff structure.

Observe that (1) the action space of player i only depends on the i-th coordinate of the state, (2) the

1
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i-th coordinate of the transitions from any state s only depend on the i-th coordinate si of the state and
on the action ai

s chosen by player i, i.e. for any s̄i ∈ Si we have

psas
(S1, . . . , Si−1, s̄i, Si+1, . . . , Sn) = pi

siai
s
(s̄i).

Therefore, as far as the actions and the transitions are concerned, player i can play on the i-th coordinate
of the game G without the interference of the other players. As a consequence, play of the product game
G can be viewed as simultaneous play of the n Markov transition structures Γ1, . . . ,Γn, which are linked
by payoff functions r1, . . . , rn that may depend on all n current states as well as on all n actions chosen
by the players.

Product-games have been introduced in Altman et al. (2005) [1], although in a somewhat different
fashion. They only examined two-player games in which the sum of the payoffs is always equal to zero
(zero-sum games), and dropped the assumption of full monitoring by letting each player only observe his
own coordinate of the present state and only the action chosen by himself. As a result, both players have
to make choices without noticing anything about the other player’s behavior. They showed that a linear
programming formulation is sufficient to solve these games, i.e. to find the value and stationary optimal
strategies (cf. the definitions below).

Note that the class of product-games, as defined in our paper, differs essentially from other known
classes of n-player stochastic games. Stochastic games with a single controller, i.e. when one player
controls the transitions, however, fall into the class of product-games. Indeed, a stochastic game which is
controlled by player i can be seen as a product-game in which Sj is a singleton for all players j 6= i. Finally,
we wish to mention the class of stochastic games with additive transitions (AT-games, cf. Flesch et al.
(2007) [8]), i.e. when the transitions are additively decomposable into player-dependent components, in
contrast with a product decomposition. Not surprisingly, the structure of product-games and AT-games
differ essentially, and product-games require new ideas and an entirely different approach.

From now on, we will consequently use the upper-index for the player and the lower-index for the state.
Whenever one of them is omitted, we will then mean a vector in the case of quantities and a product in
the case of sets, for all possible players or states respectively. For example, Ai denotes ×s∈SAi

s. Finally,
we denote the set of opponents of any player i by −i := N −{i}. Then, −i in the upper-index will mean
a vector or product for all players j 6= i. For example, S−i denotes ×j∈N−{i}S

j .

Strategies. A mixed action xi
s for player i in state s ∈ S is a probability distribution on Ai

s. The
set of mixed actions for player i in state s is denoted by Xi

s. A mixed action is called completely mixed,
if it assigns a positive probability to each available action. A (history dependent) strategy πi for player
i is a decision rule that prescribes a mixed action πi

s(h) ∈ Xi
s in the present state s depending on the

past history h of play (i.e. the sequence of all past states and all past actions chosen by the players).
We use the notation Πi for the set of strategies for player i. A strategy πi for player i is called pure if πi

prescribes, for every state and every possible history, one specific action to be played with probability 1.
Given a strategy πi for player i and a history h, the strategy πi conditional on h, denoted by πi[h], is the
strategy which prescribes a mixed action πi

s[h](h′) in any present state s for any history h′ as if h had
happened before h′, i.e. πi

s[h](h′) = πi
s(h ⊕ h′), where h ⊕ h′ is the history consisting of h concatenated

by h′. In fact, πi[h] is just the continuation strategy of πi after history h.

If the mixed actions prescribed by a strategy only depend on the present state then the strategy is
called stationary. Thus, the stationary strategy space for player i is Xi = ×s∈S Xi

s. We use the notation
xi for stationary strategies for player i, while xi

s refers to the corresponding mixed action for player i in
state s. Note that the set of pure stationary strategies for player i is simply Ai = ×s∈SAi

s.

A joint stationary strategy x = (xi)i∈N induces a Markov-chain on the state space S with transition
matrix P (x), where entry (s, s̄) of P (x) gives the transition probability psxs

(s̄) for moving from state
s to state s̄ when the joint mixed action xs is played in state s. With respect to this Markov-chain,
we can speak of transient and recurrent states. A state is called recurrent if, when starting there, play
will eventually return to that state with probability 1; otherwise the state is called transient. If play
is in a recurrent state, then this state will be visited infinitely often with probability 1, while transient
states can only be visited finitely many times, with probability 1. We can group the recurrent states into
minimal closed sets, into so-called ergodic sets. An ergodic set is a collection F of recurrent states with
the property that, when starting in any of the states in F , all states in F will be visited infinitely often
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and the play will remain in F forever with probability 1.

Let

Q(x) := lim
M→∞

1

M

M∑

m=1

Pm(x); (1)

the limit is known to exist (cf. Doob (1953) [4], theorem 2.1, page 175). Entry (s, s̄) of the stochastic
matrix Q(x), denoted by qsx(s̄), is the expected frequency of stages for which the process is in state s̄
when starting in s. The matrix Q(x) has the well known properties (cf. Doob (1953) [4]) that

Q(x) = Q(x)P (x) = P (x)Q(x) = Q2(x). (2)

Rewards. For a joint strategy π = (πi)i∈N and initial state s ∈ S, the sequences of payoffs are
evaluated by the (expected) average reward, which is given for player i by

γi
s(π) := lim inf

M→∞
Esπ

(
1

M

M∑

m=1

Ri
m

)
= lim inf

M→∞

1

M

M∑

m=1

Esπ

(
Ri

m

)
,

where Ri
m is the random variable for the payoff for player i at stage m, and where Esπ stands for

expectation with respect to the initial state s and the joint strategy π. We wish to remark that all our
further results hold for the limsup as well.

With regard to a joint stationary strategy x = (xi)i∈N , we obtain more explicit formulas for the
average reward. Let ri

s (xs) denote the expected immediate payoff for player i in state s if the joint mixed
action xs is played. By definition, for the average reward of every player i we have

γi(x) = Q(x) ri(x), (3)

hence by (2) we also obtain

γi(x) = P (x) γi(x) (4)

γi(x) = Q(x) ri(x) = Q2(x) ri(x) = Q(x) γi(x). (5)

Every player i has a pure stationary best reply against any fixed joint stationary strategy of his
opponents (cf. Blackwell (1962) [2], Hordijk et al. (1983) [11]), i.e. for any x−i ∈ X−i there exists an
xi ∈ Xi such that γi

s(x
i, x−i) ≥ γi

s(π
i, x−i) for all initial states s ∈ S and for all strategies πi ∈ Πi.

For any player i ∈ N and initial state s ∈ S, let

vi
s := inf

π−i∈Π−i
sup

πi∈Πi

γi
s(π

i, π−i). (6)

Here vi
s is called the minmax-level for player i in state s. Intuitively, this is the highest reward that

player i can defend against any strategies of the other players if the initial state is s. It is thus also the
lowest reward that the other players can inflict on player i. Note that, against different joint strategies
of players −i, player i may have to use different strategies to defend his minmax-level. It is known that
the minmax-level of any player i satisfies

vi
s = min

x
−i
s ∈X

−i
s

max
xi

s∈Xi
s

∑

t∈S

ps,(xi
s,x

−i
s )(t) vi

t, (7)

which is an easy consequence of the definition of vi
s and equality (4). Furthermore, by Thuijsman

& Vrieze (1991) [23] (their proof is given for only two players but directly extends to the n-player
case in combination with Neyman (2003) [14], who showed that the minmax-levels equal the limit of
the discounted minmax-levels in n-player stochastic games), there always exists an initial state s in
the set {t ∈ S| vi

t = mint′∈S vi
t′} for which players −i have a joint stationary strategy x−i such that

γi
s(π

i, x−i) ≤ vi
s for all strategies πi for player i. In other words, the infimum in expression (6) is attained

for state s at stationary strategies.

Equilibria. A joint strategy π = (πi)i∈N is called a (Nash) ε-equilibrium for initial state s ∈ S, for
some ε ≥ 0, if

γi
s

(
σi, π−i

)
≤ γi

s (π) + ε ∀σi ∈ Πi, ∀i ∈ N,
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which means that no player can gain more than ε by a unilateral deviation. If π is an ε-equilibrium for
all initial states, then we call π an ε-equilibrium. It is clear from the definition of the minmax-level v
that if π is an ε-equilibrium then γi

s(π) ≥ vi
s − ε for each player i and each initial state s ∈ S.

Regarding general stochastic games, the famous game called the Big Match, which was introduced by
Gillette (1957) [10] and solved by Blackwell and Ferguson (1968) [3], and the game in Sorin (1986) [21]
demonstrated that 0-equilibria do not necessarily exist with respect to the average reward. They made
it clear, moreover, that history dependent strategies are indispensable for establishing ε-equilibria, for
ε > 0.

For two-player stochastic games, Vieille (2000) [24,25] managed to establish the existence of ε-
equilibria, for all ε > 0. However, only little is known about n-player stochastic games, and it is unresolved
whether they always possess ε-equilibria, for all ε > 0. This is probably the most challenging open problem
in the field of stochastic games these days.

For the class of n-player aperiodic product-games, we will answer this question in the affirmative by
proving the existence of 0-equilibria (cf. Main Theorem 1). Here aperiodicity refers to an aperiodic
transition structure, and will be given a precise definition later.

Zero-sum games and optimality. In the development of stochastic games, a special role has
been played by the class of zero-sum stochastic games, which are two-player stochastic games for which
r2
s(as) = −r1

s(as) (meaning that the sum of the payoffs is zero), for each state s and for each joint action
as. In these games the two players have completely opposite interests. Mertens and Neyman (1981) [13]
showed that for such games v2 = −v1. Here v := v1 is called the value of the game. They also showed
that, if instead of using liminf one uses limsup in the definition of the average reward, one would find
precisely the same value v. We also refer to Maitra and Sudderth (1998) [12] for the existence of the
value in a very general setup.

Thus, in a zero-sum game, player 1 wants to maximize his own reward, while at the same time player
2 tries to minimize player 1’s reward. For simplicity, let γ = γ1. A strategy π1 for player 1 is called
ε-optimal for initial state s ∈ S, for some ε ≥ 0, if γs(π

1, π2) ≥ vs − ε for any strategy π2 of player 2,
while a strategy π2 for player 2 is called ε-optimal for initial state s ∈ S if γs(π

1, π2) ≤ vs + ε for any
strategy π1 of player 1. If π1 or π2 is ε-optimal for all initial states, then we call π1 or π2 an ε-optimal
strategy. For simplicity, 0-optimal strategies are briefly called optimal. Mertens and Neyman (1981) [13]
proved (even in a stronger form) that both players have ε-optimal strategies for any ε > 0.

For the class of aperiodic zero-sum product-games, we will provide a proof that both players have
stationary 0-optimal strategies (cf. Main Theorem 2). In addition, we analyse the structure of the
value of these games.

The structure of the article. In section 2, we will discuss preliminary concepts and results. Then,
in section 3, we will present and prove the two main theorems, and provide illustrative examples. Finally,
section 4 concludes with a short discussion on the case of periodic product-games.

2. Preliminary concepts and results Some of the contents of this section is very similar to
the decomposition presented in Ross and Varadarajan (1991) [15] for Markov decision problems (i.e.
stochastic games with only one player).

Classification of states. As we know, in a product-game, each player i has a Markov transition
structure Γi of his own. We start by analysing each Γi separately. We would like to emphasise that such
a separate analysis is only possible because, in a product-game, each player affects the transitions of his
own states only. We distinguish between two basic types of states in the state space Si of Γi. A state
si ∈ Si belongs to type 1 if it is transient for each stationary strategy xi of player i. Otherwise, si belongs
to type 2, in which case player i has a stationary strategy for which si is recurrent.

Maximal communicating sets. Two states si
1 and si

2 of type 2 are said to communicate with each
other, if there exists a stationary strategy xi of player i such that si

1 and si
2 belong to the same ergodic

set. We note that communication between states have been used extensively in the literature of stochastic
games (cf. Vieille (2000) [24,25], Solan and Vieille (2002) [19], Solan (2003) [18]).
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This relationship of communication is an equivalence relation on the set of states of type 2. As such, it
induces equivalence classes, which for obvious reasons are called maximal communicating sets. Therefore,
every maximal communicating set Ei has the properties that (1) player i can go from any state in Ei to
any other state in Ei, possibly in a number of moves, without leaving Ei with probability 1 and (2) if
player i decides to leave Ei, the probability that he ever comes back to Ei is strictly less than 1, regardless
his strategy. The latter observation further implies that (3) the total number of times during the whole
play that player i switches from a maximal communicating set to another one is finite with probability 1,
regardless the initial state and player i’s strategy; (4) there is always at least one amongst the maximal
communicating sets which player i is unable to leave, i.e. there are no transitions to states outside; (5)
for any strategy of player i, regardless the initial state, player i eventually settles, with probability 1, in
one of his maximal communicating sets Ei, i.e. after finitely many stages, player i remains forever in Ei

(it is possible that player i would be able to leave Ei with a different strategy).

Let Ei
ki , where ki ∈ Ki, denote the maximal communicating sets for player i. Further, let K := ×n

i=1K
i.

For any k = (k1, . . . , kn) ∈ K, the product Ek := ×n
i=1E

i
ki is called a joint maximal communicating set.

In every state si of the communicating set Ei
ki , for every ki ∈ Ki, let Āi

si denote the set of those
actions ai

si ∈ Ai
si which keep play in Ei

ki with probability 1. The sets Āi
si are clearly nonempty. For

every state s = (s1, . . . , sn) ∈ S, we also let Āi
s := Āi

si .

Aperiodicity. A maximal communicating set Ei
ki of player i is called aperiodic, if the Markov chain

associated to a stationary strategy xi of player i that only uses completely mixed actions on Āi
si for all

si ∈ Ei
ki , is aperiodic on Ei

k. (Obviously, this definition is independent of the particular choice of xi.)
The importance of the notion of aperiodicity lies in the fact that for such a completely mixed stationary
strategy, after sufficiently many stages, the system can be in any state si ∈ Ei

ki with positive probability,
regardless the initial state in Ei

ki .

We will call a product-game aperiodic if all maximal communicating sets, for all players, are aperiodic.
From now on, we will only consider aperiodic product-games, with the exception of section 4.

Restricted games. Take an aperiodic product-game and some k = (k1, . . . , kn) ∈ K. By restricting
the state space to Ek ⊂ S, and the action set of each player i in any state s ∈ Ek to Āi

s, we obtain a
restricted game Ḡk. Obviously, Ḡk is an aperiodic product-game itself.

These restricted games play a key role in the analysis of product-games, which is due to the following
observation. As is pointed out above, for any initial state and strategies of the players, each player
i eventually settles in one of his maximal communicating sets Ei

ki , with probability 1. Hence, with
probability 1, play will eventually settle in a restricted game Ḡk. The study of these restricted games is
therefore of great importance.

For a restricted game Ḡk, let v̄i
k,s denote the minmax-level of player i in Ḡk for initial state s ∈ Ek. If,

for some player i, the inequality v̄i
k,s ≥ vi

s holds for all initial states s ∈ Ek, then we call Ḡk satisfactory

to player i. Otherwise, Ḡk is called unsatisfactory to player i. In words, if Ḡk is satisfactory to player i,

then player i weakly prefers Ḡk to G, as far as his minmax-level is concerned on Ek. Let K∗ denote the
set of indices k ∈ K such that Ḡk is satisfactory to all players. Further, let K[i] denote the set of indices
k ∈ K such that Ḡk is unsatisfactory to player i but Ḡk is satisfactory to all players j ∈ {1, . . . , i − 1}.
Obviously, K∗,K[1], . . . ,K[n] forms a partition of K.

Example 1. As an illustration, consider the product-game with two players given in figure 1. This is a
game with six states. In each state, the actions of player 1 are represented by the rows, and the actions
of player 2 by the columns. So each cell of each state corresponds to a pair of actions. In each cell, the
two payoffs to the respective players are given in the upper-left corner, while the next state is indicated
in the bottom-right corner. In this game all the transitions are pure, i.e. each transition probability
distribution assigns probability 1 to a certain state.

The underlying Markov transition structure for player 1 is given by state space S1 = {1, 2, 3} , action
sets A1

1 = A1
2 = {1, 2} , A1

3 = {1} , and transitions

p1
11 = (1, 0, 0), p1

12 = (0, 1, 0), p1
21 = (1, 0, 0), p1

22 = (0, 0, 1), p1
31 = (0, 0, 1).

So in state 1, player 1 can either stay or leave for state 2, from state 2 he can either go to state 1 or
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2,−2 0, 0
→ (1, 1) → (1, 2)

0, 0 0, 0
→ (2, 1) → (2, 2)

state (1, 1)

0, 0
→ (1, 2)

1, 1
→ (2, 2)

state (1, 2)

3,−1 0, 0
→ (1, 1) → (1, 2)

0, 0 0, 0
→ (3, 1) → (3, 2)

state (2, 1)

−2, 0
→ (1, 2)

0, 0
→ (3, 2)

state (2, 2)

0, 0 0, 0
→ (3, 1) → (3, 2)

state (3, 1)

1,−1
→ (3, 2)

state (3, 2)

Figure 1: Game of Example 1

to state 3, while state 3 is absorbing. Regarding the classification of the states in S1, both E1
I := {1, 2}

and E1
II := {3} are maximal communicating sets, with index-set K1 = {I, II} . Moreover, both E1

I and
E1

II are aperiodic. As for the actions which keep play in these maximal communicating sets, we obtain
Ā1

1 = {1, 2}, Ā1
2 = {1}, Ā1

3 = {1}.

The underlying Markov transition structure for player 2 is given by state space S2 = {1, 2} , action sets
A2

1 = {1, 2} , A2
2 = {1} , and transitions p2

11 = (1, 0), p2
12 = (0, 1), p2

21 = (0, 1). Further, both E2
I := {1}

and E2
II := {2} are aperiodic maximal communicating sets, with K2 = {I, II} , and Ā2

1 = Ā2
2 = {1}.

As all maximal communicating sets are aperiodic, we may conclude that the game is aperiodic as well.
Finally, we have K = {I, II}2, which yields four joint maximal communicating sets and four corresponding
restricted games. For example, E(I,I) = {1, 2}×{1}, and the corresponding restricted game Ḡ(I,I) consists
of cells (1, 1) and (2, 1) in state (1, 1) and cell (1, 1) in state (2, 1).

We will examine later which restricted games are satisfactory to the players.

3. The main results and the proof

3.1 The main theorems For the class of aperiodic product-games, we present the following result
concerning existence of equilibria.

Main Theorem 1. There exists a 0-equilibrium in every aperiodic n-player product-game.

The idea of the construction of an equilibrium η, for an aperiodic product-game G, is as follows. The
equilibrium η will prescribe to follow a joint strategy π, unless some player i deviates from πi by playing
an action outside the support of πi (i.e. an action on which πi puts probability zero). If player i deviates
in such a way, then from the next state, say state s, players −i switch to a joint stationary strategy y−i

and push down player i’s reward to his minmax-level vi
s. In fact, y−i acts as a threat strategy, whose

task is to force player i to follow the prescriptions of πi. Punishment with y−i will be shown to be
severe enough. Finally, our construction will guarantee that no deviation inside the support of πi (such
deviations are hard to detect) is profitable for any player i.

Now let us briefly describe the construction of π, which shows a number of similarities with the
construction in Vieille (2000) [24,25]. The joint strategy π prescribes to play in the following way:

(1) When entering some Ek, with k ∈ K∗ (i.e. the restricted game Ḡk is satisfactory to all players):
In this case, π will prescribe to stay on Ek and play a certain equilibrium in Ḡk. Here, the players collect
“high” payoffs. (Cf. solvable sets in Vieille (2000) [24,25].)

(2) When entering some Ek, with k ∈ K[i] (i.e. the restricted game Ḡk is unsatisfactory to player i):
In this case, π will prescribe player i to exit Ei

ki (and thereby to leave Ek), while all other players wait
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for player i’s exit patiently. It will be taken care of that no player’s minmax-level drops in expectation.
Payoffs in Ek are disregarded. (Cf. controlled sets in Vieille (2000) [24,25].)

(3) Outside all joint maximal communicating sets: In this case, π will let the players play for their
future perspectives. Payoffs in these states are disregarded.

Note that, according to π, play will surely settle in a restricted game belonging to case (1).

In addition, for the special case of two-player zero-sum product-games, we show the existence of
stationary solutions.

Main Theorem 2. In two-player aperiodic zero-sum product-games, both players have a stationary 0-
optimal strategy.

3.2 The proofs of Main Theorems 1 and 2 In this section, we provide a proof for Main Theorems
1 and 2. We will focus on Main Theorem 1, as Main Theorem 2 will follow (cf. the end of section 3.2.3)
along the way without major additional difficulties. Since an equilibrium reward for player i, from any
initial state s, is at least his minmax-level vi

s, we start by studying the minmax-levels of product-games.

3.2.1 The structure of the minmax-levels of the restricted games

Lemma 3.1 Let G be an arbitrary aperiodic product-game and consider the restricted game Ḡk, for any
k = (k1, . . . , kn) ∈ K, and an arbitrary player i. Then, the minmax-level v̄i

k of any player i in Ḡk is
constant, i.e. v̄i

k,s = v̄i
k,t(=: v̄i

k) for all states s, t ∈ Ek. Moreover, in Ḡk, players −i have a joint

stationary strategy x−i which guarantees that player i’s reward from any initial state s ∈ Ek is at most
his minmax-level v̄i

k,s, i.e. for all strategies πi for player i in Ḡk we have

γ̄i
s(π

i, x−i) ≤ v̄i
k,s,

where γ̄ denotes the average reward for the game Ḡk.

Proof. Consider such a restricted game Ḡk and a player i. Let αi := mint∈Ek
v̄i

k,t. As is mentioned
in the introduction, by applying Thuijsman and Vrieze (1991) [23] together with Neyman (2003) [14] for
the game Ḡk, there exists a state s′ ∈ {t ∈ Ek|v̄

i
k,t = αi} for which players −i have a joint stationary

strategy x−i such that for all strategies πi for player i in Ḡk we have

γ̄i
s′(πi, x−i) ≤ v̄i

k,s′ = αi.

Let Z denote the set of all those states s ∈ {t ∈ Ek|v̄
i
k,t = αi} for which this x−i satisfies for all strategies

πi for player i in Ḡk that
γ̄i

s(π
i, x−i) ≤ αi. (8)

Let xi be a completely mixed stationary strategy in Ḡk for player i. Consider the joint stationary
strategy (xi, x−i). By the definitions of Z and x−i, the set Z is closed for (xi, x−i) (i.e. play does not
leave Z). Hence, there must exist an ergodic set F ⊂ Z for (xi, x−i). Due to the choice of xi and the
aperiodicity of Ei

ki , if u ∈ F then (ti, u−i) ∈ F for all states ti ∈ Ei
ki . Thus, F must be of the form

F = F̃ × Ei
ki for some non-empty F̃ ⊂ E−i

k−i = ×j∈N−{i}E
j

kj .

Define a joint stationary strategy y−i for players −i in Ḡk as follows: let y−i
t = x−i

t for all t ∈ F and let
y−i

t be an arbitrary completely mixed action on Ā−i
t for all t ∈ (Ek −F ). Now, take an arbitrary strategy

πi for player i in Ḡk and consider (πi, y−i) with any initial state in Ek. Based on the aperiodicity of Ej

kj

for all j 6= i and the choice of y−i outside F, players −i eventually visit F̃ , and hence play eventually
visits F. Then, as F is closed with respect to (xi, x−i) and y−i equals x−i on F, once play reaches F ,
it will never leave it and, in view of (8), then player i’s reward will be at most αi. Consequently, the
minmax-level v̄i

k of player i in Ḡk equals the constant αi, and y−i satisfies the second part of the lemma.

¤

As an illustration, we now revisit the game in example 1. Take first the restricted game Ḡ(I,I),
consisting of cells (1, 1) and (2, 1) in state (1, 1) and cell (1, 1) in state (2, 1). Let us examine player 1’s
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minmax-level v̄1
(I,I) in Ḡ(I,I). In Ḡ(I,I), it is only player 1 who has a choice and only in state (1, 1). By

choosing the first action, he receives payoff 2, while by playing the second one he receives payoff 0 and
subsequently payoff 3 in state (2, 1), giving 3/2 on average, before returning to state (1, 1). Hence, player
1’s minmax-level is v̄1

(I,I) = 2, whereas, for similar reasons, player 2’s minmax-level is v̄2
(I,I) = −2.

For the other three restricted games, we have v̄1
(I,II) = v̄2

(I,II) = 0, v̄1
(II,I) = v̄2

(II,I) = 0, and v̄1
(II,II) =

1, v̄2
(II,II) = −1.

3.2.2 The minmax-levels in simple product-games We call a product-game G simple if it holds
within any restricted game Ḡk for any player i that, all payoffs to player i are equal, i.e. for any k ∈ K
and for any player i, we have ri

s(as) = ri
t(bt) for any states s, t ∈ Ek and for any joint actions as ∈ Ās,

bt ∈ Āt.

By a solitary move of player i in state s ∈ S we mean a step where only player i chooses an action,

say ai
s ∈ Ai

s, and where the process moves to a new state of the form (ti, s−i), ti ∈ Si, with probability
pi

siai
s
(ti). A solitary move for players −i is defined similarly.

The following lemma claims that player i is unable to improve on his minmax-level vi in expectation
by a solitary move. Similarly, solitary moves by players −i cannot decrease player i’s minmax-level vi in
expectation.

Lemma 3.2 Let G be a simple aperiodic product-game. Take an arbitrary player i and a state s =
(s1, . . . , sn) ∈ S.

(1) For any action ai
s ∈ Ai

s of player i, it holds that
∑

ti∈Si

pi
siai

s
(ti) vi

(ti,s−i) ≤ vi
s.

(2) For any joint action a−i
s ∈ A−i

s of players −i, it holds that
∑

t−i∈S−i

p−i

s−ia
−i
s

(t−i) vi
(t−i,si) ≥ vi

s.

Proof. We only show part (1) of the lemma; part (2) can be proven similarly. Let ε > 0. The idea

of the proof is as follows. We compare two specific games Ω and Ω̃. The game Ω is simply the original
game G with initial state s, while Ω̃ is the game that results from G after the execution of the solitary
move ai

s by player i in state s, i.e. Ω̃ starts in initial state (ti, s−i), ti ∈ Si, with probability pi
siai

s
(ti). We

define two joint strategies π for Ω and π̃ for Ω̃ in such a way that the following properties hold:

Property (a) for Ω: γi
s(π) ≤ vi

s + ε.

Property (b) for Ω̃: γi
(ti,s−i)(π̃) ≥ vi

(ti,s−i) − ε, for any ti ∈ Si.

Property (c): π and π̃ yield the same expected rewards in respectively Ω and Ω̃, i.e.

γi
s(π) =

∑

ti∈Si

pi
siai

s
(ti) γi

(ti,s−i)(π̃).

It will then follow from properties (a), (b) and (c) that

vi
s + ε ≥ γi

s(π) =
∑

ti∈Si

pi
siai

s
(ti) γi

(ti,s−i)(π̃) (9)

≥
∑

ti∈Si

pi
siai

s
(ti) ·

(
vi
(ti,s−i) − ε

)
=

∑

ti∈Si

pi
siai

s
(ti) · vi

(ti,s−i) − ε.

As ε > 0 was arbitrary, the proof will then be complete.

Step 1. The construction of π for Ω and π̃ for Ω̃.
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For notational purposes, in this proof we assume that the histories also contain the present state,
so a history up to stage m is in the form hm = (s1, a1; . . . ; sm−1, am−1; sm). When hm is used in the
sequel, hm−1 will denote the restriction of hm up to stage m−1. It is useful to separate each hm into the
coordinates belonging to player i and to players −i, respectively, i.e. let hi

m = (si
1, a

i
1; . . . ; s

i
m−1, a

i
m−1; s

i
m)

and let h−i
m = (s−i

1 , a−i
1 ; . . . ; s−i

m−1, a
−i
m−1; s

−i
m ). Let Hm denote the set of histories for Ω up to stage m.

Define H̃m similarly for Ω̃. By separating the coordinates, we obtain the sets Hi
m,H−i

m , H̃i
m, H̃−i

m . As

players −i begin in s−i in both Ω and Ω̃, we have H−i
m = H̃−i

m for all m.

Now we define a transformation φ : H̃i
m → Hi

m. For hi
m ∈ H̃i

m, with m ≥ 2, let

φ(hi
m) = (si, ai

s; s
i
1, a

i
1; . . . ; s

i
m−2, a

i
m−2; s

i
m−1).

Naturally, we define φ(hi
1) = si.

We start with the strategies for players −i. By the definition of the minmax-level vi
s, there exists

a joint strategy π−i of players −i such that player i’s reward cannot be more in Ω than vi
s + ε, i.e.

γi
s(τ

i, π−i) ≤ vi
s + ε for all strategies τ i of player i. Given π−i, define π̃−i in Ω̃ for players −i by

π̃−i(hi
m, h−i

m ) = π−i(φ(hi
m), h−i

m ) for all (hi
m, h−i

m ) ∈ H̃m.

Now we define the strategies for player i. By the definition of the minmax-level again, there exists a
π̃i for player i in Ω̃ such that γi

u(π̃i, π̃−i) ≥ vi
u − ε for all initial states u = (ti, s−i), ti ∈ Si, in Ω̃. Finally,

let πi be defined for Ω as πi(hi
m, h−i

m ) = π̃i(ψ(hi
m), h−i

m−1), for all (hi
m, h−i

m ) ∈ Hm with m ≥ 2, where

ψ(hi
m) = (si

2, a
i
2; . . . ; s

i
m−1, a

i
m−1; s

i
m).

Naturally, we define πi(hi
1, h

−i
1 ) = ai

s. Note that

πi(φ(hi
m), h−i

m ) = π̃i(hi
m−1, h

−i
m−1) (10)

for all histories (hi
m, h−i

m ) ∈ H̃m.

Step 2. Proving properties (a), (b) and (c) for π and π̃.

Note that properties (a) and (b) are satisfied, by the definitions of π−i and π̃i. So, it remains to verify
property (c).

We will show that the stochastic processes induced by π in Ω and by π̃ in Ω̃ are strongly related,
namely

Pπ̃(hi
m, h−i

m+1) = Pπ(φ(hi
m+1), h

−i
m+1) (11)

for all (hi
m+1, h

−i
m+1) ∈ H̃m+1. Here, the left hand side should be interpreted as the probability, with

respect to π̃ in Ω̃, that the i-coordinate of the history up to stage m coincides with hi
m and the −i-

coordinate of the history up to stage m + 1 coincides with h−i
m+1. The interpretation of the right hand

side is analogous.

The proof goes by complete induction.

For m = 1, with hi
1 = (ti) and h−i

2 = (s−i, a−i
1 , s−i

2 ), we have

Pπ̃(hi
1, h

−i
2 ) = pi

siai
s
(ti) · π̃−i(hi

1, h
−i
1 )(a−i

1 ) · p−i

s−ia
−i
1

(s−i
2 )

and also with φ(hi
2) = (si, ai

s, t
i)

Pπ(φ(hi
2), h

−i
2 ) = pi

siai
s
(ti) · π−i(si, s−i)(a−i

1 ) · p−i

s−ia
−i
1

(s−i
2 ).

Since π̃−i(hi
1, h

−i
1 ) = π−i(φ(hi

1), h
−i
1 ) = π−i(si, s−i), the equality (11) holds for m = 1.

Suppose that equality (11) is valid for a certain m. For m + 1 we obtain

Pπ̃(hi
m+1, h

−i
m+2) = Pπ̃(hi

m, h−i
m+1) · π̃

i(hi
m, h−i

m )(ai
m) · pi

si
mai

m
(si

m+1)

·π̃−i(hi
m+1, h

−i
m+1)(a

−i
m+1) · p

−i

s
−i
m+1

a
−i
m+1

(s−i
m+2)

and

Pπ(φ(hi
m+2), h

−i
m+2) = Pπ(φ(hi

m+1), h
−i
m+1) · π

i(φ(hi
m+1), h

−i
m+1)(a

i
m) · pi

si
mai

m
(si

m+1)

·π−i(φ(hi
m+1), h

−i
m+1)(a

−i
m+1) · p

−i

s
−i
m+1

a
−i
m+1

(s−i
m+2).
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From our assumption that (11) holds for m, from equality (10), and from the definition of π̃−i, it follows
that (11) holds for m + 1. Consequently, (11) holds for all m.

Recall that, with respect to any initial state and any joint strategy, play eventually settles, with
probability 1, in a restricted game. By equality (11), the probability that this restricted game is some

Ḡk with respect to π in Ω equals the probability that this is Ḡk with respect to π̃ in Ω̃. Since the game is
simple, the average reward is determined by this restricted game, and hence the expected reward for π in
Ω equals the expected reward for π̃ in Ω̃. This proves property (c), and therefore the proof is complete.
¤

Lemma 3.3 Take a simple aperiodic product-game G. Let Ei
ki denote a maximal communicating set for

player i, for some ki ∈ Ki, while E−i
k−i denote a joint maximal communicating set for players −i, for

some k−i ∈ K−i.

(1) For any two states si, ti ∈ Ei
ki of player i and any joint state s−i ∈ S−i of players −i, the

minmax-level of player i satisfies vi
(si,s−i) = vi

(ti,s−i).

(2) For any two joint states s−i, t−i ∈ E−i
k−i of players −i and any state si ∈ Si of player i, the

minmax-level of player i satisfies vi
(si,s−i) = vi

(si,t−i).

Proof. We will show part (1); the proof of part (2) is similar. Take an arbitrary s−i ∈ S−i. Let F i

denote those states si ∈ Ei
ki for which vi

(si,s−i) ≤ vi
(ti,s−i) for all ti ∈ Ei

ki . Suppose by way of contradiction

that Ei
ki − F i is not empty. Take a state si ∈ F i and an action ai

si ∈ Āi
si which moves from state si to

a state in Ei
ki − F i with a positive probability. Then, the solitary move ai

si in state (si, s−i) for player i
would improve player i’s minmax-level in expectation, which contradicts part (1) of lemma 3.2. Hence,
F i = Ei

ki , and part (1) of the lemma follows. ¤

Corollary 3.1 Let G be a simple aperiodic product-game, and Ek a joint maximal communicating set
for some k ∈ K. Then, the minmax-level vi of any player i is constant on Ek, i.e. vi

s = vi
t(=: vi

k) for all
s, t ∈ Ek.

Lemma 3.4 Let G be a simple aperiodic product-game. Then, for any player i the following properties
hold.

(1) Let s = (s1, . . . , sn) be a state such that si belongs to a maximal communicating set Ei
ki . Then,

regardless the joint mixed action x−i
s played by players −i in state s, all the actions in Āi

s guarantee in
expectation the best possible minmax-level for player i after transition, i.e. for any actions ai

s ∈ Āi
s and

bi
s ∈ Ai

s it holds that
∑

t∈S

ps,(ai
s,x

−i
s )(t) vi

t ≥
∑

t∈S

ps,(bi
s,x

−i
s )(t) vi

t.

(2) Let s = (s1, . . . , sn) be a state such that sj belongs to a maximal communicating set Ej

kj for all
players j 6= i. Then, all joint actions in Ā−i

s for players −i in state s guarantee in expectation that player
i’s minmax-level cannot increase after transition, i.e. for any joint action a−i

s ∈ Ā−i
s and for any action

ai
s ∈ Ai

s it holds that
∑

t∈S

ps,(ai
s,a

−i
s )(t) vi

t ≤ vi
s.

Proof. First we prove part (1). Take an arbitrary mixed action x−i
s for players −i, and actions

ai
s ∈ Āi

s and bi
s ∈ Ai

s for player i in state s. Then, by part (1) of lemma 3.3 and part (1) of lemma 3.2,
we have for any t−i ∈ S−i that

∑

ti∈Si

pi
siai

s
(ti) vi

(ti,t−i) = vi
(si,t−i) ≥

∑

ti∈Si

pi
sibi

s
(ti) vi

(ti,t−i).
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Hence

∑

t∈S

ps,(ai
s,x

−i
s )(t) vi

t =
∑

t−i∈S−i

p−i

s−ix
−i
s

(t−i)

[
∑

ti∈Si

pi
siai

s
(ti) vi

(ti,t−i)

]

≥
∑

t−i∈S−i

p−i

s−ix
−i
s

(t−i)

[
∑

ti∈Si

pi
sibi

s
(ti) vi

(ti,t−i)

]

=
∑

t∈S

ps,(bi
s,x

−i
s )(t) vi

t.

As for part (2) of the lemma, take arbitrary joint actions a−i
s ∈ Ā−i

s and b−i
s ∈ A−i

s in state s. It
follows similarly to part (1) that for all mixed actions xi

s of player i
∑

t∈S

ps,(xi
s,a

−i
s )(t) vi

t ≤
∑

t∈S

ps,(xi
s,b

−i
s )(t) vi

t.

Therefore, in state s, the infimum in equality (7) is attained at all a−i
s ∈ Ā−i

s , hence
∑

t∈S

ps,(ai
s,a

−i
s )(t) vi

t ≤ vi
s,

which proves part (2). ¤

Consider a restricted game Ḡk, within a simple product-game, which is unsatisfactory to player i (i.e.
i ∈ K[i]). The next lemma proposes a way for player i to exit Ḡk. A similar result holds for players −i.

Lemma 3.5 Let G be a simple aperiodic product-game, and let Ek be a joint maximal communicating set
for some k = (k1, . . . , kn) ∈ K. Let zi

k denote player i’s unique reward in the restricted game Ḡk, and vi
k

be player i’s minmax-level on Ek in the game G (a constant, cf. corollary 3.1).

(1) Suppose zi
k < vi

k. Then, there is a state si ∈ Ei
ki and an action ai

si ∈ Ai
si − Āi

si for player i in

state si such that if player i plays action ai
si in any state s = (si, s−i) ∈ Ek, with s−i ∈ E−i

k−i , then player
i’s minmax-level cannot decrease in expectation from state s, regardless the actions played by players −i.
More precisely, for any a−i

s ∈ A−i
s we have

∑

t∈S

ps,(ai

si
,a

−i
s )(t) vi

t ≥ vi
s.

(2) Suppose zi
k > vi

k. Then, there is a joint state s−i ∈ E−i
k−i of players −i and a joint action a−i

s−i ∈

A−i
s−i − Ā−i

s−i (i.e. at least one player j 6= i plays outside Āj

sj ) such that if players −i play joint action a−i
s−i

in any state s = (si, s−i) ∈ Ek, with si ∈ Ei
ki , then player i’s minmax-level cannot increase in expectation

from state s, regardless the action played by player i. More precisely, for any ai
s ∈ Ai

s we have
∑

t∈S

ps,(ai
s,a

−i

s−i
)(t) vi

t ≤ vi
s.

Proof. We will prove part (1); the proof of part (2) is similar.

Due to zi
k < vi

k, when starting in Ek, player i can only defend his minmax-level vi
k in G if he leaves Ek.

Therefore, there must be at least one state s∗ ∈ Ek, joint action b−i
s∗ ∈ Ā−i

s∗ and action ai
s∗ ∈ Ai

s∗ − Āi
s∗

such that ∑

t∈S

ps∗,(ai
s∗

,b
−i

s∗
)(t) vi

t ≥ vi
k.

Now we will show that state s∗i and action ai
s∗ satisfy part (1) of the lemma.

Take an arbitrary state s ∈ Ek with si = s∗i and a joint action a−i
s of payers −i in state s. Note that

for any ti ∈ Si

∑

t−i∈S−i

p−i

s−ia
−i
s

(t−i) vi
(ti,t−i) ≥ vi

(ti,s−i) = vi
(ti,s∗−i) =

∑

t−i∈S−i

p−i

s∗−ib
−i

s∗

(t−i) vi
(ti,t−i),
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2,−2 0, 0
→ (1, 1) → (1, 2)

2,−2 0, 0
→ (2, 1) → (2, 2)

state (1, 1)

0, 0
→ (1, 2)

0, 0
→ (2, 2)

state (1, 2)

2,−2 0, 0
→ (1, 1) → (1, 2)

0, 0 0, 0
→ (3, 1) → (3, 2)

state (2, 1)

0, 0
→ (1, 2)

0, 0
→ (3, 2)

state (2, 2)

0, 0 0, 0
→ (3, 1) → (3, 2)

state (3, 1)

1,−1
→ (3, 2)

state (3, 2)

Figure 2: Game of Example 2

where the inequality follows from part (2) of lemma 3.2 and the equalities from part (2) of lemma 3.3.
Therefore

∑

t∈S

ps,(ai
s∗

,a
−i
s )(t) vi

t =
∑

ti∈Si

pi
siai

s∗
(ti)

[
∑

t−i∈S−i

p−i

s−ia
−i
s

(t−i) vi
(ti,t−i)

]

≥
∑

ti∈Si

pi
siai

s∗
(ti)

[
∑

t−i∈S−i

p−i

s∗−ib
−i

s∗

(t−i) vi
(ti,t−i)

]

=
∑

t∈S

ps∗,(ai
s∗

,b
−i

s∗
)(t) vi

t

≥ vi
k,

which completes the proof of part (1). ¤

Example 2: Consider the simple product-game G with two players given in figure 2. This game is
obtained from the game in example 1 by replacing all payoffs for player 1 by 2 and for player 2 by −2 in
the restricted game Ḡ(I,I), and all payoffs for either player by 0 in the restricted game Ḡ(I,II). Hence, the
only possible pair of payoffs is (2,−2) in G(I,I), and (0, 0) in Ḡ(I,II). Finally, for restricted game Ḡ(II,I),
the only possible pair of payoffs remained (0, 0), while in Ḡ(II,II), it remained (1,−1). So, the game is
simple, indeed.

Let us examine the players’ minmax-levels in G. For player 1, we will argue that

v1
(1,1) = v1

(1,2) = v1
(2,1) = v1

(2,2) = v1
(3,2) = 1, v1

(3,1) = 0.

Player 1’s minmax-level is clearly 0 for initial state (3, 1), in view of player 2’s first action. Now consider
an arbitrary other initial state s ∈ S −{(3, 1)}. By moving to his second state, player 2 can always make
sure that player 1’s reward is at most 1. On the other hand, player 1 can guarantee reward 1 for state s
by the pure stationary strategy x1 defined as

x1
(1,1) = (1, 0), x1

(1,2) = (0, 1) , x1
(2,1) = (1, 0), x1

(2,2) = (0, 1), x1
(3,1) = x1

(3,2) = (1).

Hence, player 1’s minmax-level equals 1 for all s ∈ S − {(3, 1)}, indeed. We similarly find that v2
s = −v1

s

for all s ∈ S.

With the help of this example, we will now illustrate some lemmas of this section.

Regarding lemma 3.2: Consider for instance a solitary move for player 1 in state (2, 1). Then, player
1’s first action, as a solitary move, yields state (1, 1), while the second action yields state (3, 1). As



Flesch et al.: Stochastic Games on a Product State Space

Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS 13

v1
(2,1) = v1

(1,1) = 1 and v1
(3,1) = 0, player 1 is indeed unable to improve on his minmax-level by such a

solitary move.

Regarding lemma 3.4: Consider player 1 in state (2, 1). If player 1 plays his first action (the action of
the restricted game Ḡ(I,I)) then his minmax-level will remain 1, regardless the action chosen by player
2. Therefore, action 2 can never be better than action 1 for player 1, with respect to player 1’s expected
minmax-level after transition.

Regarding lemma 3.5: Consider the restricted game Ḡ(I,II), in which player 1’s unique reward is 0
while his minmax-level v1 is 1. Note that player 1 can leave Ḡ(I,II) by moving to state (2, 2) and playing
his second action there. By doing so, his minmax-level v1 remains unchanged.

3.2.3 The minmax-levels of general product-games Take an arbitrary product-game G. The
next lemma presents a natural way of transforming G into a simple product-game G̃, by replacing pay-
offs by minmax-levels, and claims that the minmax-levels of the players remain unchanged under this
transformation. The idea to replace payoffs by minmax-levels also appeared in Solan (1999) [17] and in
a more sophisticated way in Solan and Vohra (2002) [20].

Lemma 3.6 Take an arbitrary aperiodic product-game G, with vi
s denoting the minmax-level for every

player i and for every state s ∈ S. Let v̄i
k denote player i’s minmax-level in any restricted game Ḡk

(which is constant, cf. lemma 3.1). Let G̃ denote the simple aperiodic product-game which is derived
from G by replacing each player i’s payoffs in any restricted game Ḡk by his minmax-level v̄i

k. Further,

let wi
s denote every player i’s minmax-level in G̃ in state s.

Then, the minmax-levels of the product-games G and G̃ are equal, i.e. vi
s = wi

s for all players i and
for all states s ∈ S.

Proof. Consider the original product-game G and take an arbitrary player i. For this game G, we
will show below that players −i have a joint stationary strategy x−i which guarantees that player i’s
reward from any initial state s ∈ S is at most wi

s, i.e. for all strategies πi for player i we have

γi
s(π

i, x−i) ≤ wi
s. (12)

This yields vi
s ≤ wi

s for all states s ∈ S. Since vi
s ≥ wi

s for all s ∈ S follows in a similar fashion, we will
have vi

s = wi
s for all states s, and the proof will then be complete.

Now we prove (12). Note first that wi
s is also a constant wi

k on any joint maximal communicating set

Ek, by corollary 3.1 for the game G̃. We construct the joint stationary strategy x−i by distinguishing the
following three mutually exclusive cases.

Case 1: States s = (s1, . . . , sn) ∈ S such that sj is of type 1 for at least one player j (possibly j = i).
In any such a state s, let x−i

s ∈ X−i
s be a joint mixed action for players −i such that for any mixed action

xi
s ∈ Xi

s of player i we have ∑

t∈S

ps,(x−i
s ,xi

s)(t)wi
t ≤ wi

s.

Obviously, by expression (7) for player i’s minmax-level wi in G̃, such a joint mixed action exists.

Case 2: States in a joint maximal communicating set Ek for which v̄i
k ≤ wi

k. Take a joint stationary
strategy y−i for player i in the corresponding restricted game Ḡk (which is a part of the original game
G) as in lemma 3.1. Then, let x−i

s = y−i
s for all s ∈ Ek.

Case 3: States in a joint maximal communicating set Ek for which v̄i
k > wi

k. Take a joint state

t−i ∈ E−i
k−i and a joint “exit” action a−i

t−i ∈ Ā−i
t−i , with respect to the game G̃ and its minmax-level wi

for player i, as in part (2) of lemma 3.5. Then, for any s = (s1, . . . , sn) ∈ Ek, let x−i
s = a−i

t−i whenever
s−i = t−i, and let x−i

s be an arbitrary joint completely mixed action on Ā−i
s whenever s−i 6= t−i.

Take a stationary best reply xi of player i in G against x−i. We will show that γi
s(x

i, x−i) ≤ wi
s for

any initial state s ∈ S.

First, consider an arbitrary ergodic set F for (xi, x−i). As players −i will leave any set Ek considered
in case 3, we conclude that F ⊂ Ek for some Ek in case 2. Since xi does not leave F, the mixed action
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xi
s only uses actions from Āi

s for all s ∈ F , meaning that xi behaves on F as a stationary strategy in the
restricted game Ḡk. Hence, by the choice of x−i in case 2, we have

γi
s(x

i, x−i) ≤ v̄i
k ≤ wi

k = wi
s (13)

for all s ∈ F . As F was an arbitrary ergodic set, we have γi
s(x

i, x−i) ≤ wi
s for all states s that are

recurrent for (xi, x−i).

Next, note that wi cannot increase in expectation after transition with respect to (xi, x−i), i.e.
P (xi, x−i)wi ≤ wi. Indeed, for cases 2 and 3 it is guaranteed by part (2) of lemma 3.4 and by part

(2) of lemma 3.5 (both applied to wi as the minmax-level of player i in G̃), while it holds by construction
for case 1. Consequently, we also have Pm(xi, x−i)wi ≤ wi for all m ∈ N, yielding Q(xi, x−i)wi ≤ wi.

By applying equality (5), we now obtain

γi(xi, x−i) = Q(xi, x−i) · γi(xi, x−i) ≤ Q(xi, x−i) · wi ≤ wi,

where the first inequality follows from inequality (13) and from the fact that entry (t, s) of the stochastic
matrix Q(xi, x−i) is only positive if state s is recurrent for (xi, x−i). Since xi is a best reply to x−i in G,
the proof of (12) is complete. ¤

For an illustration of the above lemma, we refer to the games in examples 1 and 2. Indeed, the product-
game in example 1 (which is now game G with minmax-levels v) leads to the simple product-game in

example 2 (which is now game G̃ with minmax-levels w). Just as in the proof of the above lemma, we can
construct a stationary strategy y1 for player 1 (y1 being x−2 for players −i with i = 2) which guarantees
in G that player 2’s reward is not more than w2

s for all initial states s ∈ S. Recall that w2
(3,1) = 0 while

w2
s = −1 for all s ∈ S − {(3, 1)}, and that player 2’s minmax-levels within the restricted games are

v̄2
(I,I) = −2, v̄2

(I,II) = v̄2
(II,I) = 0, v̄2

(II,II) = −1. Following the proof, as the joint maximal communicating

sets E(I,I), E(II,I) and E(II,II) all belong to case 2 (i.e. v̄2
k ≤ w2

k for k = (I, I), (II, I), (II, II)), the strategy
y1 has to guarantee in the corresponding restricted games that player 2’s reward is not more than v̄2

k.
Also, y1 has to leave E(I,II), belonging to case 3 (i.e. v̄2

(I,II) > w2
(I,II)). It is easy to see that

y1
(1,1) = (1, 0), y1

(1,2) = (0, 1) , y1
(2,1) = (1, 0), y1

(2,2) = (0, 1), y1
(3,1) = y1

(3,2) = (1)

satisfies all these requirements.

The previous lemma (and its proof) has useful consequences.

Corollary 3.2 The results of lemmas 3.2 up to 3.4 in section 3.2.2 for simple aperiodic product-games
are also valid for any general aperiodic product-game G. Lemma 3.5 extends as well if one interprets zi

k

as the minmax-level v̄i
k of player i in the restricted game Ḡk.

Also, the infimum in expression (6) of the minmax-levels is attained at stationary strategies, for all
product-games. This is stated next.

Corollary 3.3 (of the proof of lemma 3.6) Take an aperiodic product-game G and an arbitrary player
i. Then, players −i have a joint stationary strategy x−i which guarantees that player i’s reward from any
initial state s ∈ S is at most his minmax-level vi

s, i.e. for all strategies πi for player i we have

γi
s(π

i, x−i) ≤ vi
s.

With the help of this corollary, we are now ready to prove Main Theorem 2, which claimed that, in
every two-player aperiodic zero-sum product-game, both players have a stationary 0-optimal strategy.

Proof of Main Theorem 2. Take an arbitrary two-player aperiodic zero-sum product-game, and
take player i = 1. By corollary 3.3, there exists a stationary strategy x−1 for player 2 (as −1 = {2})
which guarantees that player 1’s reward is not more than v1

s for any initial state s ∈ S. Hence, x−1 is
0-optimal for player 2. One finds similarly a stationary 0-optimal strategy for player 1, which completes
the proof.
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3.2.4 The construction of 0-equilibria in product-games In the previous sections we achieved
several results for the minmax-levels of aperiodic product-games. We will use this knowledge now to
construct 0-equilibria in aperiodic product-games.

The following lemma states that, in any restricted game, there exists a 0-equilibrium in which, if no
player deviates, the players’ future expectations remain unchanged during the whole play. The reasoning
remains valid for all irreducible stochastic games. Note, however, that Flesch et al. (1997) [7] (with 3
players) while Simon (2003) [16] (with only 2 players) constructed examples proving that such a result
would not hold for all stochastic games in general.

Lemma 3.7 Let G be an arbitrary aperiodic product-game and consider the restricted game Ḡk, for any
k = (k1, . . . , kn) ∈ K. Then, there exists a 0-equilibrium π in Ḡk such that the corresponding rewards
are independent of the initial state and all the continuation rewards remain unchanged with probability
1 during the whole play. More precisely, the reward γ̄i

s(π[h]) is independent of the initial state s ∈ Ek

and the history h, given h occurs with a positive probability with respect to π. Here γ̄ denotes the average
reward for the restricted game Ḡk.

Proof. Observe the following for the game Ḡk.

(i) The set of feasible rewards (i.e. the rewards that can be obtained by some joint strategy) is the same
from any initial state in Ek. This is an immediate consequence of the fact that, as Ek is an aperiodic
joint maximal communicating set, the players can move from any state in Ek to any other one in Ek,
possibly in a number of steps.

(ii) The extreme points of the set of feasible rewards are induced by pure stationary strategies. Indeed, for
any extreme point z, Dutta (1995) [5] (cf. the appendix) shows that there exists a joint pure stationary
strategy x which induces reward z for some fixed initial state s ∈ Ek. As γ(x) = Q(x)γ(x), (as mentioned
in (5)), γs(x) is a convex combination of the rewards for x within the ergodic sets which can be reached
from state s with a positive probability. Take such an ergodic set F ⊂ Ek. Then, due to property (i)
and to the choice of z, the joint strategy x must yield reward z within F . Since Ek is a joint maximal
communicating set, there exists a joint pure stationary strategy y such that y coincides with x on F and,
moreover, play reaches F from any initial state in Ek. Clearly, y induces reward z from all initial states
in Ek.

(iii) Each minmax-level in Ḡk is a constant v̄i
k, by lemma 3.1.

Given these three observations, this game situation is almost identical to a repeated game. The
following ideas and arguments are standard in Folk-theorems for repeated games. For the context of
stochastic games, we refer to Dutta (1995) [5]. Take an arbitrary feasible reward zk = (z1

k, . . . , zn
k ) such

that zi
k ≥ v̄i

k for all players i. By property (ii), we may write zk as a convex combination of rewards
corresponding to pure stationary strategies al, l = 1, . . . , L, i.e.

zk =

L∑

l=1

αl · γ̄(al).

Let σ be the pure joint strategy which prescribes to play as follows: play a1 for d1
1 stages, then a2 for d1

2

stages, ..., then aL for d1
L stages, and repeat this with lengths d2

1, . . . , d
2
L, then with lengths d3

1, . . . , d
3
L,

and so on. The lengths dm
l have to be chosen in such a way that, when m tends to infinity, then we have

for each l ∈ {1, . . . , L} that (a) dm
l goes to infinity, so that the expected average payoff when strategy al

is played for dm
l stages will approach γ̄(al); (b) dm

l /(dm
1 + . . . + dm

L ) tends to αl, so that al is played in
the right proportion of time; (c)

dm
l

(d1
1 + . . . + dm

L ) + . . . + (dm−1
1 + . . . + dm−1

L ) + dm
1 + . . . + dm

l−1

tends to 0, so that the average payoffs will fluctuate less and less. Due to these three properties, σ induces
reward zk, and moreover, any continuation reward is also zk, i.e. γ̄s(σ[h]) = zk for all states s ∈ Ek and
for all histories h. Let π be the joint strategy which prescribes to play σ, unless some player i deviates
from the action prescribed by σi. In that case, from the new state, players −i should switch to a joint
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stationary strategy x−i as in lemma 3.1. Since the players receive zk ≥ v̄k according to σ, while if a
player i deviates then his reward is not more than v̄i

k, the joint strategy π is a 0-equilibrium and satisfies
the requirements of the lemma. ¤

Now we are sufficiently prepared to prove Main Theorem 1, which claimed that, in any aperiodic
product-game G, there exists a 0-equilibrium.

Proof of Main Theorem 1. For the idea of the construction, we refer to section 3.1.

Let S⋄ denote the set of states s = (s1, . . . , sn) ∈ S in which si is of type 1 for at least one player
i. Recall that, on each Ek, k ∈ K, the minmax-values in G and in Ḡ are both a constant vk and v̄k,
respectively, due to lemma 3.1 and corollary 3.1.

In every restricted game Ḡk with k ∈ K∗, take a 0-equilibrium σk as in lemma 3.7. Let zi
k denote the

corresponding reward for any player i, which is independent of the initial state on Ek. Then, as k ∈ K∗,
we have zi

k ≥ v̄i
k ≥ vi

k for all players i.

In every restricted game Ḡk with k ∈ K[i], take a state si
k ∈ Ei

ki and an “exit” action ai
k for player i

in state si
k as in part (1) of lemma 3.5 (with corollary 3.2).

The proof of Main Theorem 1 consists of the following steps. In step 1, we construct a joint stationary
strategy x∗, which is used to reach the joint maximal communicating sets Ek with k ∈ K∗. Then, in
step 2 we “extend” x∗ to the joint strategy π according to which the players also receive rewards zk in
the sets Ek, k ∈ K∗. Finally, in step 3, we will complete the proof by showing that π supplemented with
some joint stationary strategies y−i, for all i, forms a 0-equilibrium.

Step 1: The construction of the joint stationary strategy x∗ and a number of properties of x∗. First,

two supplementary games G̃ and G∗ have to be constructed. Then, given G∗, the joint strategy x∗ will
be found as a stationary 0-equilibrium in G∗.

Step 1.1: The simple aperiodic product-game G̃. For k ∈ K − K∗, let zi
k := v̄i

k for all players i. Then,

let G̃ denote the simple aperiodic product-game which is derived from G by replacing each player i’s
payoffs by zi

k in any restricted game Ḡk, k ∈ K.

Step 1.2: The stochastic game G∗. In this step, we will derive a stochastic game G∗ (not necessarily a

product-game) from G̃. First, for every state s which belongs to some joint maximal communicating set
Ek, k ∈ K, fix an arbitrary completely mixed action ȳi

s for every player i on Āi
s. Now, we define a subset

X∗i
s ⊂ Xi

s of mixed actions for every player i in every state s = (s1, . . . , sn) ∈ S as follows:

Case (1): s ∈ Ek with k ∈ K∗. In this case, we let X∗i
s := {ȳi

s} for all players i.

Case (2): s ∈ Ek with k ∈ K[i]. In this case, for players j 6= i, we let X∗j
s := {ȳj

s}. As for player i, if
si = si

k then we let X∗i
s := {ai

k}, while if si 6= si
k then we let X∗i

s := {ȳi
s}.

Case (3): s ∈ S⋄. In this case, we let X∗i
s := Xi

s for all players i.

Note that X∗i
s = Xi

s or X∗i
s is a singleton, for any player i in any state s ∈ S, and also that joint

strategies in X∗ can only differ in states s ∈ S⋄. Moreover, the ergodic sets for all x ∈ X∗ are precisely
Ek, k ∈ K∗, due to the use of the “exit” actions, which eventually make play leave each Ek belonging to
case (2).

Let G∗ denote the stochastic game which is derived from G̃ by restricting each player i in each state
s ∈ S to the space X∗i

s of mixed actions.

Step 1.3: Defining x∗ as a stationary 0-equilibrium of G∗ and proving a number of properties of x∗. As
the ergodic sets are the same for all x ∈ X∗, lemma 5.1 in the appendix yields a stationary 0-equilibrium
x∗ ∈ X∗ for the game G∗. Obviously, x∗ is also a joint stationary strategy in the game G̃ and in the
original game G, but not necessarily a 0-equilibrium.

We wish to point out three properties of x∗, with a proof.
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Property (1): If s ∈ S⋄, then no player i can go to better states regarding his reward in G̃ by unilaterally
deviating from x∗i

s , i.e. for every action bi
s ∈ Ai

s we have
∑

t∈S

ps,(bi
s,x

∗−i
s )(t) γ̃i

t(x
∗) ≤

∑

t∈S

psx∗

s
(t) γ̃i

t(x
∗),

where γ̃i denotes the average reward to player i in the game G̃.

Property (2): If s ∈ Ek for some k ∈ K, then no player i can improve on his expected minmax-level
in G by unilaterally deviating from x∗i

s , i.e. for every action bi
s ∈ Ai

s we have
∑

t∈S

ps,(bi
s,x

∗−i
s )(t) vi

t ≤
∑

t∈S

psx∗

s
(t) vi

t.

Consequently, equality (7) also yields

vi
s ≤

∑

t∈S

psx∗

s
(t) vi

t. (14)

Property (3): x∗ yields rewards in G̃ that are at least the minmax-levels in G, i.e. γ̃i
s(x

∗) ≥ vi
s for all

players i and for all initial states s ∈ S.

Now, we provide the proofs for these properties.

Proof of property (1): This property follows from the fact that x∗ is a 0-equilibrium in G∗, and no
player is restricted in G∗ in state s.

Proof of property (2): This property is a consequence of parts (1) of lemmas 3.4 and 3.5 (with corollary
3.2).

Proof of property (3): This property requires a longer argument. By applying equalities (7) for the
game G, in every state s ∈ S⋄, there exists a mixed action xi

s ∈ Xi
s = X∗i

s for player i such that
∑

t∈S

ps,(xi
s,x

∗−i
s )(t) vi

t ≥ vi
s. (15)

Given these mixed actions xi
s in all s ∈ S⋄, there is a unique extension (with the mixed actions prescribed

by x∗ in all Ek, k ∈ K) to a stationary strategy xi in X∗i. Then, by inequalities (14), we obtain
P (xi, x∗−i)vi ≥ vi. Hence, Pm(xi, x∗−i)vi ≥ vi for all m ∈ N, and therefore Q(xi, x∗−i)vi ≥ vi.

Note that the ergodic sets are precisely Ek, k ∈ K∗, for both (xi, x∗−i) and x∗, as both belong to X∗

(cf. step 1.2). Hence, if s is recurrent for (xi, x∗−i) then (as xi equals x∗i on all reccurent states) we have

γ̃i
s(x

i, x∗−i) = γ̃i
s(x

∗) = zi
k ≥ v̄i

k ≥ vi
k = vi

s, (16)

where γ̃i denotes the average reward to player i in the game G̃.

By applying equality (5), we now obtain

γ̃i(xi, x∗−i) = Q(xi, x∗−i) · γ̃i(xi, x∗−i) ≥ Q(xi, x∗−i) · vi ≥ vi,

where the first inequality follows from (16) and from the fact that entry (t, s) of the stochastic matrix
Q(xi, x∗−i) is only positive if state s is recurrent for (xi, x∗−i). Since x∗i is a best reply to x∗−i in G∗

and since xi ∈ X∗i, we have
γ̃i

s(x
∗) ≥ γ̃i

s(x
i, x∗−i) ≥ vi

s

for all initial states s ∈ S, which proves property (3).

Step 2 . The construction of the joint strategy π for the original game G. Given x∗ from step 1, the
definition of π is easy. Let π be the joint strategy which prescribes to play as follows:

Case (1): when play enters a set Ek with k ∈ K∗. In this case, the players switch to the joint strategy
σk (cf. begin of the proof).

Case (2): when play enters a set Ek with k ∈ K[i]. In this case, players −i switch to a joint stationary
strategy as in lemma 3.1, while player i follows x∗, i.e. plays the mixed action x∗i

s in state s ∈ Ek.

Case (3): in any state s ∈ S⋄. In this case, each player i follows x∗, i.e. plays the mixed action x∗i
s .



18 Flesch et al.: Stochastic Games on a Product State Space

Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS

Note that play according to π leaves all sets Ek belonging to case (2), with the guidance of x∗i. On
the other hand, in a set Ek in case (1), by switching to σk, each player i receives reward zi

k in the game

G, which is exactly what the players would receive within Ek according to x∗ in the game G̃. So in some
sense, x∗ is used to reach the sets Ek, k ∈ K∗, and then σk is used to induce the “right” payoffs.

Thus, by property (3) of step 1.3
γi

s(π) = γ̃i
s(x

∗) ≥ vi
s (17)

for all initial states s ∈ S and for all players i, which means that π induces individually rational rewards
in G.

Step 3 . Proving that π supplemented with the joint stationary strategies y−i, for all players i, is a

0-equilibrium. For any player i, in view of corollary 3.3, we may take a joint stationary strategy y−i for
players −i such that for all initial states s ∈ S and for all strategies τ i for player i we have

γi
s(τ

i, y−i) ≤ vi
s.

Let the joint strategy η be defined as in section 3.1. Note that the expected rewards are equal with
respect to η and with respect to π, hence by (17)

γi
s(η) = γi

s(π) = γ̃i
s(x

∗) ≥ vi
s

for all initial states s ∈ S and for all players i. Notice also that if h denotes a history and s ∈ S a state
such that, with a positive probability, h can occur and s can be the present state after h with respect to
η (or equivalently with respect to π), then

γi
s(η[h]) = γi

s(π[h]) = γi
s(π) = γ̃i

s(x
∗) ≥ vi

s, (18)

where for the second equality we used that for σk the “continuation rewards” remain the same due to
lemma 3.7. We may thus conclude that η yields individually rational rewards in G, for all players i, and
for such histories h and states s ∈ S.

It remains to show that η is a 0-equilibrium in G.

Deviations inside the support of η : Here, we only consider deviations by playing actions with a positive
probability according to η. We show that such deviations by a player cannot improve his expected reward.
Indeed, (i) within a set Ek, k ∈ K∗ (cf. case (1) in step 2), the players play the 0-equilibrium σk in Ḡk,
(ii) within a set Ek, k ∈ K[i] (cf. case (2) in step 2), such a deviation by players −i (who do not make
the “exit”) would not change the probability of eventually moving to another set Ek′ , (iii) within a set
Ek, k ∈ K[i] (cf. case (2) in step 2), player i has an incentive to “exit”, since within Ḡk he can get at
most v̄i

k, while v̄i
k < vi

k, (iv) in states s ∈ S⋄ (cf. case (3) in step 2), no player i can go to better states
regarding his reward according to the equalities in (18) and to property (1) from step 1.3.

Deviations outside the support of η: Consider now a deviation when, for the first time, say after
history h in state s, while the players should play a joint mixed action x′

s according to η, some player i
deviates and plays an action bi

s which has probability zero according to ηi, i.e. x′i
s (bi

s) = 0. This deviation
is immediately noticed by players −i and, according to η, they switch to the joint stationary strategy
y−i from the next state, say state t. Consequently, player i’s reward will be at most vi

t in expectation.
Obviously, without deviation player i would receive reward γi

s(η[h]) = γ̃i
s(x

∗), in view of (18). Now,
observe the following.

(A) Suppose s ∈ S⋄. Then, x′
s = x∗

s, and player i’s expected reward after this deviation is at most
∑

t∈S

ps,(bi
s,x

∗−i
s )(t) vi

t ≤
∑

t∈S

ps,(bi
s,x

∗−i
s )(t) γ̃i

t(x
∗) ≤

∑

t∈S

psx∗

s
(t) γ̃i

t(x
∗) = γ̃i

s(x
∗) = γi

s(η[h]),

where the inequalities follow from properties (3) and (1) in step 1.3, respectively, while the equalities
from (4) and (18). Hence, the deviation is not profitable.

(B) Suppose s ∈ Ek for some joint maximal communicating set Ek. Hence, player i’s expected reward
after this deviation is at most

∑

t∈S

ps,(bi
s,x

′−i
s )(t) vi

t ≤
∑

t∈S

psx′

s
(t) vi

t ≤ γi
s(η[h]).



Flesch et al.: Stochastic Games on a Product State Space

Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS 19

Here, the first inequalilty follows from part (1) of lemma 3.4 for k ∈ K∗, while from property (2) in step
1.3 if k ∈ K −K∗. The second inequality is a consequence of (18). Hence, the deviation is not profitable
again.

In conclusion, no deviation is profitable, and η is a 0-equilibrium in G. This completes the proof of
Main Theorem 1. ¥

Remark 3.1 It remains unclear whether 0-equilibria always exist within the class of stationary strategies.
This question is already challenging in the situation when each player i’s state space Si is just one maximal
communicating set (precisely the situation we have in a restricted game). Even though, corollary 3.2 would
yield that all minmax-levels are constant on the whole state space S, it is still not evident how one should
get a grip on the problem.

Finally, let us revisit example 1. As we know, the minmax-levels of this game coincide with the
minmax-levels of the game in example 2, hence

v1
(1,1) = v1

(1,2) = v1
(2,1) = v1

(2,2) = v1
(3,2) = 1, v1

(3,1) = 0,

while v2 = −v1. For the minmax-values of the restricted games, we refer to section 3.2.1. Hence, regarding
which restricted games are satisfactory, we obtain K∗ = {(II, I), (II, II)}, while K[1] = {(I, II)} and
K[2] = {(I, I)}.

Now consider the pure stationary strategy x1 for player 1 defined as

x1
(1,1) = (1, 0), x1

(1,2) = (0, 1) , x1
(2,1) = (1, 0), x1

(2,2) = (0, 1), x1
(3,1) = x1

(3,2) = (1),

and the pure stationary strategy x2 for player 2 given as

x2
(1,1) = x2

(2,1) = (0, 1), x2
(3,1) = (1, 0), x2

(1,2) = x2
(2,2) = x2

(3,2) = (1).

This pair (x1, x2) actually could play the role of π in this example. Indeed, in each restricted game Ḡk,
k ∈ K∗, the pair (x1, x2) lets the players play a 0-equilibrium, while x1 leaves E(I,II) and x2 leaves E(I,I).
Notice that no threat strategies are needed here, so (x1, x2) is a 0-equilibrium.

4. Periodic product-games The previous sections dealt with aperiodic product-games. When we
allow for periodic maximal communicating sets, the situation changes. Take for example a product-game
with two players in which the Markov transition structure for either player is as follows: the state space
is {1, 2}, there is only one action in either state, and this action leads to the other state with probability
1. So in the product-game, depending on the initial state, play moves back and forth either between
states (1, 1) and (2, 2) or between states (1, 2) and (2, 1). This game is periodic, of course. Suppose
the payoffs for either player are 1 in states (1, 1) and (2, 2), while 0 in states (1, 2) and (2, 1). Then, a
solitary move for player 1 in state (1, 2) would lead to state (2, 2), improving player 1’s payoff. Hence, the
important lemma 3.2 is no longer valid for periodic product-games, and the proof in the previous sections
are not directly applicable. Notice also that this game has two joint maximal communicating sets, i.e.
{(1, 1), (2, 2)} and {(1, 2), (2, 1)}, but neither of them can be written as a product of the form E1 × E2.
This entails additional difficulties. Nevertheless, we conjecture that the main results of this paper extend
to the periodic case as well.

5. Appendix

Lemma 5.1 In a stochastic game, if the ergodic sets are the same for all joint stationary strategies, then
there exists a stationary 0-equilibrium.

Proof. For a joint stationary strategy x ∈ X, consider the β-discounted reward, with β ∈ (0, 1),
defined for player i and initial state s ∈ S as

γi
βs(x) := (1 − β)

∞∑

m=1

βm−1
Esx

(
Ri

m

)
,

where Ri
m is the random variable for the payoff for player i at stage m, and where Esx stands for

expectation with respect to initial state s and joint strategy x. Fink (1964) [9] and Takahashi (1964) [22]
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showed that, for every β ∈ (0, 1), there exists a stationary 0-equilibrium with respect to the β-discounted
rewards.

As the ergodic sets are the same for all joint stationary strategies, it is known (cf. lemma 2.7.6 in
Flesch (1998) [6]) that for any sequence of discount factors βm converging to 1 and joint strategies xm

converging to x we have
γi

s(x) = lim
m→∞

γi
βms(xm) (19)

for all states s ∈ S and players i.

We will now work with a number of sequences in compact spaces. By taking subsequences, we may
assume that all these sequences have limits. Let βm be a sequence of discount factors converging to 1,
and for any m ∈ N, let xm be a stationary βm-discounted 0-equilibrium. Let x = limm→∞ xm. We will
show that x is a 0-equilibrium with respect to the average reward.

Take an arbitrary player i and a stationary best reply yi to x−i. Then for any initial state s ∈ S, from
(19) and from the fact that xm is a βm-discounted 0-equilibrium, it follows that

γi
s(y

i, x−i) = lim
m→∞

γi
βms(y

i, x−i
m ) ≤ lim

m→∞
γi

βms(xm) = γi(x).

As yi is a best reply to x−i, the joint strategy x is a stationary 0-equilibrium with respect to the average
reward indeed. ¤
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