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Abstract

We consider a class of multi-player games with perfect information and deterministic tran-

sitions, where each player controls exactly one non-absorbing state, and where rewards are

zero for the non-absorbing states. With respect to the average reward, we provide a combi-

natorial proof that a subgame-perfect ε-equilibrium exists, for every game in our class and

for every ε > 0. We believe that the proof of this result is an important step towards a proof

for the more general hypothesis that all perfect information stochastic games, with finite

state space and finite action spaces, have a subgame-perfect ε-equilibrium for every ε > 0

with respect to the average reward criterium.

Keywords: perfect information game, recursive game, subgame-perfect equilibrium, aver-

age reward.

1 Introduction

We consider a subclass of stochastic games with finite state and action spaces. Shapley [9]

introduced the class of zero-sum stochastic games. He proved that such games have a value,

under the assumption that there is a positive stopping probability after each move by the play-

ers, or equivalently, under the assumption that stage rewards are discounted. Mertens and

Neyman [6] demonstrated that every such game also has a value with respect to the average

reward. Vieille [13],[14] showed that all two-player stochastic games have an ε-equilibrium

for the average reward, for every ε > 0. It follows from the result of Mertens and Neyman

in [7] that multi-player stochastic games with deterministic transitions and with perfect in-

formation admit an ε-equilibrium for the average reward, for every ε > 0. Thuijsman and
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Raghavan [11] showed that they even admit a 0-equilibrium. These ε-equilibria are however

not always subgame-perfect. An example by Solan and Vieille [10] demonstrated that a sub-

game perfect 0-equilibrium need not exist.

The question remains open whether subgame perfect ε-equilibria exist, for every ε > 0. In this

paper, we consider a subclass of stochastic games, where each player controls exactly one non-

absorbing state, and where non-zero rewards can only be obtained by entering an absorbing

state. The technical novelty of this class is that it combines two features that both make it

hard to analyse the game: (1) payoffs can be negative in the absorbing states, (2) it may be

impossible to move from one non-absorbing state to another non-absorbing state immediately.

The technique to deal with these difficulties builds further on those in Flesch et al. [1], Flesch

et al. [2], and Kuipers et al. [3], and may be flexible enough to deal with the entire class of

perfect information stochastic games.

For recent results on related models, we refer to e.g. Ummels [12], Flesch et al. [2], Purves and

Sudderth [8], Flesch et al. [4], and Laraki et al. [5].

2 The class G and playing a subgame perfect ε-equilibrium

We consider the class G of games, given by

(1) a nonempty set of players N = {1, . . . , n};

(2) exactly two states associated with each player t ∈ N: one non-absorbing state identified

with t, and one absorbing state denoted by t∗; the set of absorbing states is denoted by

N∗, and the set of all states is denoted by S = N ∪ N∗;

(3) for each state t ∈ N, a set of states A(t) ⊆ N ∪ {t∗} with t∗ ∈ A(t) and t /∈ A(t); for each

state t∗ ∈ N∗, the set A(t∗) is defined as A(t∗) = {t∗};

(4) for each player t ∈ N, an associated (reward) vector r(t) ∈ R
N.

A game in G is to be played at stages in N in the following way. At any stage m one state is

called active. If t ∈ N is active, then player t announces a state in A(t), and the announced

state will be active at the next stage. The rewards to the players are zero when this happens. If

t∗ ∈ N∗ is active, then the unique state t∗ ∈ A(t∗) will be active at the next stage (thus, t∗ will

be active forever). The stage rewards to the players when this happens are according to r(t),

and since r(t) will be the reward at every subsequent stage, r(t) is also the (expected) average

reward. The game starts with an initial state s ∈ S.

We assume complete information (i.e. the players know all the data of the game), full moni-

toring (i.e. the players observe the active state and the action chosen by the active player), and

perfect recall (i.e. the players remember the entire sequence of active states and actions).
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Playing a game in G can be interpreted as making an infinite walk in the directed graph G =

(S, E), where E = {(x, y) | x ∈ S and y ∈ A(x)}. In this paper, whenever we refer to an

ordered pair (x, y) as an edge, it is implicit that x ∈ S and y ∈ A(x), i.e. we mean that (x, y) is

an element of E.

Let H be a subgraph of G, and denote the edge-set of H by E(H).

Plans. A plan in H is an infinite sequence of states g = (tm)m∈N, such that (tm, tm+1) ∈ E(H)

for all tm ∈ N. A plan in G is simply called a plan. A plan is interpreted as a prescription for

play for a game with initial active state t1. The set of states that become active during play if

plan g is executed is denoted by S(g) ⊆ S, i.e. S(g) = {t ∈ S | ∃m ∈ N : tm = t}, and the

set of players that become active during play is denoted by N(g) ⊆ N, i.e. N(g) = {t ∈ N |

∃m ∈ N : tm = t}. Notice that, if the initial state of g is an element of N∗, then g is of the form

(t∗, t∗, . . .), with t∗ ∈ N∗. Also, if plan g contains a state in N∗, say t∗, and the initial state of g

is an element of N, then we must have t ∈ N(g) and there must be a stage M with tM = t and

with tm = t∗ for allm > M. This is interpreted as a prescription for t to announce his absorbing

state t∗ at stage M. We say that the plan absorbs at t if this is the case. If S(g) ⊆ N, then we

say that the plan is non-absorbing. We denote by φt(g) the average reward to player t when

play is according to g, i.e. φt(g) = rt(x) if g absorbs at x, and φt(g) = 0 if g is non-absorbing.

The initial state of plan g is denoted by FIRST(g).

Paths. A path (or history) in H is a finite sequence p = (tm)
k
m=1 with k ≥ 1, such that

(tm, tm+1) ∈ E(H) for all m ∈ {1, . . . , k − 1}. A path in G is simply a path. The number

k − 1 is called the length of the path. The initial state t1 of path p is denoted by FIRST(p)

and the final state tk is denoted by LAST(p). If the length of the path is at least 1, i.e. if the

path contains at least one edge, we allow ourselves to say that p is a path from t1 to tk. We

will sometimes want to concatenate a number of paths to make a longer path or a plan, or

we may want to concatenate a finite number of paths and a plan to make another plan. We

allow concatenation if p1, p2, . . . pm are paths that satisfy LAST(pk) = FIRST(pk+1) for all k ∈

{1, . . . ,m− 1}. The concatenation of these paths is denoted by 〈p1, p2, . . . pm〉 and it represents

the path that follows the prescription of p1 from FIRST(p1) to LAST(p1) = FIRST(p2), then

follows the prescription of p2 until LAST(p2) = FIRST(p3) is reached, and so on, until LAST(pm)

is reached. Also, if g is a plan with FIRST(g) = LAST(pm), then the plan that first follows the

prescription of 〈p1, p2, . . . , pm〉, and then switches to g is denoted by 〈p1, . . . , pm, g〉. Finally, if

we have an infinite number of paths p1, p2, . . . with the property LAST(pk) = FIRST(pk+1) for all

k ∈ IN, then 〈p1, p2, . . .〉 represents the path or plan that subsequently follows the prescription

of p1, p2, etc. (The concatenation of an infinite number of paths is still a path if only finitely

many of them have positive length.) Let P denote the set of all possible paths, and for t ∈ N,

let Pt denote the set of all paths with endpoint t.

Strategies. A strategy πt for player t is a decision rule that, for any path p ∈ Pt, prescribes

a probability distribution πt(p) over the elements of A(t). We use the notation Πt for the set
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of strategies for player t. A strategy πt ∈ Πt is called pure if every prescription πt(p) places

probability 1 on one of the elements of A(t). We use the notation Π for the set of joint strategies

π = (πt)t∈N with πt ∈ Πt for t ∈ N. A joint strategy π = (πt)t∈N is pure if πt is pure for all

t ∈ N.

In this paper, we will define joint strategies by formulating a prescription of play for the entire

game, which holds only as long as players execute actions that are assigned a positive prob-

ability by the prescription. For the event that a player deviates by choosing an action that is

assigned probability 0, a revised prescription will be formulated.

In our description of prescribed play, we distinguish between default mode and threat mode.

Default mode is characterized by deterministic play according to a chosen plan. Threatmode is

characterized by play that is deterministic at all stages except one, and where the active player

at the exceptional stage is supposed to perform a lottery between exactly two options. The data

needed to execute this type of play is given two plans and a player, say by the triple (g, v, x).

Here, g and v are two plans and x is a player, such that x ∈ N(g), such that FIRST(v) ∈ A(x),

and such that the state of g following the first occurrence of x differs from FIRST(v). Threat

mode will imply that one of the players in g is active. If this is not player x, or if it is x but not

the first occurence of x on plan g, then the active player is required to follow the prescription

of g. If player x is active and if it is his first occurrence on the plan g, then he is required

to perform a lottery, in which to place probability ε on the switch to v, and probability 1− ε

on the continuation of g. (The requirement that FIRST(v) differs from the state following x

on g ensures that the lottery places positive probability on two different options.) As long as

players follow the plan g, play continues in threat mode according to the triple (g, v, x). If,

on his first occurence on the plan g, player x switches to v, then play returns to default mode

with prescribed plan v. Notice that, in threat mode, player x can deviate from prescribed play,

without causing a revision of prescribed play, by performing an alternative lottery for his two

options.

Expected rewards. Consider a joint strategy π ∈ Π and a path p ∈ P. Suppose that the game

has developed along the path p and that state LAST(p) is now active. Suppose further that all

players, starting at LAST(p), follow the joint strategy π, taking p as the history of the game.

Denote the overall probability of absorption at t by IPp,π(t). In our model, where non-zero

rewards only occur in absorbing states, we see that the expected average reward for player t

exists, and that it can be expressed as

ψ
p
t (π) := ∑

u∈N

IPp,π(u)rt(u).
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If π is a pure joint strategy, then following π results in play according to a (deterministic) plan.

If we denote this induced plan by gp,π, then the expected average reward is given by

ψ
p
t (π) := ∑

u∈N

IPp,π(u)rt(u) = φt(g
p,π).

If a joint strategy is given in terms of prescribed play, then it is sufficient to know the mode

of play (default or threat) at LAST(p) and the data to describe that mode. If play is in default

mode according to plan g, then the expected reward for an arbitrary player t ∈ N is given by

ψ
p
t (π) = φt(g).

If play is in threat mode according to (g, v, x), then the expected reward for an arbitrary player

t ∈ N is given by

ψ
p
t (π) = (1− ε)φt(g) + εφt(v).

Equilibria. Still consider the joint strategy π ∈ Π and a game that has developed along the

path p ∈ P. The joint strategy π = (πt)t∈N ∈ Π is called a (Nash) ε-equilibrium for path p, for

some ε ≥ 0, if

ψ
p
t

(

σt, (πu)u∈N−{t}

)

≤ ψ
p
t (π) + ε ∀σt ∈ Πt, ∀t ∈ N,

which means that, given history p, no player t can gain more than ε by a unilateral deviation

from his proposed strategy πt to an alternative strategy σt. The joint strategy π is called an

ε-equilibrium for initial state s ∈ N if π is an ε-equilibrium for path (s). The joint strategy π is

called a subgame-perfect ε-equilibrium if π is an ε-equilibrium for p for every path p ∈ P.

Strategic concepts. We now describe some strategic concepts, necessary to compute and

describe a subgame perfect ε-equilibrium for a game in the class G.

For α ∈ IRN, a plan g, and a player x ∈ N, we say that x is α-satisfied by g if φx(g) ≥ αx. We

define

SAT(g, α) = {x ∈ N | x is α-satisfied by g}.

We say that plan g is α-viable if N(g) ⊆ SAT(g, α). This means that, if play is according to g,

every player t that becomes active during play will receive an average reward of at least αt.

Notice that a plan of the form g = (t∗, t∗, . . .)with t∗ ∈ N∗ is trivially α-viable, since N(g) = ∅.

For every state t ∈ S, we denote the set of α-viable plans g with FIRST(g) = t by VIABLE(t, α).

Notice that, for t∗ ∈ N∗, the set VIABLE(t∗, α) consists of only the plan (t∗, t∗, . . .).

For t ∈ N, and a plan g ∈ VIABLE(u, α) with u ∈ A(t), say that g is (t, u, α)-admissible if at least

one of the following holds:

AD-i: t /∈ N(g) or g is non-absorbing;
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AD-ii: αt > 0;

AD-iii: t ∈ N(g) and there exists a pair (x, v), such that x 6= t is a player who resides on

g in the part from u to the first occurrence of t, such that v is an α-viable plan with

FIRST(v) ∈ A(x), such that FIRST(v) is not the state following the first occurrence of x on

plan g, and such that x, t /∈ SAT(v, α).

We denote the set of plans that are (t, u, α)-admissible by ADMISS(t, u, α).

The motivation behind the definition of (t, u, α)-admissibility is that player t will prefer (or

cannot prevent) to follow through with a prescribed plan g ∈ ADMISS(t, u, α), as compared to

deviating to u every time he is active, and thereby creating a non-absorbing plan. Condition

AD-i describes the situation, where the announcement of u by player t is not possible (the case

t /∈ N(g)) or would yield the same average reward as g (the case that g is non-absorbing).

Condition AD-ii describes the situation, where this deviation, if it is possible, would yield a

strictly lower average reward for t, as the non-absorbing plan yields zero average reward,

while g yields an average reward of at least αt > 0. Condition AD-iii describes the situation,

where a player x with x 6= t and participating in the non-absorbing plan created by t’s de-

viation to u, has the threat of switching to an α-viable plan v with t, x /∈ SAT(v, α). Now, if

prescribed play is not exactly g, but if player x is required to place a very small probability

on a switch to v, every time he is active, then play will still be according to g with very high

probability if players follow the presciption. Player t will not be able to profit from contin-

uous deviation to u, as this would eventually result in a switch to v with probability 1 and

t /∈ SAT(v, α). Player x will not be tempted to increase the probability of a switch to v, since

x /∈ SAT(v, α).
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III

Example 2.1. Figure 1 represents two games, each with two players, 1 and 2. Only the two

nodes that correspond to the non-absorbing states of these players are depicted, and the vec-

tors below these states are the rewards that will be obtained if the controlling player chooses

his absorbing state. For both games, the arc from 2 to 1 indicates that 1 ∈ A(2), hence

A(2) = {1, 2∗}, and the other arc indicates 2 ∈ A(1), hence A(1) = {2, 1∗}.

For game I, let us take αt = rt(t) for t = 1, 2, i.e. α1 = 1 and α2 = −1. Then, every plan that

absorbs at 2 is α-viable. The plan (1, 1∗, 1∗, . . .) is also α-viable, but any plan in which player
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2 is active and that absorbs at 1 is not α-viable, since such a plan does not α-satisfy player 2.

The two non-absorbing plans (1, 2, 1, 2, . . .) and (2, 1, 2, 1, . . .) are not α-viable, since player 1 is

active in both plans and is not α-satisfied by them.

The plans in VIABLE(2, α) that do not immediately absorb at 2 are not (1, 2, α)-admissible, since

they violate all three conditions AD-i, AD-ii, and AD-iii. The plan (2, 2∗, 2∗, . . .) is (1, 2, α)-

admissible, since it satisfies AD-i. All plans in VIABLE(1, α) are also (2, 1, α)-admissible, since

these plans satisfy AD-iii, where player 1 is in the role of ’threat-player’ x and plan (1∗, 1∗, . . .)

is in the role of ’threat-plan’ v.

For game II, let us also take αt = rt(t) for t = 1, 2, i.e. α1 = α2 = −2. Here, it is easily verified

that every plan is α-viable. Any plan that starts at 1 and absorbs at 2 is not (2, 1, α)-admissible

however, since conditions AD-i, AD-ii, and AD-iii are all three violated for such plans. The

plans (1, 1∗, 1∗, . . .) and (1, 2, 1, 2, . . .) are (2, 1, α)-admissible, as they both satisfy AD-i. By

symmetry of the example, any plan that starts at 2 and absorbs at 1 is not (1, 2, α)-admissible,

but the plans (2, 2∗, 2∗, . . .) and (2, 1, 2, 1, . . .) are. 3

Update procedure. We now propose a method for updating one coordinate of a vector

α ∈ IRN. For t ∈ N, u ∈ A(t), and α ∈ IRN, we define

β(t, u, α) = min{φt(v) | v ∈ ADMISS(t, u, α)}.

We define further,

δ(t, α) = max{β(t, u, α) | u ∈ A(t)},

and

B(t, α) = {u ∈ A(t) | β(t, u, α) = δ(t, α)}.

We use the convention min∅ = ∞, so that β(t, u, α) and δ(t, α) are well defined. Moreover, by

the definition of δ(t, α), the set B(t, α) is always nonempty.

Example 2.2. Let us apply the updating procedure to the two games depicted in figure 1, with

the initial α-values from example 2.1.

For game I, we chose α1 = 1 and α2 = −1. Let us first update the state controlled by player 1.

We trivially have β(1, 1∗, α) = r1(1) = 1 and we have β(1, 2, α) = φ1(2, 2
∗, 2∗, . . .) = r1(2) = 2,

since (2, 2∗, 2∗, . . .) is the only (1, 2, α)-admissible plan. Thus, δ(1, α) = max(1, 2) = 2, and

the updated vector is given by α∗
1 = 2 and α∗

2 = −1. Let us now update the updated vector

αast. This time, we update the state controlled by player 2. We trivially have β(2, 2∗, α) =

r2(2) = −1 and one can verify that β(2, 1, α) = φ1(1, 2, 2
∗, 2∗, . . .) = r2(2) = −1. Thus,

δ(2, α) = max(−1,−1) = −1, and we observe that this update had no effect. One can verify

that an update of the already updated state controlled by 1 will have no further effect either.

For game II, we chose α1 = α2 = −2. Let us denote α0 = α, and for i > 0, let us use the no-

tation αi for the vector that results after an update of αi−1. We choose to update first the state
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controlled by player 1. We trivially have β(1, 1∗, α) = r1(1) = −2, and the findings in exam-

ple 2.1 show that β(1, 2, α) = min (φ1(2, 1, 2, 1, . . .), φ1(2, 2
∗, 2∗, . . .)) = −1. Thus, δ(1, α) = −1

and α1 = (−1,−2). We now set α = α1 and we continue with an update of the state controlled

by player 2. We have β(2, 2∗, α) = r2(2) = −2. Notice that (1, 2, 1, 2, . . .) is the only (2, 1, α)-

admissible plan. (The plan (1, 1∗, 1∗, . . .) is not (2, 1, α)-admissible ’anymore’, due to the pre-

vious update.) Thus, we have β(2, 1, α) = φ1(1, 2, 1, 2, . . .) = 0. It follows that α2 = (−1, 0).

We set α = α2. Notice that only the two non-absorbing plans (1, 2, 1, 2, . . .) and (2, 1, 2, 1, . . .)

are now α-viable. They are also respectively (2, 1, α)-admissible and (1, 2, α)-admissible. Then

β(2, 1, α) = φ1(1, 2, 1, 2, . . .) = 0, which means that we obtain α3 = (0, 0) by updating the state

controlled by 1 for the second time. After this, no update will have any further effect. 3

Main result. In Sections 3 and 4, we analyze the update procedure. The analysis demon-

strates that, starting with an appropriate initial vector α0 ∈ IRN, repeated application of the

update procedure will produce, in a finite number of iterations, a vector α∗ ∈ IRN, such that

δ(t, α∗) = α∗
t for all t ∈ N. The existence of such a ’fixed point’ α∗ is proven in theorem 4.16 and

it allows for the construction of a subgame-perfect ε-equilibrium for all ε > 0. The following

theorem is our main result.

Theorem 2.1. There exists a subgame perfect ε-equilibrium for every game in class G and every ε > 0.

Proof. I: Description of a joint strategy. Take a game in G. As we remarked, a vector α∗ ∈ IRN

exists such that δ(t, α∗) = α∗
t for all t ∈ N. The fact that δ(t, α∗) is finite for all t ∈ N implies

that β(t, u, α∗) is finite for all t ∈ N and all u ∈ A(t). It follows that VIABLE(t, α∗) is non-empty

for all t ∈ N and that ADMISS(t, u, α∗) is non-empty for all t ∈ N and u ∈ A(t).

We can thus choose a plan gt ∈ VIABLE(t, α∗) for all t ∈ N. We can also choose, for all t ∈ N

and all u ∈ A(t), a plan gtu ∈ ADMISS(t, u, α∗) such that φt(gtu) = β(t, u, α∗). In case the choice

gtu violates both AD-i and AD-ii, and therefore satisfies AD-iii, we can make the additional

choice of a player xtu ∈ N \ {t} and an α∗-viable plan vtu, such that FIRST(vtu) ∈ A(xtu), such

that FIRST(v) is not the state following the first occurrence of xtu on plan gtu, such that xtu

resides on the non-absorbing plan that would result if player t were to deviate from gtu by

announcing u every time he is active, and such that xtu, t /∈ SAT(vtu, α∗).

Now, if s ∈ N is the initial state of the game, then we start the game in default mode with

plan gs as initial prescription. Whenever a deviation from prescribed play is detected, say that

player t deviates to u, then we check if plan gtu, associated with the pair (t, u), satisfies AD-i

or AD-ii. If so, then revised play will be in default mode according to the (newly) prescribed

plan gtu. If not, then AD-iii is satisfied, and play will resume in threat mode according to

the triple (gtu, vtu, xtu). To be clear, if play was already in threat mode according to the same

triple (gtu, vtu, xtu), then plan gtu is restarted at its initial state. Let us denote the joint strategy

defined in this way by π.
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II: Verification. Let us verify that π is a subgame perfect 2εM-equilibrium, where M =

max{|ri(t)| | i, t ∈ N}. Assume that play has developed along path p. Let us further as-

sume that exactly one player deviates from π, after the game has reached LAST(p). We will

demonstrate that the deviating player can profit at most 2εM in expectation from his devia-

tion(s).

IIa: First assume that a player, say y, deviates a finite number of times after the game has

developed along p. Say that at his last deviation he announces u ∈ A(y), and that this last

deviation causes a revision of prescribed play.

If the plan gyu satisfies AD-i or AD-ii, then after y’s last deviation, play will resume in default

mode with presciption gyu. The plan gyu was selected such that φy(g
yu) = β(y, u, α∗). By

definition of δ(y, α∗), we have β(y, u, α∗) ≤ δ(y, α∗), and by the properties of α∗
y, we have

δ(y, α∗) = α∗
y. It follows that φy(gyu) ≤ α∗

y. If the plan gyu violates both AD-i and AD-ii, then

after y’s last deviation, play will resume in threat mode according to the triple (gyu, vyu, xyu).

Since no further deviations will take place, plan gyu will be executed with probability 1− ε

and with an expected average reward of at most α∗
y for player y; plan vyu will be executed

with probability ε and with an expected average reward strictly less than α∗
y for player y,

since y /∈ SAT(vyu, α∗). Thus, the expected average reward for y, after deviations, is at most

(1− ε)α∗
y + εα∗

y = α∗
y.

Let us now demonstrate that player y has an expected average reward of at least α∗
y − 2εM

if he follows π. If y becomes first active during default mode, it means that prescribed play

is deterministic according to an α∗-viable plan, say g. Then y’s average reward will be φy(g)

and since y ∈ N(g), we have indeed ψ
p
y(π) = φy(g) ≥ α∗

y > α∗
y − 2εM. If player y becomes

active during threat mode, then play is according one of the plans gtu. If the first occurrence

of player xtu comes before y on plan gtu, then there is no chance of a switch to vtu anymore,

and the average reward for player y will be φy(gtu) ≥ α∗
y > α∗

y − 2εM. If the first occurrence

of xtu comes after y or if xtu = y, then there is probability 1− ε that plan gtu will be executed,

with an average reward of at least α∗
y for player y. There is also a probability of ε that vtu will

be executed, with an average reward of at least −M for player y. Thus indeed, the expected

average reward for player y is ψ
p
y (π) ≥ (1− ε)α∗

y − εM ≥ α∗
y − 2εM.

IIb: Now assume that a player, say y, deviates a finite number of times after the game has

developed along p, such that his last deviation does not cause a revision of prescribed play.

Then, at the last deviation of y, the game was in threat mode and player y was the one to per-

form the lottery. Say that the game was in threat mode according to the triple (g, v, y). Notice

that the player to cause a revision of play is never the one assigned the task of performing

a lottery in revised play. Therefore, player y could not have deviated in the period between

the stage where the game had developed along p and the stage at which he was supposed to

perform the lottery. So, the last deviation of y was in fact his only deviation in the relevant

time period, and threat mode according to (g, v, y) was the mode at FIRST(p). We conclude
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that ψ
p
y (π) = (1− ε)φy(g) + εφy(v) is the expected average reward for y by following π.

Now say that in the alternative lottery performed by player y, he places probability µ on

the continuation of g, probability λ ≤ 1 − µ on the switch to v, and summed probability

η = 1− µ − λ on his other available actions. Then there is probability µ that g is executed,

with expected average reward φy(g), probability λ that v is executed, with expected average

reward strictly less than α∗
y, since y /∈ SAT(v, α∗), and probability η that his deviation will be

detected, with expected average reward at most α∗
y. His expected average reward is then at

most µφy(g)+λα∗
y + ηα∗

y ≤ φy(g), where the inequality is due to the fact that φy(g) ≥ α∗
y. Since

the expected average reward for following π is ψ
p
y(π) = (1− ε)φy(g)+ εφy(v) ≥ φy(g)− 2εM,

we see that player y profits no more than 2εM from his deviation.

IIc: It remains to investigate the possibility that a player deviates infinitely many times. As

this implies infinite play along non-absorbing states, the average reward to all players will be

zero if this happens. If the deviating player, say t, satisfies α∗
t ≥ 0, then he will profit at most

2εM, as he will receive at least α∗
t − 2εM by sticking to the plan. So we can assume that α∗

t < 0.

Notice that, if t deviates infinitely many times, he also causes infinitely many times a revision

of prescribed play. Each time at such a revision, it will be checked if the plan gtu satisfies

AD-i or AD-ii, where u is the state to which t deviates. By the choice of gtu as a minimizer

for β(t, u, α∗), we have φt(gtu) = β(t, u, α∗) ≤ δ(t, α∗) = α∗
t < 0. This implies that gtu is an

absorbing plan. Also, since t will deviate again, we must have t ∈ N(gtu). This means that

AD-i is violated, and clearly AD-ii is violated too, by our assumption α∗
t < 0. Thus, only AD-iii

is satisfied, and play will resume in threat mode according to the triple (gtu, vtu, xtu).

We conclude that, in the event of infinitely many deviations by a player t with α∗
t < 0, after

a while, play will be constantly in threat mode. From then on, between every two visits of t

during play, a probability ε is placed on a switch to one of the plans vtu. After such a switch,

player t will not become active again, since t /∈ SAT(vtu, α∗), and therefore t /∈ N(vtu). Thus,

once play gets in constant threat mode, there is a probability of at most (1− ε)n that there will

be at least n more visits to player t. It follows that the event of infinitely many deviations by a

player t with α∗
t < 0 has probability 0.

Example 2.3. For game I, a fixed point α∗
1 = 2 and α∗

2 = −1 was calculated in example 2.2.

All α∗-viable plans absorb at 2, so we define g1 = g21 = (1, 2, 2∗, 2∗, . . .) and g2 = g12 =

(2, 2∗, 2∗, . . .). Plan g12 is (1, 2, α∗)-admissible, since it satisfies AD-i. Plan g21 is (2, 1, α∗)-

admissible, since it satisfies AD-iii, but not AD-i and AD-ii. Then, in order to to complete our

choices, we choose player 1 in the role of ’threat-player’ x12 and plan (1∗, 1∗, . . .) in the role of

’threat-plan’ v12 = (1∗, 1∗, . . .).

With these choices, the proof of theorem 2.1 now prescribes absorption at 2 whenever player 2

is active (execute either g2 or g12). If the game starts at 1, then player 1 is initially supposed

to announce 2 with probability 1 (execute g1). Every next time he becomes active, player 1 is

supposed to announce 2 (execute g12) with probability 1− ε and to absorb at 1 (execute plan
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v12) with probability ε. (Player 2 apparently refused to absorb at 2, and play is now in threat

mode.)

For game II, the fixed point is α∗
1 = 0 and α∗

2 = 0. Here, only the two non-absorbing plans

(1, 2, 1, 2, . . .) and (2, 1, 2, 1, . . .) are α∗-viable. We therefore choose g1 = (1, 2, 1, 2, . . .) and g2 =

(1, 2, 1, 2, . . .). We do not make any further choices. (Since it is not a deviation to announce the

other player, it is unnecessary to choose the plans g21 and g12.)

With these choices, the proof of theorem 2.1 now prescribes the players to always announce

each other, indefinitely. Deviation from the plan means absorption, which is indeed not prof-

itable for the deviating player. 3

Of the restrictions imposed on our class G of games, the requirement that each player control

just one non-absorbing state seems especially severe. The following example is to demonstrate

that at least one specific attempt to deal with multiple states per player does not work.

11

-1-1

Figure 2

Example 2.4. The update procedure could be applied to the 1-player game in figure 2, as

if the two states were controlled by two different players, say 1 and 1′. If we initiate the

update procedure with αt = −1 for t = 1, 1′, then we find that α is in fact a fixed point.

The construction of theorem 2.1 then allows, for any ε > 0, for the strategy profile in which

player 1 absorbs immediately with probability 1, in any subgame. So clearly, the construction

of theorem 2.1 fails here.

3

3 Semi-stable vectors and their properties

The purpose of this section is to provide a sufficient condition for α ∈ IRN that guarantees the

existence of a (t, u, α)-admissible plan for every t ∈ N and every u ∈ A(t).

For α ∈ IRN, t ∈ N and u ∈ S, let us say that t is α-safe at u if u ∈ A(t) and if t ∈ SAT(g, α) for

all g ∈ VIABLE(u, α). For t∗ ∈ N∗, it will be convenient to say that t∗ is α-safe at t∗. We define,

for all t ∈ S,

SAFESTEP(t, α) = {u ∈ A(t) | t is α-safe at u}.
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For α ∈ IRN and X ⊆ N, we define

POS(X, α) = {x ∈ X | αx > 0},

ESC(X, α) = {x ∈ X | ∃y ∈ S \ X : y ∈ SAFESTEP(x, α)}.

We also define

C = {X ⊆ N | A(x) ∩ X 6= ∅ for all x ∈ X},

and for α ∈ IRN, we define

P(α) = {X ⊆ N | POS(X, α) 6= ∅},

E(α) = {X ⊆ N | ESC(X, α) ∩ POS(X, α) = ∅}, and

X (α) = P(α) ∩ E(α) ∩ C.

We say that an edge e = (x, y) is an α-exit from X if x ∈ X and y ∈ S \ X, and if, for all

g ∈ VIABLE(y, α),

ESC(X, α) ⊆ SAT(g, α) =⇒ x ∈ SAT(g, α).

We say that e is a trivial α-exit from X if x ∈ ESC(X, α) and a non-trivial one if x ∈ X \

ESC(X, α).

We now say that α ∈ IRN is semi-stable if SAFESTEP(x, α) 6= ∅ for all x ∈ N, and if there exists a

non-trivial α-exit from X for every X ∈ X (α). The set of semi-stable vectors in IRN is denoted

by Ω.

Lemma 3.1. We have ρ ∈ Ω, where ρ is the vector defined by ρt = rt(t) for all t ∈ N.

Proof. For the vector ρ, we have t∗ ∈ SAFESTEP(t, ρ) for all t ∈ N. Hence, SAFESTEP(t, ρ) 6= ∅

for all t ∈ N.

For any X ⊆ N, we have ESC(X, ρ) = X, since t∗ ∈ SAFESTEP(t, ρ) for all t ∈ X. Now, let X ∈

P(ρ), i.e. let X ⊆ N be such that POS(X, ρ) 6= ∅. Then ESC(X, ρ)∩ POS(X, ρ) = POS(X, ρ) 6= ∅,

hence X /∈ E(ρ). It follows that X (ρ) = P(ρ) ∩ E(ρ) ∩ C = ∅. Then trivially, a non-trivial ρ-

exit from X exists for all X ∈ X (ρ). Thus, ρ ∈ Ω.

Lemma 3.2. Let α ∈ Ω. Then ESC(X, α) 6= ∅ for all X ∈ P(α).

Proof. Let X ∈ P(α) and suppose that ESC(X, α) = ∅. Then SAFESTEP(x, α) ⊆ X for all x ∈ X,

and thus, SAFESTEP(x, α) ⊆ A(x) ∩ X for all x ∈ X. We further have SAFESTEP(x, α) 6= ∅ for

all x ∈ X, by the fact that α ∈ Ω. It follows that A(x) ∩ X ⊇ SAFESTEP(x, α) 6= ∅ for all x ∈ X,

which proves that X ∈ C. We also trivially have X ∈ E(α), since we suppose ESC(X, α) = ∅.
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Then X ∈ P(α) ∩ E(α)∩ C = X (α). Now, since α ∈ Ω and X ∈ X (α), there exists a non-trivial

α-exit from X, say (x, y). Since (x, y) is an α-exit from X, we have for all v ∈ VIABLE(y, α),

ESC(X, α) ⊆ SAT(v, α) =⇒ x ∈ SAT(v, α).

The leftside of the implication is always true, since supposedly ESC(X, α) = ∅. It follows

that x ∈ SAT(v, α) for all v ∈ VIABLE(y, α), hence y ∈ SAFESTEP(x, α). But this implies x ∈

ESC(X, α), which contradicts that ESC(X, α) = ∅.

For any subgraph H of G and a subset X of the vertex set V(H) of H, say that X is an ergodic

set of H if

i) for all x, y ∈ X, there exists a path p in H from x to y with N(p) ⊆ X, and

ii) for all x ∈ X and y ∈ V(H) \ X, there is no path in H from x to y.

The following lemma is an easy result in graph theory. It is stated without proof.

Lemma 3.3. Let H = (V(H), E(H)) be a (directed) graph, such that for every vertex x ∈ V(H),

there exists y ∈ V(H) with (x, y) ∈ E(H). Then, for every x ∈ V(H), there is a path from x to an

element of an ergodic set of H.

For α ∈ Ω, define the graph G(α) as the graph with vertex set S and edge set {(x, y) ∈ E | y ∈

SAFESTEP(x, α)}. Notice that, for all α ∈ Ω and for all t∗ ∈ N∗, the singleton {t∗} is an ergodic

set of the graph G(α), since (t∗, t∗) is a path in G(α) from t∗ to t∗ and since there is no edge

leaving the set {t∗}. The definition of ergodic set implies that different ergodic sets of a graph

are disjoint. Therefore, any ergodic set of G(α) is either a singleton from the set N∗ or a subset

of N. The following corollary follows directly from lemma 3.2.

Corollary 3.4. Let α ∈ Ω. If X ⊆ N is an ergodic set of G(α), then POS(X, α) = ∅.

An immediate insight from corollary 3.4 is that, for all α ∈ Ω, a plan v is always an α-viable

plan if N(v) is a subset of an ergodic set of G(α).

Lemma 3.5. Let α ∈ Ω, let p be a path in G(α), and let g be an α-viable plan such that FIRST(g) =

LAST(p). Then the plan 〈p, g〉 is α-viable.

Proof. Write p = (zi)
k
i=1 with k ≥ 1. Define, for all i ∈ {1, . . . , k}, the plan gi = 〈(zi , . . . , zk), v〉.

We prove by induction on i that all plans gi with i ∈ {1, . . . , k} are α-viable. Trivially, the

plan gk = g is α-viable. Now assume that gi+1 is α-viable with i < k. Then N(gi) \ {zi} ⊆

N(gi+1) ⊆ SAT(gi+1, α) = SAT(gi, α). Thus, to prove that N(gi) ⊆ SAT(gi , α), i.e. to prove that

gi is α-viable, it suffices to show that zi ∈ SAT(gi, α).
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We have zi+1 ∈ SAFESTEP(zi , α), since p is a path in G(α). It follows that zi ∈ SAT(gi+1, α),

since gi+1 is an α-viable plan with FIRST(gi+1) = zi+1. Because SAT(gi, α) = SAT(gi+1, α), we

indeed obtain zi ∈ SAT(gi, α),

The existence of α-viable plans for α ∈ Ω is now an easy consequence of previous results.

Lemma 3.6. Let α ∈ Ω. Then, for all t ∈ N, a plan g in G(α) exists with g ∈ VIABLE(t, α).

Proof. Let t ∈ N. We have SAFESTEP(x, α) 6= ∅ for all x ∈ N, since α ∈ Ω. Thus, the graph

G(α) satisfies the conditions of lemma 3.3. Therefore, there is a path p in G(α) from t to an

element x of an ergodic set X of G(α). By the properties of an ergodic set, a path q in G(α)

exists from x to x, and with N(q) ⊆ X. First we prove that the plan 〈q, q, . . .〉 is α-viable.

Indeed, this is true by definition if the plan 〈q, q, . . .〉 is absorbing, i.e. if x ∈ N∗ and q = (x, x).

Otherwise, we have X ⊆ N, and POS(X, α) = ∅ follows by corollary 3.4. The plan 〈q, q, . . .〉

is then α-viable, due to the fact that it is non-absorbing, hence it gives average reward 0 to all

players. Finally, it follows that g := 〈p, q, q, . . .〉 ∈ VIABLE(t, α), by lemma 3.5.

The main result of this section concerns the existence of admissible plans.

Lemma 3.7. Let α ∈ Ω. Then, for all t ∈ N and for all u ∈ A(t), ADMISS(t, u, α) 6= ∅.

Proof. Let t ∈ N and u ∈ A(t). By lemma 3.6, VIABLE(u, α) 6= ∅. If v ∈ VIABLE(u, α) exists

with t /∈ N(v), then v ∈ ADMISS(t, u, α) since v satisfies AD-i, and we are done. Assume

further that t ∈ N(v) for all v ∈ VIABLE(u, α). Notice that this implies t ∈ SAT(v, α) for all

v ∈ VIABLE(u, α). Thus, u ∈ SAFESTEP(t, α), i.e. (t, u) is an edge of G(α).

Define

Y = {y ∈ S | a path p in G(α) from u to y exists with t /∈ N(p)},

and define X = Y ∪ {u, t}. We claim that ESC(X, α) ⊆ {t}. To prove our claim, we let x ∈

X \ {t}, and we will show that y ∈ X for all y ∈ SAFESTEP(x, α). So, let y ∈ SAFESTEP(x, α). If

y = t, then trivially y ∈ X. If y 6= t, then there is a path in G(α) from u to y not containing t.

Indeed, if x = u, then (x, y) = (u, y) is such a path, and if x 6= u, then there is a path p in G(α)

from u to x not containing t by the fact that x ∈ X \ {t, u} ⊆ Y, and 〈p, (x, y)〉 is then a path in

G(α) from u to y not containing t. Thus, y ∈ Y ⊆ X as claimed. We now distinguish between

the cases POS(X, α) = ∅ and POS(X, α) 6= ∅.

First assume that POS(X, α) = ∅. Notice that, for all x ∈ X, an element y ∈ X exists, such

that (x, y) is an edge of G(α). In particular also, (t, u) is an edge of G(α). Then it is possible to

construct a non-absorbing plan gwith FIRST(g) = u, with N(g) ⊆ X, and such that every edge

of g is in the edge-set of G(α). Then g ∈ VIABLE(u, α) by the assumption that POS(X, α) = ∅,

and by the fact that a non-absorbing plan gives reward 0 to all players. Since the non-absorbing

plan g satisfies condition AD-i, it also follows that g ∈ ADMISS(t, u, α).
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Now assume that POS(X, α) 6= ∅, i.e. assume that X ∈ P(α). We then have ESC(X, α) 6= ∅

by lemma 3.2, so we must have ESC(X, α) = {t}. If t ∈ POS(X, α), then ADMISS(t, u, α) =

VIABLE(u, α) 6= ∅, where the equality is by the fact that AD-ii is satisfied by all plans in

VIABLE(u, α) and the inequality is by lemma 3.6. So we can further assume that t /∈ POS(X, α).

Under this assumption, we have ESC(X, α) ∩ POS(X, α) = ∅, i.e. X ∈ E(α). We also have that

A(x) ∩ X 6= ∅ for all x ∈ X, which follows from our earlier observation that, for all x ∈ X, an

element y ∈ X exists, such that (x, y) is an edge of G(α). Thus, we have X ∈ C.

We see that X ∈ P(α) ∩ E(α) ∩ C = X (α). Then, by the fact that α ∈ Ω, a non-trivial α-exit

from X exists, say (x, y). By definition of an α-exit, we have, for all g ∈ VIABLE(y, α),

ESC(X, α) ⊆ SAT(g, α) =⇒ x ∈ SAT(g, α).

Since ESC(X, α) = {t}, this translates to, for all g ∈ VIABLE(y, α),

t ∈ SAT(g, α) =⇒ x ∈ SAT(g, α).

We have x ∈ X \ ESC(X, α), since the α-exit (x, y) is non-trivial. This implies y /∈ SAFESTEP(x, α),

since y ∈ S \ X. Thus, we can choose v ∈ VIABLE(y, α) with x /∈ SAT(v, α). We must then also

have t /∈ SAT(v, α), since t ∈ SAT(v, α) =⇒ x ∈ SAT(v, α).

We choose z ∈ S such that (x, z) is an edge of G(α), which is possible by the fact that α ∈ Ω.

Notice that x ∈ X \ {t}. Indeed, we have x 6= t, since x ∈ X \ ESC(X, α) and t ∈ ESC(X, α). It

follows that z ∈ Y ∪ {t} ⊆ X by the properties of the set Y.

We also choose h ∈ VIABLE(z, α), which is possible by lemma 3.6.

Now, in case x = u, we define g := 〈(x, z), h〉. In case x ∈ X \ {u}, we actually have x ∈

X \ {u, t} ⊆ Y, and we can choose a path q in G(α) from u to x with t /∈ N(p). We then define

g := 〈q, (x, z), h〉. We claim that g ∈ ADMISS(t, u, α).

By lemma 3.5, we have g ∈ VIABLE(u, α). Notice that the first occurrence of x in this plan is

before the first occurrence of t. Moreover, we have y ∈ A(x) and a plan v ∈ VIABLE(y, α)

with t, x /∈ SAT(v, α). Also notice that FIRST(v) = y and the state z, which follows the first

occurrence of x in g, are different states, since y ∈ S \ X and z ∈ X. This demonstrates that g

satisfies condition AD-iii of admissibility, hence g ∈ ADMISS(t, u, α).

Corollary 3.8. Let α ∈ Ω and let t ∈ N. Then αt ≤ δ(t, α) < ∞.

Proof. We have SAFESTEP(t, α) 6= ∅, by the fact that α ∈ Ω. We can then choose u ∈

SAFESTEP(t, α), and we obtain αt ≤ β(t, u, α) ≤ δ(t, α). By lemma 3.7, the minimization

β(t, u, α) = min{φt(v) | v ∈ ADMISS(t, u, α)} is done over a non-empty set, hence β(t, u, α)

is finite for all u ∈ A(t), which demonstrates that δ(t, α) < ∞.
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Lemma 3.9. Let α ∈ Ω and t ∈ N. Let δ be the vector that results from α when coordinate αt is

replaced with δ(t, α). Then

(i) VIABLE(u, δ) ⊆ VIABLE(u, α) for all u ∈ N,

(ii) SAFESTEP(u, δ) ⊇ SAFESTEP(u, α) for all u ∈ N \ {t},

(iii) B(t, α) ⊆ SAFESTEP(t, δ) ⊆ SAFESTEP(t, α),

(iv) ESC(X, α) \ {t} ⊆ ESC(X, δ) \ {t} for all X ⊆ N,

(v) ESC(X, α) ⊆ ESC(X, δ) for all X ⊆ N with t /∈ X or t ∈ ESC(X, δ).

Proof. Proof of (i): By corollary 3.8 we have δ ≥ α. Then, if a plan is δ-viable, it is obviously

also α-viable.

Proof of (ii): Let u ∈ N \ {t}, and let x ∈ SAFESTEP(u, α). Choose an arbitrary plan g ∈

VIABLE(x, δ). Then g ∈ VIABLE(x, α) by (i), and since x ∈ SAFESTEP(u, α), it follows that

u ∈ SAT(g, α). Since u 6= t, we have αu = δu, hence u ∈ SAT(g, δ). It follows that x ∈

SAFESTEP(u, δ).

Proof of (iii), part 1: Let u ∈ B(t, α). Choose g ∈ VIABLE(u, δ). To prove that u ∈ SAFESTEP(t, δ),

it suffices to show that t ∈ SAT(g, δ). Case 1: If t /∈ N(g), then g ∈ ADMISS(t, u, α), since g

is α-viable by lemma 3.9-(i) and satisfies condition AD-i. Then φt(g) ≥ β(t, u, α) = δ(t, α),

where the inequality follows by the definition of β(t, u, α), and the equality follows by the

choice of u ∈ B(t, α). So indeed, t ∈ SAT(g, δ). Case 2: If t ∈ N(g), then t ∈ SAT(g, δ) follows

immediately from the definition of a δ-viable plan.

Proof of (iii), part 2: Now let u ∈ SAFESTEP(t, δ). Choose g ∈ VIABLE(u, α). We need to show

that t ∈ SAT(g, α). Case 1: If t /∈ N(g), then g ∈ VIABLE(u, δ), since αx = δx for all x ∈ N(g).

By the fact that u ∈ SAFESTEP(t, δ), it follows that t ∈ SAT(g, δ). Then also t ∈ SAT(g, α), since

αt ≤ δt. Case 2: If t ∈ N(g), then t ∈ SAT(g, α) is trivial.

Proof of (iv): This follows immediately from (ii).

Proof of (v): If t /∈ X, then

ESC(X, α) = ESC(X, α) \ {t} ⊆ ESC(X, δ) \ {t} = ESC(X, δ).

If t ∈ ESC(X, δ), then

ESC(X, α) ⊆ {t} ∪ (ESC(X, α) \ {t}) ⊆ {t} ∪ (ESC(X, δ) \ {t}) = ESC(X, δ).

Corollary 3.10. Let α ∈ Ω, let t ∈ N, and let δ be the vector that results from α when coordinate αt is

replaced with δ(t, α). Then SAFESTEP(x, δ) 6= ∅ for all x ∈ N.
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Proof. For all x ∈ N \ {t}, we have SAFESTEP(x, δ) ⊇ SAFESTEP(x, α) 6= ∅, where the inclusion

follows from lemma 3.9-(ii), and the inequality follows from the fact that α ∈ Ω. We also have

SAFESTEP(t, δ) ⊇ B(t, α) 6= ∅, where the inclusion follows from lemma 3.9-(iii).

4 Stable vectors and their properties

In the previous section we showed that for all α ∈ Ω, the updated vector, say δ(α), is finite

and satisfies δ(α) ≥ α. If we could also prove δ(α) ∈ Ω for all α ∈ Ω, then it would be an easy

corollary to establish a ’fixed point’ in Ω, i.e. the existence of a vector α∗ ∈ Ω with the property

δ(t, α∗) = α∗
t for all t ∈ N.

We begin this section with an example of α ∈ Ω and δ(α) /∈ Ω. The example demonstrates

that, if we initiate the updating process with a vector in Ω, the process may terminate with a

vector that is not finite.

This ’negative result’ will motivate the rather intricate definition of the set Ω∗ of stable vectors,

later in this section. The set Ω∗ will be a subset of Ω, so that all results derived in section 3 will

also hold for all α ∈ Ω∗. Most importantly however, we will be able to prove that δ(α) ∈ Ω∗

for all α ∈ Ω∗.
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Figure 3

Example 4.1. For the game depicted in figure 3, let us set α1 = 2 and α2 = α3 = α4 = α5 = 0.

We claim that α is semi-stable: It is easy to verify that the condition SAFESTEP(x, α) 6= ∅ for all

x ∈ N is satisfied. Moreover, the collection X (α) consists of only the set {1, 2, 3}, and one can

verify that the edge (3, 4) is a non-trivial α-exit from {1, 2, 3}.

Corollary 3.8 now predicts that any update on α will be finite. However, the vector that results

after the update of the state controlled by player 4 is not semi-stable. The updated vector, say

α̃, is given by α̃1 = α̃4 = 2 and α̃2 = α̃3 = α̃5 = 0. Observe now that {1, 2, 3} ∈ X (α̃) and that

3 ∈ ESC({1, 2, 3}, α̃). Thus, the edge (3, 4) is a trivial α̃-exit from {1, 2, 3}. As there is no other

serious candidate for a non-trivial α̃-exit from {1, 2, 3}, we conclude that α̃ is not semi-stable.
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Any update on α̃ is still finite, even though corollary 3.8 does not apply. However, two con-

secutive updates of the vector α̃ will result in a vector that is not finite anymore. If we first

update the state controlled by 3, then its new value will be β(3, 1, α̃) = 1: indeed, any α̃-viable

plan with initial state 1 and with a reward lower than 1 for player 3 must absorb at 5, which is

not (3, 1, α̃)-admissible. If we subsequently update the state controlled by 2, we see that there

are no (2, 3)-admissible plans anymore, hence the value of 2 becomes infinite. The reader may

wish to verify that a different order of updates does not solve the problem. 3

Let α ∈ Ω, X ⊆ N and Z ⊆ X. We say that an edge (x, y) is an (α,Z)–exit from X if x ∈ X and

y ∈ S \ X, and if, for all v ∈ VIABLE(y, α),

Z ∪ ESC(X, α) ⊆ SAT(v, α) =⇒ x ∈ SAT(v, α).

We say that a sequence of edges e = (xi, yi)
k
i=1 is an α-exit sequence from X if, for all i ∈

{1, . . . , k}, the edge (xi, yi) is an (α, {x1, . . . , xi−1})–exit from X. For technical reasons, we allow

k = 0, i.e. the empty sequence will also be called an α-exit sequence from X. We say that the α-

exit sequence from X is trivial if xi ∈ ESC(X, α) for all i ∈ {1, . . . , k}. We say that it is non-trivial

if the sequence is non-empty and if there exists i ∈ {1, . . . , k} such that xi ∈ X \ ESC(X, α). We

say that the α-exit sequence from X is positive if the sequence is non-empty and if there exists

i ∈ {1, . . . , k} such that xi ∈ POS(X, α).

The following lemma states some elementary facts about exit sequences.

Lemma 4.1. Let X ⊆ N and let α ∈ Ω.

(i) If e is a non-empty α-exit sequence from X, then its first edge is an α-exit from X.

(ii) If e is an α-exit sequence from X, and if (x, y) is an edge of e with x ∈ ESC(X, α), then the se-

quence e obtained from e by deleting the edge (x, y) is also an α-exit sequence from X. Moreover,

if e is a positive α-exit sequence from X and if X ∈ X (α), then e is also a positive α-exit sequence

from X.

(iii) If a non-trivial α-exit sequence from X exists, then a non-trivial α-exit from X exists.

(iv) If e and f are both α-exit sequences from X, then the concatenation of these two sequences, denoted

by (e, f), is also an α-exit sequence from X. If moreover, e or f is a positive α-exit sequence from

X, then also (e, f) is a positive α-exit sequence from X.

(v) If e is a positive α-exit sequence from X and if X ∈ X (α), then e is non-trivial.

Proof. Proof of (i): If e is a non-empty α-exit sequence from X, then its first edge is by defini-

tion an (α,∅)–exit from X. That is also the definition of an α-exit from X.
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Proof of (ii): Let e = (xi, yi)
k
i=1 be an α-exit sequence from X. Suppose h ∈ {1, . . . , k} is such

that xh ∈ ESC(X, α). Then we have, for all j ∈ {1, . . . , k}, that

{x1, . . . , xj−1} ∪ ESC(X, α) = {x1, . . . , xj−1} \ {xh} ∪ ESC(X, α).

Now, by the definition of an (α,Y)–exit from X and by the fact that (xj, yj) is an (α, {x1, . . . , xj−1})–

exit from X, it follows that edge (xj, yj) is an (α, {x1, . . . , xj−1} \ {xh})–exit from X, for all

j ∈ {1, . . . , k}; thus also for all j 6= h. This means that the sequence e, obtained from e by

deleting edge (xh, yh) from it, is also an α-exit sequence from X.

Moreover, if X ∈ X (α), then ESC(X, α) ∩ POS(X, α) = ∅. So in this case we have xh /∈

POS(X, α), and it follows that the sequence e is positive if e is positive.

Proof of (iii): Let e = (xi, yi)
k
i=1 be a non-trivial α-exit sequence from X. Let h be the smallest

index with xh ∈ X \ ESC(X, α). Denote by e the edge-sequence obtained from e by deleting all

edges (xi, yi) from ewith i < h. Then the edge-sequence e is an α-exit sequence from X, by (ii).

The first edge of e (i.e. (xh, yh)) is an α-exit from X, by (i).

Proof of (iv): Let e = (xi, yi)
k
i=1 and f = (xi, yi)

ℓ
i=k+1 be two α-exit sequences from X. We

need to prove that (xi, yi)
ℓ
i=1 is an α-exit sequence from X. To see this, let i ∈ {1, . . . , ℓ} and let

v ∈ VIABLE(yi, α) be such that {x1, . . . , xi−1} ∪ ESC(X, α) ⊆ SAT(v, α). If i ≤ k, we use the fact

that (xi, yi) is an (α, {x1, . . . , xi−1})–exit from X to deduce that xi ∈ SAT(v, α). If i > k, we use

the fact that (xi, yi) is an (α, {xk+1, . . . , xi−1})–exit from X to deduce that xi ∈ SAT(v, α).

If moreover, one of the sequences e or f is a positive α-exit sequence from X, then one of these

sequence contains an edge (x, y) with x ∈ POS(X, α). Obviously, (e, f) also contains the edge

(x, y), and is therefore a positive α-exit sequence from X.

Proof of (v): Let (xi, yi)
k
i=1 be a positive α-exit sequence from X ∈ X (α). Thus, there exists

i ∈ {1, . . . , k} with xi ∈ POS(X, α). Then xi /∈ ESC(X, α), since POS(X, α) ∩ ESC(X, α) = ∅ by

the fact that X ∈ X (α) ⊆ E(α).

We now say that a vector α ∈ IRN is stable if SAFESTEP(x, α) 6= ∅ for all x ∈ N and if a positive

α-exit sequence from X exists for all X ∈ X (α). We denote the set of stable vectors in IRN by

Ω∗.

Lemma 4.2. We have ρ ∈ Ω∗ ⊆ Ω, where, ρ is the vector defined by ρt = rt(t) for all t ∈ N.

Proof. For the vector ρ, we demonstrated in the proof of lemma 3.1 that SAFESTEP(t, ρ) 6= ∅

for all t ∈ N. We also demonstrated that X (ρ) = ∅, so trivially, a positive ρ-exit sequence

from X exists for all X ∈ X (ρ). Thus, ρ ∈ Ω∗.

Since for X ∈ X (α), a positive α-exit sequence from X is non-trivial (by lemma 4.1-(v)), and

since the existence of a non-trivial α-exit sequence from X implies the existence of a non-trivial

α-exit from X (by lemma 4.1-(iii)), it follows that any stable vector is also semi-stable. Thus,
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Ω∗ ⊆ Ω.

Let us fix α ∈ Ω∗ and t ∈ N. Let further δ denote the update of α, where αt is replaced by δ(t, α).

It follows from lemma 4.2 and corollary 3.10 that δ satisfies the condition SAFESTEP(x, δ) 6= ∅

for all x ∈ N. In this section, we will demonstrate that δ also has the property that a positive

δ-exit sequence from X exists, for all X ∈ X (δ). Let us partition the set X (δ) into two subsets.

V(t, δ) = {X ∈ X (δ) | t /∈ X or t ∈ ESC(X, δ) },

W(t, δ) = {X ∈ X (δ) | t ∈ X \ ESC(X, δ) }.

We will first deal with the set V(t, δ). Since α ∈ Ω∗, the following lemma implies the existence

of a positive α-exit sequence from X, for all X ∈ V(t, δ).

Lemma 4.3. We have V(t, δ) ⊆ X (α).

Proof. Let X ∈ V(t, δ). We need to prove that X ∈ X (α) = P(α) ∩ E(α) ∩ C.

Proof that X ∈ P(α): We claim that t /∈ POS(X, δ). This is trivial if t /∈ X. Otherwise, we have

t ∈ ESC(X, δ), since X ∈ V(t, δ). We also have ESC(X, δ) ∩ POS(X, δ) = ∅, by the fact that

X ∈ V(t, δ) ⊆ X (δ) ⊆ E(δ). Now t /∈ POS(X, δ) follows from the combination of these facts.

Then POS(X, α) = POS(X, δ) 6= ∅, where the equality is by the fact that αx = δx for all x ∈

X \ {t} and the fact that αt ≤ δt ≤ 0.

Proof that X ∈ E(α): We have t /∈ X or t ∈ ESC(X, δ) by the fact that X ∈ V(t, δ). Then

ESC(X, α) ⊆ ESC(X, δ) by lemma 3.9-(v). It follows that

ESC(X, α) ∩ POS(X, α) ⊆ ESC(X, δ) ∩ POS(X, δ) = ∅,

where the inclusion is by the fact that ESC(X, α) ⊆ ESC(X, δ) and POS(X, α) = POS(X, δ), and

the equality is by the fact that X ∈ V(t, δ) ⊆ X (δ) ⊆ E(δ).

Proof that X ∈ C: Obviously, we have X ∈ C, since X ∈ V(t, δ) ⊆ X (δ) ⊆ C.

Existence of a positive δ-exit sequence from X for all X ∈ V(t, δ) is now implied by the follow-

ing result.

Lemma 4.4. For X ∈ V(t, δ), every (positive) α-exit sequence from X is a (positive) δ-exit sequence

from X.

Proof. Let X ∈ V(t, δ) and let e = (xi, yi)
k
i=1 be an α-exit sequence from X. Choose j ∈

{1, . . . , k}, let g ∈ VIABLE(yj, δ) and assume that {x1, . . . , xj−1} ∪ ESC(X, δ) ⊆ SAT(g, δ). We

will prove that xj ∈ SAT(g, δ).

We have ESC(X, α) ⊆ ESC(X, δ) by lemma 3.9-(v). Therefore,
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{x1, . . . , xj−1} ∪ ESC(X, α) ⊆ {x1, . . . , xj−1} ∪ ESC(X, δ) ⊆ SAT(g, δ) ⊆ SAT(g, α).

Then xj ∈ SAT(g, α), by the fact that (xj, yj) is an (α, {x1, . . . , xj−1})–exit from X, and by the

fact that g ∈ VIABLE(yj, δ) ⊆ VIABLE(yj, α). If xj 6= t, then xj ∈ SAT(g, δ) follows because αxj =

δxj . If xj = t, then xj ∈ SAT(g, δ) follows from the assumption {x1, . . . , xj−1} ∪ ESC(X, δ) ⊆

SAT(g, δ) and the fact that t ∈ ESC(X, δ).

So indeed, e is a δ-exit sequence from X. If e is a positive α-exit sequence from X, then e is

also a positive δ-exit sequence from X, since there exists h ∈ {1, . . . , k} with xh ∈ POS(X, α) ⊆

POS(X, δ).

Corollary 4.5. For all X ∈ V(t, δ), a positive δ-exit sequence from X exists.

It remains to prove that a positive δ-exit sequence from X exists for all X ∈ W(t, δ). For

this, we will study α-exit sequences that are essentially independent of t. These are formally

defined as follows.

Let X ∈ W(t, δ) and let e = (xi, yi)
k
i=1 be an α-exit sequence from X. We will say that e is

an α-exit sequence from X disregarding t if t /∈ {x1, . . . , xk}, and if for all i ∈ {1, . . . , k} and all

v ∈ VIABLE(yi, α),

{x1, . . . , xi−1} ∪ (ESC(X, α) \ {t}) ⊆ SAT(v, α) =⇒ xi ∈ SAT(v, α).

Lemma 4.6. Let X ∈ W(t, δ). Then every (positive) α-exit sequence from X disregarding t is a

(positive) δ-exit sequence from X.

Proof. Let e = (xi, yi)
k
i=1 be an α-exit sequence from X disregarding t.

We prove that e is a δ-exit sequence from X. The requirement xi ∈ X and yi ∈ S \ X for

all i ∈ {1, . . . , k} is obviously satisfied, because e is an α-exit sequence from X. Now, let

i ∈ {1, . . . , k}, let g ∈ VIABLE(yi, δ) and assume that {x1, . . . , xi−1} ∪ ESC(X, δ) ⊆ SAT(g, δ).

We have ESC(X, α) \ {t} ⊆ ESC(X, δ) by lemma 3.9-(iv). Therefore,

{x1, . . . , xi−1} ∪ (ESC(X, α) \ {t}) ⊆ {x1, . . . , xi−1} ∪ ESC(X, δ) ⊆ SAT(g, δ) ⊆ SAT(g, α).

Then xi ∈ SAT(g, α) follows by the fact that e is an α-exit sequence from X disregarding t. Also

xi 6= t follows from that fact. The combination xi ∈ SAT(g, α) and xi 6= t implies xi ∈ SAT(g, δ).

So indeed, e is a δ-exit sequence from X.

If e is a positive α-exit sequence from X disregarding t, then e is a positive δ-exit sequence

from X, since there exists h ∈ {1, . . . , k} with xh ∈ POS(X, α) ⊆ POS(X, δ).

In the following, if e = (xi, yi)
k
i=1 is a sequence of edges, we will use the notation xi(e) = xi
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and yi(e) = yi for i ∈ {1, . . . , k}. We will also use the notation x(e) = {x1, . . . , xk}, y(e) =

{y1, . . . , yk}, and k(e) = k. We will further use the notation ∅∅ for the empty sequence.

Let X ∈ W(t, δ) and let e be an α-exit sequence from X disregarding t. It will be convenient

to have terminology for an edge e = (x, y) such that (e, e) fails to be an α-exit sequence from

X disregarding t only because y ∈ X. Say that (x, y) is an α-cap for (X, e, t) if x ∈ X \ {t} and

y ∈ X and if, for all v ∈ VIABLE(y, α), we havex(e) ∪ (ESC(X, α) \ {t}) ⊆ SAT(v, α) =⇒ x ∈ SAT(v, α).

We denote by F(X, e, t, α) the set of α-caps for (X, e, t). Notice that ∅∅ is an α-exit sequence

from X disregarding t, so F(X,∅∅, t, α) is well-defined.

Lemma 4.7. Let X ∈ W(t, δ). Then F(X,∅∅, t, α) 6= ∅. In particular,

(i) for every x ∈ X \ (ESC(X, α) ∪ {t}), we have

∅ 6= {(x, y) | y ∈ SAFESTEP(x, α)} ⊆ F(X,∅∅, t, α),

(ii) and for every x ∈ ESC(X, α) \ {t}, we have

∅ 6= {(x, y) | y ∈ A(x) ∩ X} ⊆ F(X,∅∅, t, α).

Proof. Proof of (i): Let x ∈ X \ (ESC(X, α) ∪ {t}).

Non-emptiness of the set {(x, y) | y ∈ SAFESTEP(x, α)} follows from the fact that α ∈ Ω∗.

Choose y ∈ SAFESTEP(x, α). We need to show that (x, y) ∈ F(X,∅∅, t, α). We trivially have

x ∈ X \ {t}. The property y ∈ X follows, since x ∈ X \ ESC(X, α), which is equivalent to

SAFESTEP(x, α) ⊆ X.

Now let v ∈ VIABLE(y, α) and assume that ESC(X, α) \ {t} ⊆ SAT(v, α). The fact that y ∈

SAFESTEP(x, α) implies x ∈ SAT(v, α) by definition, which shows (x, y) ∈ F(X,∅∅, t, α). (Here,

the assumption ESC(X, α) \ {t} ⊆ SAT(v, α) was not needed.)

Proof of (ii): Let x ∈ ESC(X, α) \ {t}.

Non-emptiness of the set {(x, y) | y ∈ A(x) ∩ X} follows from the fact that X ∈ W(t, δ) ⊆ C.

Choose y ∈ A(x) ∩ X. Then trivially x ∈ X \ {t} and y ∈ X.

Now let v ∈ VIABLE(y, α) and assume that ESC(X, α) \ {t} ⊆ SAT(v, α). Here, x ∈ SAT(v, α)

follows trivially from the assumption ESC(X, α) \ {t} ⊆ SAT(v, α).

Lemma 4.8. Let X ∈ W(t, δ), and let e and f be two α-exit sequences from X disregarding t withx(e) ⊆ x(f). Then F(X, e, t, α) ⊆ F(X, f, t, α).
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Proof. Let (x, y) ∈ F(X, e, t, α). Trivially, x ∈ X \ {t} and y ∈ X. Now, let v ∈ VIABLE(y, α)

and assume that x(f) ∪ (ESC(X, α) \ {t}) ⊆ SAT(v, α). Then also x(e) ∪ (ESC(X, α) \ {t}) ⊆

SAT(v, α), since x(e) ⊆ x(f). Now, x ∈ SAT(v, α) follows from the fact that e is an α-exit

sequence from X disregarding t. This demonstrates (x, y) ∈ F(X, f, t, α).
We remark that lemma 4.1 remains valid when every occurrence of the phrase "sequence from

X" in the lemma is replaced by the phrase "sequence from X disregarding t". The proof of

this is completely analogous to the proof of lemma 4.1. In particular, the concatenation of two

α-exit sequences from X disregarding t is an α-exit sequence from X disregarding t. Since

there exists at least one α-exit sequence from X disregarding t for every X ∈ W(t, δ) (the

empty sequence), it is obvious then that, for every X ∈ W(t, δ), an α-exit sequence e∗ from

X disregarding t exists such that x(e) ⊆ x(e∗) for all α-exit sequences e from X disregarding

t. Let us call e∗ with this property a maximal α-exit sequence from X disregarding t. The

following corollary now follows immediately from lemma 4.8.

Corollary 4.9. Let X ∈ W(t, δ) and let e∗ be a maximal α-exit sequence from X disregarding t. Then

F(X, e, t, α) ⊆ F(X, e∗, t, α) for every α-exit sequence e from X disregarding t.

For X ∈ W(t, δ) and an α-exit sequence e from X disregarding t, let us define H(X, e, t, α) as
the graph with vertex set X and edge set F(X, e, t, α) ∪ {(t, u) | u ∈ B(t, α)}). Notice that this

graph is well-defined. Indeed, for every edge in F(X, e, t, α), the endpoints are by definition

in X. For every edge in {(t, u) | u ∈ B(t, α)}, we have t ∈ X by the fact that X ∈ W(t, δ),

and we have u ∈ X, since u ∈ B(t, α) ⊆ SAFESTEP(t, δ) ⊆ X, where the first inclusion is by

lemma 3.9-(iii) and the second inclusion is by the fact that t ∈ X \ ESC(X, δ).

Lemma 4.10. Let X ∈ W(t, δ), let e be an α-exit sequence from X disregarding t, let p be a path in

H(X, e, t, α), and let g ∈ VIABLE(LAST(p), α). Thenx(e) ∪ (ESC(X, α) \ {t}) ⊆ SAT(g, α) =⇒ 〈p, g〉 ∈ VIABLE(FIRST(p), α).

Proof. Assume that x(e) ∪ (ESC(X, α) \ {t}) ⊆ SAT(g, α). We write p = (zi)
m
i=1, and we define

gm = g and gi = 〈(zi , . . . , zm), g〉 for i ∈ {1, . . . ,m− 1}.

Trivially, gm = g is α-viable. Now, let i ∈ {1, . . . ,m− 1} and assume that gi+1 ∈ VIABLE(zi+1, α).

It follows immediately from (zi, zi+1) ∈ F(X, e, t, α) and the assumption x(e) ∪ (ESC(X, α) \

{t}) ⊆ SAT(g, α) = SAT(gi+1, α) that zi ∈ SAT(gi+1, α). Thus, N(gi) = {zi} ∪ N(gi+1) ⊆

SAT(gi+1, α) = SAT(gi, α). This proves that gi is α-viable.

We proved by induction that gi is α-viable for all i ∈ {1, . . . ,m}. In particular, 〈p, g〉 = g1 is

α-viable.

Let X ∈ W(t, δ) and let e be an α-exit sequence from X disregarding t. Notice that, for every

x ∈ X, there exists y ∈ X such that (x, y) is an edge of H(X, e, t, α). This follows directly from

23



lemma 4.7 and the fact that B(t, α) 6= ∅. Thus, by lemma 3.3, the graph H(X, e, t, α) has at least
one ergodic set, and for every x ∈ X, there is a path in H(X, e, t, α) from x to an ergodic set of

H(X, e, t, α).
Lemma 4.11. Let X ∈ W(t, δ) and let e be an α-exit sequence from X disregarding t such thatx(e) ∩ POS(X, α) = ∅. Then H(X, e, t, α) has an ergodic set Y with POS(Y, α) 6= ∅.

Proof. In the proof, we denote H(X, e, t, α) by H.

Assume that POS(Y, α) = ∅ for every ergodic set Y of H. We will demonstrate then that

POS(X, δ) = ∅. Let x ∈ X.

First consider the case that x is element of an ergodic set Y of H. Then obviously αx ≤ 0, by

the assumption that POS(Y, α) = ∅. If x 6= t, it follows immediately that δx = αx ≤ 0. If

x = t, we choose u ∈ B(t, α). Notice that u ∈ Y, since Y is an ergodic set of H and (t, u) is an

edge of H. We can therefore choose a non-absorbing plan g with N(g) ⊆ Y (possible by the

properties of an ergodic set) and with FIRST(g) = u (possible, since u ∈ Y). Plan g is α-viable

by the assumption that POS(Y, α) = ∅. Then g is also (t, u, α)-admissible as it satisfies AD-i. It

follows that δt = δ(t, α) = β(t, u, α) ≤ φt(g) = 0.

Now consider the case that x is not an element of any ergodic set of H. Then choose an ergodic

set Y of H such that there exists a path p in H from x to an element of Y. We also choose a

non-absorbing plan g with N(g) ⊆ Y and with FIRST(g) = LAST(p). Plan g is α-viable by the

assumption POS(Y, α) = ∅. We claim that plan 〈p, g〉 is also α-viable.

Notice that x(e) ⊆ SAT(g, α) by the assumption x(e) ∩ POS(X, α) = ∅. We also have

(ESC(X, α) \ {t}) ∩ POS(X, α) ⊆ ESC(X, δ) ∩ POS(X, δ) = ∅,

where the inclusion follows by ESC(X, α) \ {t} ⊆ ESC(X, δ) (lemma 3.9-(iv)) and POS(X, α) ⊆

POS(X, δ), and the equality follows by the fact that X ∈ W(t, δ) ⊆ X (δ) ⊆ E(δ). Thus,

ESC(X, α) \ {t} ⊆ SAT(g, α). Then 〈p, g〉 is α-viable by lemma 4.10.

It follows that αx ≤ φx(〈p, g〉) = 0. If x 6= t, we obtain immediately δx = αx ≤ 0. If x = t,

consider the plan 〈p′, g〉, where p′ is the part of p that starts at the second state of p. Clearly,

the plan 〈p′, g〉 is α-viable. Then 〈p′, g〉 is also (t, FIRST(p′), α)-admissible as it satisfies AD-i.

Further notice that FIRST(p′) ∈ B(t, α). Thus, δt = δ(t, α) = β(t, FIRST(p′), α) ≤ φt(〈p′ , g〉) = 0.

So, we have indeed POS(X, δ) = ∅. This contradicts X ∈ W(t, δ) ⊆ X (δ) ⊆ P(δ).

Lemma 4.12. Let X ∈ W(t, δ), let e be an α-exit sequence from X disregarding t, and let Y be an

ergodic set of H(X, e, t, α). Then
ESC(Y, α) \ {t} = (Y ∩ ESC(X, α)) \ {t}.

Proof. In the proof, we denote H(X, e, t, α) by H.
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To see that ESC(Y, α) \ {t} ⊆ (Y ∩ ESC(X, α)) \ {t}, let x ∈ ESC(Y, α) \ {t}. By definition of the

set ESC(Y, α), we can choose y ∈ S \ Y, such that y ∈ SAFESTEP(x, α). Now suppose y ∈ X.

Then, since x 6= t, (x, y) is an edge of H, which contradicts that Y is an ergodic set of H.

Therefore, x ∈ ESC(X, α), hence x ∈ (Y ∩ ESC(X, α)) \ {t}.

To see that ESC(Y, α) \ {t} ⊇ (Y ∩ ESC(X, α)) \ {t}, let x ∈ (Y ∩ ESC(X, α)) \ {t}. By definition

of the set ESC(X, α), we can choose y ∈ S \ X, such that y ∈ SAFESTEP(x, α). Then obviously

y ∈ S \ Y, since Y ⊆ X. It follows that x ∈ ESC(Y, α), since x ∈ Y. Subsequently, it follows that

x ∈ ESC(Y, α) \ {t}, since x 6= t.

Lemma 4.13. Let X ∈ W(t, δ) and let e∗ be a maximal α-exit sequence from X disregarding t. Then

one of the following holds.

(i) e∗ is a positive α-exit sequence from X,

(ii) for all v ∈ VIABLE(t, α),x(e∗) ∪ ESC(X, α) ⊆ SAT(v, α) =⇒ t ∈ SAT(v, δ).

Proof. If e∗ is a positive α-exit sequence from X, we are done. We assume from here that this is

not the case. Then lemma 4.11 applies, andwe can choose an ergodic setY of H = H(X, e∗, t, α)
with POS(Y, α) 6= ∅.

A: We will first prove that t ∈ Y. Suppose that t /∈ Y.

A1: We claim that Y ∈ X (α). We trivially have Y ∈ P(α), and by the properties of an ergodic

set, we have Y ∈ C. It remains to prove that Y ∈ E(α).

We obviously have POS(Y, α) ⊆ POS(X, δ). We also have

ESC(Y, α) = ESC(Y, α) \ {t} ⊆ ESC(X, α) \ {t} ⊆ ESC(X, δ) \ {t} ⊆ ESC(X, δ).

Here, the equality is because t /∈ Y, the first inclusion is by lemma 4.12, the second inclusion

follows by 3.9-(iv), and the third inclusion is trivial. We now conclude that

ESC(Y, α) ∩ POS(Y, α) ⊆ ESC(X, δ) ∩ POS(X, δ) = ∅,

where the equality is because X ∈ X (δ) ⊆ E(δ). This proves that Y ∈ E(α).

A2: Since Y ∈ X (α) and since α ∈ Ω∗, we can choose a positive α-exit sequence e from Y. We

claim that e is an α-exit sequence from X disregarding t.

We have x(e) ⊆ Y ⊆ X \ {t}, where the first inclusion follows by the fact that e is an α-exit

sequence from Y, and the second inclusion is by the fact that Y ⊆ X and t /∈ Y.

By definition of an α-exit sequence from Y, the sequence e satisfies, for all i ∈ {1, . . . , k(e)},
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and all v ∈ VIABLE(yi(e), α),
{x1(e), . . . , xi−1(e)} ∪ ESC(Y, α) ⊆ SAT(v, α) =⇒ xi(e) ∈ SAT(v, α).

We have ESC(Y, α) = ESC(Y, α) \ {t} ⊆ ESC(X, α) \ {t}, where the equality is by the fact that

t /∈ Y, and the inclusion is by lemma 4.12. It follows that, for all i ∈ {1, . . . , k(e)} and all

v ∈ VIABLE(yi(e), α),
{x1(e), . . . , xi−1(e)} ∪ (ESC(X, α) \ {t}) ⊆ SAT(v, α) =⇒ xi(e) ∈ SAT(v, α).

It remains to prove that y(e) ⊆ S \X. Assume that this is not true. Since e is an α-exit sequence

from Y, we have y(e) ⊆ S \ Y = (X \ Y) ∪ (S \ X). Then, by our assumption y(e) 6⊆ S \ X,

there must be h ∈ {1, . . . , k(e)} with the property yh(e) ∈ X \ Y ⊆ X. Choose the smallest h

with this property. Let f = (xh(e), yh(e)), and let f = (xj(e), yj(e))h−1
j=1 .

Observe then that f is an α-exit sequence from X disregarding t and that f is an α-cap for

(X, f, t). Thus, f ∈ F(X, f, t, α) ⊆ F(X, e∗ , t, α), where the inclusion is by lemma 4.9. We also

have FIRST( f ) ∈ Y and LAST( f ) ∈ S \ Y, as f is an edge from an α-exit sequence from Y.

The set Y is an ergodic set of the graph H, so f is not an edge of H. Thus, f /∈ F(X, e∗ , t, α).
Contradiction.

So indeed, e is an α-exit sequence from X disregarding t. Then it is even a positive α-exit

sequence from X disregarding t, since it is a positive α-exit sequence fromY. It also follows thate∗ is a positive α-exit sequence from X disregarding t, by the maximality of e∗. Contradiction.
B: So we have indeed t ∈ Y. We will prove by contradiction that condition (ii) of the lemma

holds. Assume therefore that g ∈ VIABLE(t, α) exists with x(e∗) ∪ ESC(X, α) ⊆ SAT(g, α) and

t /∈ SAT(g, δ).

B-1: Proof that t /∈ POS(Y, α).

Choose u ∈ B(t, α). Since t ∈ Y and since (t, u) is an edge of the graph H, it follows that u ∈ Y,

by the properties of an ergodic set. Also by the properties of an ergodic set, a path p in H from

u to t exists with N(p) ⊆ Y. Notice that 〈p, g〉 ∈ VIABLE(u, α), by lemma 4.10.

Notice that t ∈ SAT(v, δ) for all v ∈ ADMISS(t, u, α), since we chose u ∈ B(t, α). Apparently,

〈p, g〉 /∈ ADMISS(t, u, α), as we have t /∈ SAT(g, δ) = SAT(〈p, g〉, δ).

Then, plan 〈p, g〉 violates all three conditions AD-i, AD-ii, and AD-iii. Now, from the fact that

〈p, g〉 violates AD-ii, we deduce that t /∈ POS(Y, α).

B-2: Proof that

∀x ∈ Y \ {t}, ∀y ∈ A(x) \ Y, ∀v ∈ VIABLE(y, α) : t ∈ SAT(v, α) ∨ x ∈ SAT(v, α).

We further exploit the properties of plan g and path p, chosen inB-1 to prove that t /∈ POS(Y, α).
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Choose x ∈ N(p) \ {t}. Now, from the fact that 〈p, g〉 violates AD-iii, we deduce that

∀y ∈ A(x) \ Y, ∀v ∈ VIABLE(y, α) : t ∈ SAT(v, α) ∨ x ∈ SAT(v, α), (1)

as this formally negates the existence of a ’threat’ plan for player x that starts at an element of

A(x) \ Y. (Notice that the elements of A(x) \ Y do not coincide with the follower of x on path

p, since N(p) ⊆ Y.) We need to prove that equation (1) not only holds for x ∈ N(p) \ {t}, but

for all x ∈ Y \ {t}.

Choose x ∈ Y \ {t} arbitrarily. By the properties of an ergodic set and the fact that t ∈ Y, a

path q in H exists from t to x with N(q) ⊆ Y. Obviously, we may require that there is only

one occurrence of t on this path, at the beginning. Let q̃ denote the part of q that starts at the

second state. There also exists a path r in H from x to t with N(r) ⊆ Y, and we may require

that there is only one occurrence of t on this path, at the end. Let p′ = 〈q̃, r〉. Clearly, p′ is a

path in H from FIRST(p′) to t with N(p′) ⊆ Y and with only one occurrence of t on this path,

at the end. We claim that FIRST(p′) ∈ B(t, α). Indeed, this is true, because (t, FIRST(p′)) is an

edge of the graph H and edges of the type (t, u) in H all have the property u ∈ B(t, α).

We now let p′ play the role of the earlier chosen path p, and argue similarly that 〈p′, g〉 is an α-

viable plan, such that 〈p′, g〉 /∈ ADMISS(t, FIRST(p′), α). From the fact that plan 〈p′, g〉 violates

AD-iii, and the fact that plan 〈p′, g〉 is constructed such that the first occurrence of x is before

t, it follows that equation (1) holds indeed.

B-3: Proof that Y ∈ X (α).

We trivially have Y ∈ P(α). We also have Y ∈ C by the properties of an ergodic set. Since

t /∈ POS(Y, α), we may write

ESC(Y, α) ∩ POS(Y, α) = (ESC(Y, α) \ {t}) ∩ POS(Y, α).

We have

ESC(Y, α) \ {t} ⊆ ESC(X, α) \ {t} ⊆ ESC(X, δ) \ {t} ⊆ ESC(X, δ),

where the first inclusion is by lemma 4.12 and the second inclusion lemma 3.9-(iv). We also

have POS(Y, α) ⊆ POS(X, δ), by the fact that Y ⊆ X and α ≤ δ. Therefore,

ESC(Y, α) ∩ POS(Y, α) = (ESC(Y, α) \ {t}) ∩ POS(Y, α) ⊆ ESC(X, δ) ∩ POS(X, δ) = ∅,

where the last equality is by the fact that X ∈ X (δ) ⊆ E(δ). This proves that Y ∈ E(α), hence

Y ∈ P(α) ∩ E(α) ∩ C = X (α).

B-4: Existence of a positive α-exit sequence from Y disregarding t.

Since Y ∈ X (α) and since α ∈ Ω∗, we can choose a positive α-exit sequence e from Y. Let e
denote the sequence that results from e by deleting all edges (xj(e), yj(e)) with the property
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xj(e) = t. We claim that e is a positive α-exit sequence from Y disregarding t.

Since e is an α-exit sequence from Y, we have x(e) ⊆ Y. Then x(e) ⊆ Y \ {t} due to the

construction of e. Obviously, we have y(e) ⊆ S \ Y, as e is an α-exit sequence from Y.

Let j ∈ {1, . . . , k(e)}, let v ∈ VIABLE(yj(e)), and assume that

{x1(e), . . . , xj−1(e)} ∪ (ESC(Y, α) \ {t}) ⊆ SAT(v, α).

Notice that the result of B-2 applies here, since xj(e) ∈ Y \ {t} and yj(e) ∈ A(x) \Y. Thus, we

have t ∈ SAT(v, α) or xj(e) ∈ SAT(v, α). In fact, we have xj(e) ∈ SAT(v, α). Indeed, in the case

t ∈ SAT(v, α), we have

{x1(e), . . . , xi−1(e)} ∪ ESC(Y, α) ⊆ SAT(v, α),

where i ∈ {1, . . . , k(e)} is such that xi(e) = xj(e). It then follows that xj(e) = xi(e) ∈

SAT(v, α), by the fact that (xi(e), yi(e)) is a (α, {x1(e), . . . , xi−1(e)})–exit from Y. Thus, for

all j ∈ {1, . . . , k(e)} and for all v ∈ VIABLE(yj(e)), we have

{x1(e), . . . , xj−1(e)} ∪ (ESC(Y, α) \ {t}) ⊆ SAT(v, α) =⇒ xj(e) ∈ SAT(v, α).

This proves that e is an α-exit sequence from Y disregarding t.

Since e is a positive α-exit sequence from Y, we have x(e) ∩ POS(X, α) 6= ∅. We have t /∈

POS(X, α), by the result of B-1. Therefore, x(e)∩ POS(X, α) = x(e)∩ POS(X, α) 6= ∅. It follows

that e is a positive α-exit sequence from Y disregarding t. The sequence e will now be used to

derive a contradiction.

B-5: Derivation of the contradiction.

We distinguish between two cases.

Case 1: Suppose that y(e) ⊆ S \ X. We then claim that e is a positive α-exit sequence from

X disregarding t. For this, it remains to prove that, for all j ∈ {1, . . . , k(e)} and for all v ∈

VIABLE(yj(e)), we have

{x1(e), . . . , xj−1(e)} ∪ (ESC(X, α) \ {t}) ⊆ SAT(v, α) =⇒ xj(e) ∈ SAT(v, α).

Indeed, this is true because (i), we have

{x1(e), . . . , xj−1(e)} ∪ (ESC(Y, α) \ {t}) ⊆ SAT(v, α) =⇒ xj(e) ∈ SAT(v, α).

by the fact that e is an α-exit sequence from Y disregarding t, and because (ii), we have

ESC(Y, α) \ {t} ⊆ ESC(X, α) \ {t}, by lemma 4.12.

So e is a positive α-exit sequence from X disregarding t. Then e∗ is also a positive α-exit
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sequence from X disregarding t, since we have x(e∗) ∩ POS(X, α) ⊇ x(e) ∩ POS(X, α) 6= ∅ by

the maximality of e∗. This contradicts our assumption at the beginning of the lemma.

Case 2: Suppose that y(e) 6⊆ S \ X. Then there must be h ∈ {1, . . . , k(e)} with the property

yh(e) ∈ X. Choose the smallest h with this property. Let f = (xh(e), yh(e)), and let f =

(xj(e), yj(e))h−1
j=1 .

Observe then that f is an α-exit sequence from X disregarding t and that f is an α-cap for

(X, f, t). Then f ∈ F(X, f, t, α) ⊆ F(X, e∗ , t, α), where the inclusion is by lemma 4.9. We also

have FIRST( f ) ∈ Y and LAST( f ) ∈ S \ Y, as f is an edge from an α-exit sequence from Y.

The set Y is an ergodic set of the graph H, so f is not an edge of H. Thus, f /∈ F(X, e∗ , t, α).
Contradiction.

Lemma 4.14. For all X ∈ W(t, δ), a positive δ-exit sequence from X exists.

Proof. Let X ∈ W(t, δ) and let e∗ be a maximal α-exit sequence from X disregarding t. If e∗ is
a positive α-exit sequence from X disregarding t, then it is also a positive δ-exit sequence from

X by lemma 4.6, and we are done. Assume from here that e∗ is not a positive α-exit sequence

from X disregarding t. Then, by lemma 4.13, we have for all v ∈ VIABLE(t, α),x(e∗) ∪ ESC(X, α) ⊆ SAT(v, α) =⇒ t ∈ SAT(v, δ). (2)

We distinguish between the cases t ∈ ESC(X, α) ∩ POS(X, α) and t /∈ ESC(X, α) ∩ POS(X, α).

First suppose t ∈ ESC(X, α) ∩ POS(X, α). Since t ∈ ESC(X, α), we can choose s ∈ S \ X, such

that s ∈ SAFESTEP(t, α). We claim that (e∗, (t, s)) is a δ-exit sequence from X. For this, we only

need to check that (t, s) is a (x(e∗), δ)–exit from X, since we already know that e∗ is a δ-exit

sequence from X, by lemma 4.6. We have indeed t ∈ SAT(v, δ) for every v ∈ VIABLE(s, δ)

with x(e∗) ∪ ESC(X, δ) ⊆ SAT(v, δ), because e∗ satisfies condition (ii) of lemma 4.13 and be-

cause ESC(X, δ) ⊇ ESC(X, α) \ {t} by lemma 3.9-(iv). Then (e∗, (t, s)) is also a positive δ-exit

sequence from X, since t ∈ POS(X, α) ⊆ POS(X, δ).

Now suppose t /∈ ESC(X, α) ∩ POS(X, α). We claim that X ∈ X (α).

According to lemma 4.11, the graph H(X, e∗, t, α) has an ergodic setY such that POS(Y, α) 6= ∅.

It follows that POS(X, α) ⊇ POS(Y, α) 6= ∅. Thus, X ∈ P(α).

We also have X ∈ E(α), since

ESC(X, α) ∩ POS(X, α) = (ESC(X, α) \ {t}) ∩ POS(X, α) ⊆ ESC(X, δ) ∩ POS(X, δ) = ∅,

where the first equality follows, since t /∈ ESC(X, α) ∩ POS(X, α).

Obviously, X ∈ C, since X ∈ X (δ) ⊆ C. So indeed, X ∈ P(α) ∩ E(α) ∩ C = X (α).

Now, since α ∈ Ω∗ and X ∈ X (α), we can choose a positive α-exit sequence f from X. If

t ∈ ESC(X, α), we require that t /∈ x(f), which is possible by lemma 4.1-(ii). We claim that
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(e∗, f) is a positive δ-exit sequence from X.

It is obvious that an edge in (e∗, f) of the form (xj(e∗), yj(e∗)) is a (δ, {x1(e∗), . . . , xj−1(e∗)})–
exit from X, as e∗ is a δ-exit sequence from X, by lemma 4.6.

It is straightforward to prove that an edge in (e∗, f) of the form (xj(f), yj(f)) and with xj(f) 6= t

is a (δ, {x1(f), . . . , xj−1(f)})–exit from X, using the fact that f is an α-exit sequence from X.

Then the edge is also a (δ, x(e∗) ∪ {x1(f), . . . , xj−1(f)})–exit from X.

It remains to prove for an edge in f of the type (t, s), say (t, s) = (xj(f), yj(f)), that it is a

(δ, x(e∗) ∪ {x1(f), . . . , xj−1(f)})–exit from X. Let v ∈ VIABLE(s, δ), and assume thatx(e∗) ∪ {x1(f), . . . , xj−1(f)} ∪ ESC(X, δ) ⊆ SAT(v, δ). (3)

We need to prove that t ∈ SAT(v, δ). The fact that t appears in the α-exit sequence f implies

that t /∈ ESC(X, α), by the choice of f. Thus,
ESC(X, α) = ESC(X, α) \ {t} ⊆ ESC(X, δ) \ {t} ⊆ ESC(X, δ),

where the first inclusion is by lemma 3.9-(iv). Assumption (3) therefore implies that

{x1(f), . . . , xj−1(f)} ∪ ESC(X, α) ⊆ SAT(v, δ) ⊆ SAT(v, α).

We then obtain that t = xj(f) ∈ SAT(v, α) from the fact that f is an α-exit sequence from X and

the fact that v ∈ VIABLE(s, δ) ⊆ VIABLE(s, α).

Assumption (3) also impliesx(e∗) ∪ ESC(X, α) ⊆ SAT(v, α) = SAT(〈(t, s), v〉, α).

Notice that the plan 〈(t, s), v〉 is α-viable, since we just proved that t ∈ SAT(v, α). Then, by

equation (2), it subsequently follows that t ∈ SAT(v, δ).

We proved that (e∗, f) is a δ-exit sequence from X. It is a positive δ-exit sequence from X, sincex((e∗, f)) ∩ POS(X, δ) ⊇ x(f) ∩ POS(X, α) 6= ∅.

The following result is a direct consequence of corollary 4.5 and lemma 4.14.

Corollary 4.15. δ ∈ Ω∗.

We have arrived at the main result of this section.

Theorem 4.16. There exists a vector α∗ ∈ Ω∗ such that δ(t, α∗) = α∗
t for all t ∈ N.

Proof. We construct a sequence (αk)k∈IN with αk ∈ IRN for all k ∈ IN as follows.
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We set α1 = ρ, where ρ is the vector defined by ρt = rt(t) for all t ∈ N. For k > 1, the vector αk

is obtained from αk−1 by replacing one of its coordinates, say t, by the updated value δ(t, αk−1).

For the coordinate t, we choose the smallest one with the property δ(t, αk−1) 6= αk−1
t if there

is such a coordinate, and we choose t = 1 otherwise. (Since N = {1, . . . , n}, there is a natural

ordering of the elements of N, which we use here.)

Notice that this indeed defines an infinite sequence of vectors in IRN (i.e. the construction of the

sequence will not halt due to a coordinate that becomes infinite): we have α1 = ρ ∈ Ω∗ ⊆ IRN

by lemma 4.2, and we obtain αk ∈ Ω∗ ⊆ IRN for all k > 1 by induction with corollary 4.15.

Further, notice that, for any α ∈ Ω∗ and t ∈ N, the number δ(t, α) can only take values in the

set Vt = {0} ∪ {rt(s) | s ∈ N}, since δ(t, α) is defined as the average reward for t associated

with some plan. We have α1
t = ρt = rt(t) ∈ Vt for all t ∈ N. Thus, we obtain αk

t ∈ Vt for all

k ∈ IN, by induction.

If αk 6= αk−1 for k > 1, then the difference between these two vectors is in one coordinate. By

corollary 3.8, there is an increase in that coordinate when we go from αk−1 to αk. There can be

at most n increases of coordinate t, for any t ∈ N, since αk
t ∈ Vt for all k ∈ IN and since Vt has

cardinality n+ 1. As there are |N| = n different coordinates, the total number of increases is

bounded by n2. It follows that the sequence (αk)k∈IN is eventually constant.

Thus, we can choose k such that αk = αk−1. This means that δ(t, αk−1) = αk−1
t for all t ∈ N, i.e.

αk−1 satisfies the requirements of the theorem.
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