
Master Thesis

Stationary (ε-)equilibria in 2- and

3-player quitting games

L.C.A. Meessen

Master Thesis DKE 12-02

Thesis submitted in partial fulfillment
of the requirements for the degree of Master of Science

of Operations Research at the Department of Knowledge
Engineering of the Maastricht University

Thesis Committee:

Dr. G. Schoenmakers
Dr. J. Derks

Maastricht University
Faculty of Humanities and Sciences

Department of Knowledge Engineering
Master Operations Research

March 23, 2012

Abstract

We construct a program in Matlab to find all stationary (ε-)equilibria in 2-player
and 3-player quitting games. These games are n-player sequential games in
which at any stage, each player has the choice between continuing and quitting.
As soon as a (set of) player(s) decides to quit, the game ends. The payoffs the
players receive depend only on the set of players who actually quit.
Our program is able to find all (ε-)equilibria in 2-player quitting games. For 3-
player quitting games, our program is able to provide the stationary equilibria in
a game or to show that a game does not have a stationary equilibrium. We also
calculate the probability that a random 3-player quitting game has a stationary
equilibrium. In cyclicly symmetric random games the probability of finding
stationary equilibria turns out to be higher than in normal random games.

Contents

1 Introduction 2

2 Algorithms 10
2.1 Finding stationary equilibria for two players 10
2.2 Finding stationary equilibria for 3 players 13

3 Experiments and results 15
3.1 Testing the two-player method 15
3.2 The validation of the function gsolve for 2-player games 19
3.3 Determining the probability that a stationary equilibrium in a

random 3-player game exists . 23
3.3.1 The function minmaxdif 25
3.3.2 Stationary equilibria in 3-player quitting games 28

3.4 Some examples of 3-player quitting games 31

4 Conclusion and recommendations 33

A Source code of the algorithms 36
A.1 Finding equilibria for two players 36
A.2 Finding equilibria for 3 players 41
A.3 Functions for the validation of gsolve 42
A.4 Algorithm for finding equilibria in 3-player games 43
A.5 Algorithm for finding mixed equilibria in 3-player games 47

B Tables with results of simulations 49
B.1 Results for stationary equilibria in random 3-player games 49
B.2 Results for the validation of gsolve 51

1

Chapter 1

Introduction

The rules of a quitting game are very simple. The players can choose to play
either continue or quit. As long as no player quits, the game continues. As soon
as a (set of) player(s) decides to quit, the game ends. The attraction of quitting
games lies in the fact that although the games seem very simple, playing the
game optimally can be very hard.
The definition of a quitting game was given in 2001 by Solan and Vieille [9]:

Quitting games are n-player sequential games in which, at any stage,
each player has the choice between continuing and quitting. The
game ends as soon as at least one player chooses to quit; player i
then receives a payoff riS , which depends on the set S of players that
did choose to quit. If the game never ends, the payoff to each player
is 0.

A function xi = (xin) : N → [0, 1] that gives the probability that player i quits
at stage n, is called a strategy. This simple function is a strategy because the
strategic behaviour in a quitting game does not depend on the history of the
play: the game stays in the same state as long as no player quits. If the game
gets a history, the game ends because then a (set of) player(s) has decided to
quit. A strategy is called stationary if xin = xi1 ∀n ∈ N. This means that in
every stage of the game, player i always plays the same randomization thus xin
is independent of n. A strategy is called pure if xin ∈ {0, 1} ∀n ∈ N. A vector
with strategies, one for each player, is called a profile x = (xi)i∈N with N the
set of players.
When playing the game, the players get a payoff. For quitting games the payoff
for player i, when profile x is played, is given by the following formula:

γi(x) =

{
0 if each player always selects continue
riS if set S quits

Each player wants to maximize the payoff he is getting. For players to maximize
their payoff, they use the following observation: For every set of stationary

2

CHAPTER 1. INTRODUCTION 3

strategies of the other players there is a pure stationary best reply for a player.
A stationary best reply is an strategy for which a player does the best he can
against what his opponents did.
An equilibrium is a profile that are best replies against each other. A set of
strategies is an ε-equilibrium if neither player can gain more than ε by deviation,
thus if for every player i and every strategy yi of player i,

γi(xi,x−i) ≥ γi(yi,x−i)− ε ∀yi

The notation x−i is used to denote a profile where player i is not included. So xi

is a best reply against x−i ∀i. A 0-equilibrium is simply called an equilibrium.
It is difficult to find an equilibrium in a quitting game for n ≥ 3 players, as
example 2 will show.
Quitting games are subsets of more general games, for which the existence of
equilibria is proven. For example, a quitting game is a special kind of recursive
repeated game with absorbing states. A state in a game is absorbing, if the
state is never left after entering. In 1957 Everett introduced recursive games
[2]. Recursive games are games in which the non-zero payoffs are only received
when the games ends. The game ends as an absorbing state is reached. If the
game never reaches an absorbing state, the payoff is 0. A repeated game with
absorbing states, also called an absorbing game, is a sequential game with only
one nonabsorbing state. For a quitting game, the game stays in the nonab-
sorbing state with zero payoff as long as no player quits. As soon as a (set of)
player(s) quits, the game moves to an absorbing state and the players get the
corresponding payoff.
When considering a quitting game as a special kind of repeated game with ab-
sorbing states, the first interesting result with respect to equilibria is found.
In 1989 it was proven by Vrieze and Thuijsman [11] that ε-equilibria exist in
2-player repeated games with absorbing states. These equilibria are not always
stationary, an example is the game called ‘the big match’ introduced in 1957
by Gillette [6]. In 1968, Blackwell and Ferguson [1] proved the existence of an
ε-equilibrium for this game, but the strategies are not stationary because they
depend on the history of the game. Since quitting games are a special kind of
a recursive repeated game with absorbing states, we conclude that for 2-player
quitting games ε-equilibria exist. Solan and Vieille [10] showed that stationary
(ε-)equilibria exist in 2-player games.
In the next example we will demonstrate the existence of the pure equilibrium
(continue, continue) and the application of γi for finding the equilibrium. We
will always write quitting games in this way: the first action is ‘continue’ and
the second action is ‘quit’.

CHAPTER 1. INTRODUCTION 4

Example 1:
Consider the 2-player quitting game:

2
c q

1
c 2,-2
q -2,2 1,1

The equilibrium in this example consists of the pure stationary strategies x1 = 0
and x2 = 0, meaning that both players always choose the action continue. The
best reply for player 2 is always to play continue no matter what player 1 does,
since

1. if x1 = 0, then ‘continue’ yields a payoff of 0 while ‘quit’ yields a payoff of
-2. So continue is the best reply for player 2 to player 1 playing continue,

2. if x1 > 0, then ‘continue’ yields a payoff of 2, while ‘quit’ yields a payoff
of −2(1− x1) + 1 · x1 < 2. So continue is also the best reply for player 2
to an action other than continue of player 1.

The same reasoning can be applied for player 1.
Another way to see why (continue, continue) is an equilibrium, look at the
expected payoff the players are getting. The formula for the expected payoff is:

γ(x) = (1−x1)x2(2,−2) +x1(1−x2)(−2, 2) +x1x2(1, 1) + (1−x1)(1−x2)γ(x)

In the formula, the probabilities are multiplied by the payoff in the correspond-
ing matrix entry. Only for the action pair (continue, continue), meaning x1 = 0
and x2 = 0, the players get a zero payoff and have to play the game again. In
the formula this shows by (1− x1)(1− x2)γ(x), because we expect the players
to get the same payoffs if they play the game again. We can rewrite the formula
for the expected payoff in another way:

γ(x) =
(1− x1)x2(2,−2) + x1(1− x2)(−2, 2) + x1x2(1, 1)

1− (1− x1)(1− x2)
(1.1)

We can use formula (1.1) to show that (continue, continue) is an equilibrium.
If player 2 plays x2 = 0, then

γ1(x) = x1(−2)
1−(1−x1) = −2 if x1 > 0

γ1(x) = 0 if x1 = 0

and thus the expected payoff of player 1 is going to be negative if he does not
continue; deviation from player 1 is only profitable for player 2. The same
reasoning is true for player 2.

The game in the previous example was symmetric. The definition of a symmetric
game is the following:

CHAPTER 1. INTRODUCTION 5

Definition 1:
A symmetric game is a game in which the identity of a player does not change
the resulting game. Each player earns the same payoff when making the same
choice against similar choices of his competitors. So for two players a symmetric
game looks like:

2

1
a2, a1

a1, a2 a3, a3

where the first payoff is for player 1 and the second payoff for player 2. For
each n-player symmetric game the game does not change even if you rename
the players.

In general, for a two player game with payoffs a1, a2, a3 for player 1 and payoffs
b1, b2, b3 for player 2,

2

1
a2, b2

a1, b1 a3, b3

(1.2)

the expected payoff for player 1 is:

γ(x1) =
(1− x1)x2a2 + x1(1− x2)a1 + x1x2a3

1− (1− x1)(1− x2)
(1.3)

Now to the 3-player case. We look at an example with a completely mixed
stationary equilibrium. A completely mixed stationary equilibrium is an equi-
librium where all players play a randomization of their actions. The game in
the example is a cyclicly symmetric game, therefore we will first define such a
game.

Definition 2:
A cyclicly symmetric game is where the payoffs and the absorbing entries are
cyclicly symmetric. This means for three players that

r1(ai, aj , ak) = r2(ak, ai, aj) = r3(aj , ak, ai)

for each entry (ai, aj , ak). A cyclicly symmetric game looks as follows, for three
players:

3
2 2

1
a3, a1, a2 a2, a3, a1 a6, a4, a5

a1, a2, a3 a4, a5, a6 a5, a6, a4 a7, a7, a7

For two players a cyclicly symmetric game and a symmetric game look the same.

CHAPTER 1. INTRODUCTION 6

Example 2:
Consider the cyclicly symmetric 3-player game:

3
2 2

1
0,4,1 1,0,4 4,1,0

4,1,0 1,0,4 0,4,1 -1,-1,-1

The completely mixed stationary equilibrium in this game is:

player 1: x1 = 3

√√
60900
144 − 185

108 −
5

36
3
√√

60900
144 − 185

108

+ 11
6 ≈ 0.4178,

player 2: x2 = 3

√√
60900
144 − 185

108 −
5

36
3
√√

60900
144 − 185

108

+ 11
6 ≈ 0.4178,

player 3: x3 = 3

√√
60900
144 − 185

108 −
5

36
3
√√

60900
144 − 185

108

+ 11
6 ≈ 0.4178

For a completely mixed stationary equilibrium to exist we need that: player 1
is indifferent if player 2 plays x2 and player 3 plays x3; player 2 is indifferent
if player 1 plays x1 and player 3 plays x3 and player 3 is indifferent if player 1
plays x1 and player 2 plays x2. By symmetry we have

(x1, x2, x3) = (x2, x3, x1) = (x3, x1, x2)

and thus for the completely mixed equilibrium where all players are indifferent
x1 = x2 = x3. In a cyclicly symmetric game, if there exist a completely mixed
equilibrium it is a symmetric equilibrium.
Assume that player 1 and 2 both quit with probability x, now we want to find
the value for x for which player 3 is indifferent. When player 3 plays quit, that
yields a payoff of:

r(q) = −1 · x2 + 4(1− x)2 + 1 · x(1− x) = 2x2 − 7x+ 4

When player 3 plays continue, he gets a payoff of:

r(c) =
4x2 + 1 · x(1− x)

1− (1− x)2
=

3x2 + x

2x− x2
=

3x+ 1

2− x

Player 3 is indifferent if r(q) = r(c), thus

2x2 − 7x+ 4= 3x+1
2−x

⇒ (2x2 − 7x+ 4)(2− x)=3x+ 1
⇒ 2x3 − 11x2 + 21x− 7=0

Solving 2x3 − 11x2 + 21x− 7 = 0 for x we get:

x =
3

√√
60900

144
− 185

108
− 5

36 3

√√
60900
144 − 185

108

+
11

6

which is exactly the solution for the completely mixed stationary equilibrium.

CHAPTER 1. INTRODUCTION 7

Not all 3-player quitting games have a stationary equilibrium. Flesch, Thuijs-
man and Vrieze [5, 4] investigate the following 3-player quitting game:

Example 3:
Consider the cyclicly symmetric 3-player game:

3
2 2

1
0,1,3 3,0,1 1,1,0

1,3,0 1,0,1 0,1,1 0,0,0

In 1996, Flesch, Thuijsman and Vrieze showed that in this game no stationary
ε-equilibrium exists, this proves that the two-player case does not extend to the
n-player case. However, the game admits a cyclic equilibrium, where the players
put in turns a positive weight on the quitting action and play continue the rest
of the cycle. The simplest equilibrium strategies in this game are:

player 1: x1 = (1
2 , 0, 0,

1
2 , 0, 0,

1
2 , . . .),

player 2: x2 = (0, 12 , 0, 0,
1
2 , 0, 0, . . .),

player 3: x3 = (0, 0, 12 , 0, 0,
1
2 , 0, . . .)

Playing these equilibrium strategies, the players get an expected payoff

γ(x1,x2,x3) = [12 (1, 3, 0) + (1
2)2(0, 1, 3) + (1

2)3(3, 0, 1)]
∑∞

t=0(1
2)3t

= (1, 2, 1)

The formula for the expected payoff can be explained in the following way:

• if player 1 quits at stage 1, which happen with probability 1
2 , the expected

payoff is: (1, 3, 0),

• if player 1 did not quit and player 2 quits at stage 2, which happens with
probability 1

2 ·
1
2 , then the expected payoff is: (0, 1, 3),

• if player 1 and 2 did not quit and player 3 quits at stage 3, which happens
with probability 1

2 ·
1
2 ·

1
2 , the expected payoff is: (3, 0, 1),

• the probability that none of the players quits in the previous time steps
and the game continues: (1

2)3 and then the game essentially starts once
again.

In 1999 Solan proved that for 3-player absorbing games equilibria exist [8]. So
in 3-player quitting games equilibria exist. The simplest equilibria can either
be stationary or of a cyclic nature. Similar to the 3-player game in the previous
example, Solan and Vieille [10] have proven that the following 4-player game
has an equilibrium of a cyclic nature as well.

CHAPTER 1. INTRODUCTION 8

Example 4:
Consider the 4-player game:

4
2 2

3

1
4,1,0,0

1
0,0,4,1 1,1,0,1

1,4,0,0 1,1,1,1 1,0,1,1 0,1,0,0

1
0,0,1,4 0,1,1,1

1
1,1,1,1 0,0,1,0

1,1,1,0 1,0,0,0 0,0,0,1 -1,-1,-1,-1

Solan and Vieille proved that the game admits a cyclic equilibrium profile y
with period 2 and the following structure:

yn =

{
(x, 0, z, 0) n odd
(0, x, 0, z) n even

where x, z ∈]0, 1[are independent of n, that is, at odd stages players 2 and 4
continue, while 1 and 3 quit with positive probability, whereas at even stages 1
and 3 continue, while 2 and 4 quit with positive probability.

Games that are (closely) related to quitting games are free transition games. In
a quitting game the players act simultaneously, while in a free transition game,
the players act one at a time. In a free transition game at each stage one player
is in control of the game.
In a free transition game, the player in control of the game is called the active
player. Each player is the active player in only one state of the game. The
active player i has the choice to terminate the game, giving each player a payoff
corresponding the payoff vector of player i, or to announce a new active player.
If a new active player is announced, the players receive no payoff and the game
continues. A free transition game and a quitting game have in common that as
long as no player chooses to quit, the game continues and the players receive
no payoff. A free transition game is comparable with a quitting game where
players get a worse payoff if more than one player quits at a time.
A history h of a free transition game is a finite sequence of players. This se-
quence is the list of active players in chronological order. Unlike a quitting
game, the strategies in a free transition game can be history dependent. An (ε-
)equilibrium is called subgame-perfect if for any finite history h the strategies
prescribe to play an (ε-)equilibrium after h.
For free transition games, some interesting results are found. In 2009, Kuipers
et al. proved the existence of subgame-perfect equilibria in free transition games
with payoffs ≥ 0 [7]. For free transition games where negative payoffs are al-
lowed, subgame-perfect equilibria exist as Flesch et al. proved in 2011 [3].
Now returning to the quitting games which form the basis of this paper. To
find the equilibria in quitting games, we need a lot of calculations. The question
is whether a computer program can help finding these equilibria much faster
and easier. The problem statement of this report is based on the previous

CHAPTER 1. INTRODUCTION 9

question, namely: ‘Using Matlab to find stationary (ε-)equilibria in 2- and 3-
player quitting games’. The idea is that a computer program can help solving
difficult calculations for finding the equilibria like in example 2.
For finding an answer to the problem statement, some research questions are
used to split the problem into smaller pieces. The research questions are:

• Is it possible to set up an algorithm for finding stationary (ε-)equilibria in
2-player quitting games?

• Is it possible to set up an algorithm that correctly identifies a stationary
equilibrium in a 3-player quitting game, or that says that there exists no
stationary equilibrium?

• Can an algorithm prove the existence of equilibria in 3-player quitting
games?

In chapter 2 there will be a description of some algorithms used to find stationary
equilibria in quitting games or to show that such equilibria cannot be found
in specific quitting games. In chapter 3 experiments are discussed and the
concluding chapter describes an answer to the research questions and problem
statement in the form of a conclusion with some advice for further research.

Chapter 2

Algorithms

To find stationary equilibria, we constructed two algorithms: one to find all sta-
tionary equilibria in 2-player games and one to find a stationary equilibrium in
3-player games or to show that such equilibria do not exist. First the algorithm
for two players is given and then the algorithm for the games with 3 players.

2.1 Finding stationary equilibria for two players

The algorithm for finding stationary equilibria for two players uses the principle
that for every stationary strategy of one player there is a stationary best reply
for the other player. The basic idea for finding the equilibria with this algorithm
is just to look at all pairs where one player plays a stationary strategy and the
other player plays a stationary best reply against this strategy. So for both
players we made a list consisting of the stationary strategies of his opponent
and all of his best replies to such a strategy. For finding the equilibria of the
game, just look at the strategy pairs that are best replies to each other.
The input for the main function, called twoplayers, is the game matrix. The
game matrix used as input for twoplayers looks similar to the matrix in equa-
tion (1.2) in chapter 1 but with some adaptions. The input for twoplayers is
the matrix: [

0 0 a2 b2
a1 b1 a3 b3

]
(2.1)

Here, the zeros are the payoffs for the action pair (continue, continue) and the
odd columns contain the payoffs for player 1, while the even columns give the
payoffs for player 2. The function twoplayers first splits the game in equation
(2.1) into two separate matrices, one with the payoffs for player 1 and the other
with the payoffs for player 2. The game can be split, because for finding the
best reply of player i we only look at the payoffs for player i. The matrix with
the payoffs for player 1 is transposed, since then we only need one function for
finding the best reply. The matrices used as input for the function findreply2p

10

CHAPTER 2. ALGORITHMS 11

look like:

For player 1: For player 2:
c2 q2 c1 q1 c2 q2

c1 a2 represented as:
c2 a1 and

c1 b2
q1 a1 a3 q2 a2 a3 q1 b1 b3

Since in the function for finding the reply, there is no difference made between
the two players, the matrix used as input for finding the best reply looks like:

1− y y
1− x 0 b
x c d

The function findreply2p considers x as the stationary strategy for one player
and y is seen as the reply of the opponent. In this case, x and y give the
probability that a player chooses to quit. If the strategy of the player is mixed,
then the function for finding the reply first looks at the case for which the
opponent is indifferent. For this, the value of x is found by solving:

c = xd+ (1− x)b

for x. This yields:

x =
b− c
b− d

(2.2)

Rewriting equation (2.2) using the original game for player 1 we get:

z1 =
b2 − b1
b2 − b3

(2.3)

and for player 2:

z2 =
a1 − a2
a1 − a3

(2.4)

For 0 < z1, z2 < 1, we have that (z1, z2) is a stationary equilibrium. The func-
tion findreply2p also finds the best reply for the opponent if the player plays
a strategy that differs from x. All the functions used for this algorithm use the
value ε to point out a small difference which is close to zero, but not equal to
zero.
After looking at all the stationary strategies of a player and finding the oppo-
nent’s best reply, a list is created with strategy pairs for both players. When
the lists with intervals are created, the function for finding the equilibria looks if
there are overlapping intervals in the two lists. The application of the algorithm
is best explained by means of an example.

CHAPTER 2. ALGORITHMS 12

Example 5:
Consider the following two player game:

2,4
0,3 3,1

After calling the function findreply2p and finding best replies for a player to
his opponent’s strategies the following two lists are created:

player 1 player2
strategy pl 1 best reply pl 2 best reply pl 1 strategy pl 2
0 0 ε 1 0 1 0 0
1 1 0 0 1 1 1 1
1
3

1
3 0 1 0 1 2

3
2
3

ε 1
3 − ε 1 1 0 0 ε 2

3 − ε
1
3 + ε 1− ε 0 0 1 1 2

3 + ε 1− ε

The values 1
3 for player 1 and 2

3 for player 2 can be verified using formulas (2.3)
and (2.4):

z1 =
4− 3

4− 1
=

1

3

and,

z2 =
0− 2

0− 3
=

2

3

The above lists contain the intervals for the strategies and best replies as output
given by Matlab. For easier reading we will rewrite the lists and during the rest
of this paper we will use the following representation for strategies, best replies
and equilibria:

player 1 player2
strategy pl 1 best reply pl 2 best reply pl 1 strategy pl 2

0 (0,1] [0,1] 0
1 0 1 1
1
3 [0,1] [0,1] 2

3
(0, 1

3) 1 0 (0, 23)
(1
3 ,1) 0 1 (2

3 ,1)

For finding the equilibrium of the game, look at strategy pairs that both players
have in common or where there is an overlap in the strategy pairs of both players.
The function findeq2p does compare the lists with strategy pairs. When looking
for the equilibrium intervals, there can be really long tables with all possible
equilibria. For getting a more compact table, look at the intervals that are
adjacent for a fixed strategy of the other player. Thus, look if it is possible to
combine some equilibrium intervals into a bigger equilibrium interval, which is
done by the function findadjacent. The output for the function twoplayers

are the following equilibrium intervals for this example:

CHAPTER 2. ALGORITHMS 13

strategy pl 1 strategy pl 2

0 (0, 2
3]

[13 ,1] 0
1
3

2
3

The Matlab code of the functions for finding the equilibria in a 2-player quitting
game can be found in appendix A.1. There is an overview of all functions
used for the algorithm and how main program twoplayers uses the functions
findreply2p and findeq2p.

2.2 Finding stationary equilibria for 3 players

The algorithm described in section 2.1 gets really complicated if there are more
than two players. Just looking at the difference between a 2-player and a 3-
player quitting already reveals that the 3-player game is more complex. Adding
a player to a quitting game makes the strategy combinations grow exponentially.
A 3-player quitting game looks like:

3
2 2

1
a2, b2, c2 1

a4, b4, c4 a6, b6, c6
a1, b1, c1 a3, b3, c3 a5, b5, c5 a7, b7, c7

(2.5)

In this game, ai, bi and ci are the payoffs for player 1, player 2 and player 3.
For the algorithm in this section, the original game matrix in equation (2.5) is
rewritten in the form:

A =

a1 a2 a3 a4 a5 a6 a7
b1 b2 b3 b4 b5 b6 b7
c1 c2 c3 c4 c5 c6 c7

 (2.6)

The payoff riS is poisitioned at location aik in the matrix A with k =
∑

j∈S 2j−1

(with the players labeled 1,2,...).
For the algorithm the players each belong to one of the following groups:

• Si: the group of players that is indifferent

• Sc: the group of players that plays continue

• Sq: the group of players that plays quit

If a player is indifferent, then his expected payoff for playing continue is equal
to the expected payoff for playing quit. If a player plays continue or quit then
his expected payoff for this action is as least as good as his expected payoff for
the other action. Thus in formula it looks like:

∀j ∈ Si γj(x
−j , 1) = γj(x

−j , 0)
∀j ∈ Sc γj(x

−j , 1) ≥ γj(x−j , 0)
∀j ∈ Sq γj(x

−j , 1) ≤ γj(x−j , 0)
(2.7)

CHAPTER 2. ALGORITHMS 14

The expected payoff γi is built as follows:

γi(x) = c(x)(Ax) (2.8)

where A is the game matrix as represented in equation (2.6), x is a vector with
products corresponding to probabilities per column and c(x) is a formula to
correct that the action continue has a probability not equal to 1. A better way
to explain this is to rewrite the expected payoff γi as

γi(x) = Ax + p(x)γi(x)

with p(x) the probability that all players play continue, i.e., p(x) =
∏n

i=1(1−xi).
For c(x) we then get,

c(x) =
1

1−
∏n

i=1(1− xi)
(2.9)

where n is the number of players playing the game. For the 2-player case we
have

A =

[
a1 a2 a3
b1 b2 b3

]
(2.10)

x =

x1(1− x2)
(1− x1)x2

x1x2


and

c(x) =
1

1− (1− x1)(1− x2)

Notice that in equation (1.3), the formula for the expected payoff in section
1, the denominator is equal to the denominator in equation (2.9). Also the
numerator in equation (1.3) is equal to Ax. Using the information of equation
(2.7), the function gsolve can than be used to find stationary equilibria in n-
player quitting games if they exist.
For each player that is indifferent, an equation is set up where the expected
payoff of playing continue is equal to the expected payoff of playing quit. The
equations are rewritten in such a way that we have:

γj(x
−j , 1)− γj(x−j , 0) = 0

The Matlab function ‘solve’ is called, for finding values for the symbolic variables
xi in these equations. The vector x only contains symbolic variables for the
players that are indifferent. For the players that choose to continue, the symbolic
variable x is replaced by a zero and for the players that quit a 1 is substituted
instead of the symbolic variable. The function gsolve returns a vector with the
numeric solutions for the symbolic variables, if they exist.
The source code for the algorithm can be found in the appendix A.2.

Chapter 3

Experiments and results

In this chapter, the algorithms of chapter 2 are tested with some games and
from the results of these tests a conclusion is given later in chapter 4. The tests
with the different algorithms are discussed per algorithm with some specific
examples. First the algorithms are tested with 2-player quitting games, later
the algorithm for 3 players is also tested with 3-player quitting games.

3.1 Testing the two-player method

The algorithm discussed in section 2.1 is tested here with several interesting
examples. It should be kept in mind that x1 and x2 give the probability with
which a player decides to quit. First there will be some examples of games with
non-negative payoffs, later there will also be some games with a negative payoff
for one or both players. If in the equilibria the value ε appears, then this means
a very small value close to zero but not equal to zero. All the answers for the
equilibria are checked by doing the calculations manually, but for convience only
the equilibria are provided and not the complete calculations to check them. We
start with an easy example, where ‘everything’ is an equilibrium.

Example 6:
The first example is the game where all payoffs are equal to zero, thus

0,0
0,0 0,0

The function twoplayers finds:

x1 x2

[0,1] [0,1]

This means that every action combination is an equilibrium. No matter what
action combination is played the players always receive zero.

15

CHAPTER 3. EXPERIMENTS AND RESULTS 16

Example 7:
Another interesting game is a game where all payoffs in the absorbing states are
equal to 1, thus

1,1
1,1 1,1

Here obviously ‘everything’ except always (continue, continue) is an equilibrium.
The function twoplayers finds:

x1 x2

[0,1] (0,1]
(0,1] [0,1]

After those easy games, we will now provide a few slightly more complex games.

Example 8:
Consider the symmetric game:

2,1
1,2 1,1

In this game, both players like to play the continue action and hope that the
other player will quit. The equilibria for this game are:

x1 x2

0 (0,1]
(0,1] 0

These equilibria are logical when looking at the game. If both players play
continue, then playing quit is better because some payoff is better than receiving
nothing so this cannot be an equilibrium. Playing (x1, x2) with x1 > 0 and
x2 > 0 is also not an equilibrium because one of the players can easily deviate
to playing continue and receiving a higher payoff.

CHAPTER 3. EXPERIMENTS AND RESULTS 17

Example 9:
Now lets look at a game where player 2 has some negative payoffs and player 1
still has only positive payoffs:

2,-2
0,-1 3,1

The equilibria in this game are:

x1 x2 expected payoff

[0, 13] 0 (0,-1)
1
3

2
3 (2,-1)

1 1 (3,1)

The expected payoffs are calculated using formula (1.3). Playing (quit,quit) is
the most liked equilibrium, because then the players both receive the highest
possible payoff. Playing anything else than (quit,quit) or (continue, continue)
gives a probability that player 2 has a negative payoff but player 2 cannot play
a strategy to avoid ending up with a negative payoff.

Example 10:
Now another game where each player has one negative payoff:

2,-1
1,1 -1,2

This game has the equilibria:

x1 x2

(0, 2
3] 0

By playing continue all the time player 2 can ensure that he does not get a
negative payoff, because getting nothing is still better than paying something.
Player 1 does not play continue or quit as a stationary strategy, because here
player 2 can easily ensure that player 1 gets no payoff or a negative payoff. For
x1 = 2

3 player 2 is indifferent and player 1 puts some more weigth on the action
continue since there he gets a positive payoff. If player 1 plays x1 > 2

3 , then
x2 = 1 is the best reply for player 2, leading to the -1 payoff for player 1 with
a high probability.

CHAPTER 3. EXPERIMENTS AND RESULTS 18

Example 11:
In this game both players have one positive payoff and two negative payoffs:

2,-2
-1,-1 -3,1

The only equilibrium in this game is:

x1 x2

0 0

Player 1 avoids playing the quit action because there are only negative payoffs
for him. Knowing that player 1 does not choose quit, it is obvious for player 2
to also choose continue and not having to pay anything.

Example 12:
This is a symmetric game where both players have two negative payoffs:

-2,2
2,-2 -3,-3

The symmetry of the game, is also showing in the equilibria:

x1 x2 expected payoff

0 [45 ,1] (-2,2)
[45 ,1] 0 (2,-2)

4
5

4
5 (-2,-2)

If a player plays the stationary strategy where the probability of quitting is 4
5 ,

then the other player will be indifferent. Also if a player chooses to continue all
the time, the best reply for the opponent is to quit with a positive probability
because then he receives a positive payoff.

Example 13:
This last example is a game which contains only negative payoffs for both players
and is also symmetric:

-2,-2
-2,-2 -1,-1

The only two equilibria in this game consist of pure strategies for the players,

CHAPTER 3. EXPERIMENTS AND RESULTS 19

namely:

x1 x2

0 0
1 1

For both players it is worst if they play (0, x2) or (x1, 0), for x1 > 0 and x2 > 0.
The two choices that remain are (continue, continue) were the payoff is 0 and
(quit, quit) were both players have to pay 1.

3.2 The validation of the function gsolve for 2-
player games

The function gsolve is tested based on some theorems about 2-player quitting
games. Below the theorems and the proofs are stated and after that the test
results to confirm the validity of the function gsolve.

Theorem 1. In 2-player quitting games with non-negative payoffs pure station-
ary equilibria exist.

Proof. We have a quitting game

a2, b2
a1, b1 a3, b3

(3.1)

with payoffs a1, a2, a3 for player 1 and b1, b2, b3 for player 2 all being non-
negative. The pure stationary strategy pair (continue, quit) is a pure equi-
librium if a2 ≥ a3 because neither player has a profitable deviation. Similarly,
if b1 ≥ b3 then the pure stationary strategy pair (quit, continue) is a pure equi-
librium. If neither of the previous mentioned stationary strategy pairs leads to
a pure equilibrium, then the stationary strategy pair (quit, quit) will be a pure
equilibrium.

Theorem 1 does not apply to 2-player quitting games in general which is demon-
strated in the next example.

Example 14:
Consider the following game:

-1,1
-1,1 1,-1

In this game, no pure stationary equilibrium exists because in every pure sta-
tionary strategy pair a player can profit by deviating namely:

• (continue, continue), player 2 can profit by deviating and playing quit.
Then he gets a payoff of 1 instead of 0.

CHAPTER 3. EXPERIMENTS AND RESULTS 20

• (continue, quit), if player 1 quits he gets 1 instead of -1 which is better
for him.

• (quit, quit), now player 2 can get 1 by deviating and playing continue

• (quit, continue), player 1 profits by playing continue because getting noth-
ing for him is always better than to pay 1.

The function gsolve can be used to find pure stationary equilibria but it is
more useful in finding mixed stationary equilibria. The next theorem will give
an important result for the validation of the function gsolve.

Theorem 2. The probability that a random 2-player quitting game has a mixed
stationary equilibrium, is 1

9 .

Proof. We have the same game as in equation (3.1), with as only difference
that the payoffs do not have to be positive but can have any random value.
Notice that the probability that two random numbers drawn from a continuous
distribution are equal is zero. This means that six orderings are possible for
the payoffs of player 1, all of which are equally likely, namely: a1 < a2 < a3,
a1 < a3 < a2, a2 < a1 < a3, a2 < a3 < a1, a3 < a1 < a2 and a3 < a2 < a1. The
following situations can occur:

• a2 > max(a1, a3) for which player 1 always plays continue (this happens
with probability 1

3),

• a2 < min(a1, a3) for which player 1 always quits (also with probability 1
3),

• a1 < a2 < a3 or a3 < a2 < a1 with probability 1
3 . Here player 2 can play

a randomization that makes player 1 indifferent.

Following the similar reasoning for player 2, if b2 < b1 < b3 or b3 < b1 < b2
then player 1 can play a randomization that makes player 2 indifferent. The
probability that this occurs is 1

3 . So, in a random 2-player quitting game, the
probability that a completely mixed equilibrium exists, is 1

3 ·
1
3 = 1

9 .

The function gsolve is tested with 2-player games, based on finding stationary
strategies for which both players are indifferent. The function findx2p is used
to validate the function gsolve. The function findx2p, which can be found in
appendix A.3, uses formula (2.2) to find the probability for which a player is
indifferent. The game input for the algorithms is formula (2.10) in section 2.2.
In both tests, we run a simulation with 10000 random games with either positive
payoffs only or payoffs between -1 and 1. The function ‘rng’ is a built-in Matlab
function, that seeds the random number generator ‘rand’ to produce a repro-
ducible sequence of random numbers. We count the number of times a mixed
equilibrium is found, which we call check. And for comparison of gsolve and
findx2p we also look at the time in seconds it takes to perform the simulation.
Since we know that a mixed stationary equilibrium exist in a random game with
probability 1

9 , performing a simulation with 10000 random games should give
us a value for check which is around 10000 · 19 ≈ 1111.

CHAPTER 3. EXPERIMENTS AND RESULTS 21

Table 3.1: Results for the simulations with a specific starting seed and 10000
random games for the functions findx2p and gsolve. There are two tables,
3.1(a) for random games with only positive payoffs and 3.1(b) for random games
with payoffs between -1 and 1.

(a) Random games with positive payoffs

seed function check time

19870106
findx2p 1045 0.0168
gsolve 1045 1650.7

19810601
findx2p 1118 0.0200
gsolve 1118 1731.8

20100803
findx2p 1154 0.0185
gsolve 1154 1804.6

(b) Random games with payoffs between -1 and 1

seed function check time

19870106
findx2p 1045 0.0164
gsolve 1045 1537.7

19810601
findx2p 1118 0.0212
gsolve 1118 1744.8

20100803
findx2p 1154 0.0205
gsolve 1154 1791.4

The results of the simulations can be found in table 3.1. Notice that for the
same starting seed of the random generator both algorithms give the same value
for check. Since theorem 2 states that in any random game the probability of
finding a mixed equilibrium is 1

9 it should make no difference if the games we
examine are positive or have payoffs between -1 and 1. The table shows that it
does not matter if the payoffs are only positive or between -1 and 1. The values
for check are close to 1111. The simulations with the starting seed 19810601
come closest to the expected value we calculated for taking random numbers
as payoff with a uniform distribution. For the starting seeds 19870106 and
20100803 we will calculate if the values found by the algorithm are acceptable
using hypothesis testing.
We have the following situation:

• n = 10000 random games

• p = probability of “success” = p(a mixed equilibrium exist) = 1
9

• X = the number of successes

We test H0 : X ∼ B(n, p) with n = 10000 and p = 1
9 . Under H0:

• E(X) = np = 1111 1
9 ≈ 1111.11

CHAPTER 3. EXPERIMENTS AND RESULTS 22

• Var(X) = np(1− p) = 10000× 1
9
8
9 = 80000

81 ≈ 987.65

Then X ∼ B(n, p) ≈ N(µ = np, σ =
√
np(1− p)) = N(1111.11, 31.43). The

transformation

Z :=
X − µ
σ

=
X − 1111 1

9

31.43
∼ N(0, 1)

transforms all the observations of our random variable X into a new set of obser-
vations that are standard normally distributed. Now we are going to calculate
the lower and upper bound for the 95% confidence interval. For the lower bound
we get:

P (X ≤ lb) = P (Z ≤
lb− 1111 1

9

31.43
) = 0.025

meaning that
lb− 1111 1

9

31.43
= −1.96

so,
lb = 1049.5

and for the upperbound we get:

ub = 1172.7

thus the 95% confidence interval is

[1049.5; 1172.7]

The value 1045 lies outside the 95% confidence interval, so based on this value
we would reject H0. Therefore, we will do some more simulations to validate if
19870106 was a bad choice for a starting seed or that there is an error in our
program. To validate, we do 100 simulations with the starting seeds 1 until
100. In figure 3.1 we plotted the results with the blue line showing the mean of
the distribution and the black crosses representing the value for check for the
corresponding seed. Notice, that depending on the starting seed the function
may give a result close to mean value and the two outsider points are for the
seeds 68 and 80 with values of 1220 and 1040 respectively. In appendix B.2,
a table containing all values for check with the starting seed are given. The
red and green line give the lower and upper bound values when taking a 95%
confidence interval. We see that 5 points lie out of the range of the lower and
upper bound and that is the expectation when taking a 95% confidence interval.
So that indicates that our value for the seed 19870106 was correct and that there
is no error in the program.
The big difference between the functions findx2p and gsolve is the time the
algorithm needs to perform the calculations. The function findx2p is much
faster, because the function only performs one calculation and does not use
symbolic variables like gsolve does. From the simulations in this section, we
can conclude that the function gsolve has a good performance since the results
of the simulations for the functions findx2p and gsolve are the same.

CHAPTER 3. EXPERIMENTS AND RESULTS 23

Figure 3.1: The number of mixed equilibria found in 10000 random games for
100 simulations

3.3 Determining the probability that a station-
ary equilibrium in a random 3-player game
exists

The algorithm for finding the equilibria in 3-player games is a combination of the
function gsolve and the algorithm for finding stationary equilibria in 2-player
games if both players are indifferent. The main function is threeplayers given
in appendix A.4, which has as an input a random 3-player quitting game and
gives as an output all the equilibria for that game, if they exist.
The function starts with looking for pure stationary equilibria. A pure sta-
tionary equilibrium can exist in a 3-player quitting game. Look at the general
3-player quitting game with random payoffs given in formula (2.5) in section
2.2, a set of pure stationary strategies is an equilibrium if the payoffs meet the
following requirements where c stands for continue and q stands for quit:

• for (c,c,c): a1 < 0, b2 < 0 and c4 < 0,

• for (c,c,q): a4 > a5, b4 > b6 and c4 > 0,

• for (c,q,c): a2 > a3, b2 > 0 and c2 > c6,

• for (q,c,c): a1 > 0, b1 > b3 and c1 > c5,

• for (c,q,q): a6 > a7, b6 > b4 and c6 > c2,

• for (q,c,q): a5 > a4, b5 > b7 and c5 > c3,

• for (q,q,c): a3 > a2, b3 > b1 and c3 > c7, and

CHAPTER 3. EXPERIMENTS AND RESULTS 24

• for (q,q,q): a7 > a6, b7 > b5 and c7 > c3.

For every set of pure stationary strategies, the function checkpure looks if the
set of strategies is an equilibrium or not.
After looking for all pure stationary equilibria, the algorithm proceeds with
looking for equilibria in which one of the players has a pure stationary strat-
egy and the other players are indifferent. If the pure strategy of the player is
playing continue all the time, then the game is reduced to a 2-player quitting
game for the other players. The 2-player quitting game is then used as input
for the function findx2p for finding the equilibrium for which the two players
are indifferent. If the function findx2p has found an equilibrium, it still has to
be checked if the equilibrium also is valid in the 3-player case, thus if the third
player cannot do better by playing quit instead of continue for the actions of
the other players.
If the pure stationary strategy of the player is play quit, then the 3-player quit-
ting game can be reduced to a bimatrix game for the other two players. In that
case, the function findxbimatrix tries to find an equilibrium for which the two
players are indifferent. The bimatrix game used as an input for findxbimatrix
for player 1 and 2 if player 3 is quitting, looks like:

A =

[
a1 a2 a3 a4
b1 b2 b3 b4

]
(3.2)

where the original bimatrix game looks like

1− y y
1− x a1, b1 a3, b3
x a2, b2 a4, b4

In the bimatrix game, player 1 is indifferent if

a1(1− y) + a3y = a2(1− y) + a4y

for y. This yields

y =
a1 − a2

a1 − a2 − a3 + a4

For player 2 a similar formula can be found for x, namely

x =
b1 − b3

b1 − b2 − b3 + b4

In the function findxbimatrix these formulas are generalized based on the
matrix in formula (3.2) to the following for player i

x(i) =
A(i, 1)−A(i, i+ 1)

A(i, 1)−A(i, 2)−A(i, 3) +A(i, 4)

Like the case in which a player plays the pure stationary strategy continue, here
also has to be checked if the pure stationary strategy quit for the third player

CHAPTER 3. EXPERIMENTS AND RESULTS 25

yields an equilibrium or if the third player is better off by deviating to continue.
After looking for equilibria with all pure stationary strategies and the equilibria
with one pure stationary strategy, the function gsolve is used to look for an
equilibrium in which all players are indifferent.
For the testing we will use random games with positive payoffs, random games
with payoffs between -1 and 1, and cyclicly symmetric random games. The
function randsym, which can be found in appendix A.4, was written for creating
these cyclicly symmetric random games.

3.3.1 The function minmaxdif

Since the function gsolve has long computation times because it uses symbolic
variables, we have written the function minmaxdif to indicate if a game con-
tains a completely mixed stationary equilibrium or not. The source code of the
function minmaxdif can be found in appendix A.5.
The function minmaxdif has as an input a 3-player quittting game as given in
equation (2.6) in section 2.2. The output for the function is a completely mixed
equilibrium profile, called x, and the value EPS. EPS is the maximum a player
can improve by deviation from x. So in fact an ε-equilibrium is calculated, where
the value for ε is given in the variable EPS.
The function minmaxdif operates as follows: first the strategy set for each
player is divided into 2m+1 gridpoints, with m being specified as input or using
the default value m=5. The middlepoint of the complete grid for three players
is (1

2 ,
1
2 ,

1
2). Each gridpoint represents a strategy profile. After determining the

gridpoints, the function maxdif (also found in appendix A.5) is called. The out-
put of the function maxdif is the maximum a player can improve when deviating
from the strategy profile. The function minmaxdif uses maxdif to calculate the
maximum value for every gridpoint and takes the minimum of these values. The
point which has the minimum value becomes the center of a finer grid, for which
the same procedure is applied.
To validate the function minmaxdif, we will use the following examples:

Example 15:
Consider the random 3-player quitting game:

2

3

1
-0.5298,-0.1615, 0.2557

0.8597, -0.9646,0.1763 -0.7938, -0.8338,-0.8833

1
-0.0124, 0.4061, 0.5199 0.3250,0.6236,0.9927
0.6180,0.8210,-0.0250 0.3771,0.4556, -0.9655

When calling the function minmaxdif for this game, for x the following values
are returned:

x =
[
0.8890 0.8536 0.3166

]
Now we use the function threeplayers to check the result of minmaxdif. The

CHAPTER 3. EXPERIMENTS AND RESULTS 26

results returned by threeplayers are:

x1 x2 x3

0.8889 0.8536 0.3167

So this game has only a completely mixed stationary equilibrium and as can be
seen the values approximated by minmaxdif lie close to the values calculated
by gsolve.

Example 16:
Consider another random 3-player quitting game:

2

3

1
0.2534,0.8772, -0.1722

-0.9963, 0.8865, -0.6373 -0.1735, 0.3829,0.7865

1
-0.1199, -0.9902, 0.9728 -0.1947,0.8076,0.9008
0.9790,-0.5467,0.8822 -0.3723, -0.3240, -0.2538

When calling the function minmaxdif for this game, for x the following values
are returned:

x =
[
0.9814 0.6006 0.6543

]
Now we use the function threeplayers to check the result of minmaxdif. The
equilibria returned by threeplayers are:

x1 x2 x3

0 1 1
0.9814 0.6006 0.6543

So this game has not only a completely mixed stationary equilibrium for which
the values approximated by minmaxdif are equal to the values calculated by
gsolve, the game also has a pure stationary equilibrium which is (c,q,q).

Also an example of a cyclicly symmetric random game.

Example 17:
Consider the cyclicly symmetric random 3-player quitting game:

2

3

1
-0.2576,0.1135,-0.5907

0.1135, -0.5907, -0.2576 -0.7123, -0.6242, -0.1957

1
-0.5907,-0.2576, 0.1135 -0.1957,-0.7123,-0.6242

-0.6242, -0.1957, -0.7123 -0.8947, -0.8947, -0.8947

When calling the function minmaxdif for this game, for x the following values

CHAPTER 3. EXPERIMENTS AND RESULTS 27

are returned:
x =

[
0.3575 0.3575 0.3575

]
Now we use the function threeplayers to check the result of minmaxdif. The
equilibria returned by threeplayers are:

x1 x2 x3

0 0 1
0 1 0
1 0 0
0 0.4494 0.9546

0.9546 0 0.4494
0.4494 0.9546 0
0.3575 0.3575 0.3575

The function gsolve in threeplayers returns the same values as minmaxdif.
The values for x1, x2 and x3 are the same in the completely mixed equilibrium
as we would expect for a cyclicly symmetric game. The function threeplayers

also returns some other equilibria for this cyclicly symmetric random quitting
game, and in these equilibria symmetry also shows.

As the above examples show, the functions gsolve and minmaxdif find the
same strategy profiles x for the random games. The performance of the func-
tion minmaxdif is equal to the performance of gsolve and in section 3.2 we
already concluded that gsolve finds the correct completely mixed equilibria.
Besides the quitting game, the function minmaxdif also has some optional in-
puts. The first optional input is m, used for dividing the grid into 2m+1 grid-
points. To test the influence of m on the simulations, we executed the following
experiment: Always start a new simulation with the starting seed 19870601.
Then for 20000 seconds let the program simulate cyclicly symmetric random
games and count the number of times minmaxdif predicts the existance of a
completely mixed equilibrium. For different values of m we get the following
results:

m # games simulated # games with a completely mixed equilibrium
3 26865 15335
5 8488 4866
7 4242 2426
9 2144 1249
11 1309 756

If the value for m increases, the function minmaxdif can process less games.
When we only look at the number of games minmaxdif can process in the given
time, choosing m=3 would be logical. But for m¿3 the performance(# equilibria
divided by # games) of finding completely mixed equilibria is higher. Looking
at the performance and the number of games minmaxdif can process in the
given time, choosing m=5 is a good default value.

CHAPTER 3. EXPERIMENTS AND RESULTS 28

Table 3.2: The number of games where the function minmaxdif finds a com-
pletely mixed equilibrium with type equals 0 and type equals 1. There are two
tables, 3.2(a) for random games with payoffs between -1 and 1 and 3.2(b) for
cyclicly symmetric random games.

(a) Random games with payoffs between -1 and 1

games time (in seconds)

type = 0 1104 22801
type = 1 180 15201

(b) Symmetric random games

games time (in seconds)

type = 0 5730 24705
type = 1 3877 16710

Another optional input parameter is type. The size of the finer grid is deter-
mined by type. The default value for type is 0. For type=0, the finer grid uses
the complete grid from the neighbouring points of the new center. For type=1,
the finer grid has a size of 1

2 the length between the neighbouring points of
the new center. The type parameter influences the number of games where
minmaxdif finds a completely mixed equilibrium as table 3.2 shows.
The function minmaxdif works faster when type=1, but on the other hand
for type=1 minmaxdif also misses a number of games with completely mixed
equilibria. Since type=0 is more accurate and since the extra time consumption
is reasonable, it is best to use type=0 for further experiments.
The last optional parameter is a. The parameter a is used to define when
minmaxdif has to stop refining the grid. If the grid width is smaller then a,
minmaxdif stops refining the grid and returns the values for EPS and x.

3.3.2 Stationary equilibria in 3-player quitting games

To see how the function minmaxdif works, we simulate 10000 random games
with payoffs between -1 and 1 and also 10000 cyclicly symmetric random games.
For each game, the function minmaxdif returns a value for EPS and x. We will
use the values for EPS to determine a boundary for which we can say that a
random game has a completely mixed equilibrium. The values for EPS can be
stored in discrete intervals. Each discrete interval counts the number of games
for which the value returned for EPS by minmaxdif returns lies in this interval.
All intervals have a width of 0.000001. Table 3.3 the results of the simulations
can be found.
As the table shows, the first interval contains a big number of games while the
others are much lower. So taking 0.000001 as a boundary for determining the
existence of a completely mixed equilibrium is a good choice. The results are
as we would expect, since the value for EPS would be very small if the game

CHAPTER 3. EXPERIMENTS AND RESULTS 29

interval
random games with pay-
offs between -1 and 1

cyclicly symmetric ran-
dom games

[0;0.000001) 1104 5730

[0.000001;0.000002) 38 2

[0.000002;0.000003) 22 2

[0.000003;0.000004) 13 1

[0.000004;0.000005) 7 1

Table 3.3: The results for the values of EPS<0.000005 when simulating 10000
games with the starting seed 19870601.

(a) Random games with payoffs between -1
and 1

(b) Cyclicly symmetric random games

Figure 3.2: The results for x values in the games where EPS was below 0.000001,
when simulating 10000 random games with the starting seed 19870601

contains a completely mixed (ε-)equilibrium.
Besides the values for EPS, the function minmaxdif also returns an approxima-
tion of the strategy profile played in the completely mixed equilibrium. To get
an idea about the distribution of the values of x, figure 3.2 shows the strategies
for the games where EPS<0.000001.
In figure 3.2, a histogram shows the distribution of the values of x. Every x
belongs to a specific bin in the histogram and no difference is made between the
values for x for player 1,2 or 3. A bin is a discrete interval, where the height
shows the frequency of observations in this interval. In figure 3.2 the bins have a
width of 0.05, so each bin covers an interval of size 0.05. Both types of random
games have a similar structure for x. The values close to 0 and 1 are less likely
to occur, because for values close to 0 and 1 most likely the pure strategies
continue and quit will contribute to an equilibrium.
For getting an idea about the percentage of random games with a completely
mixed equilibrium we tested 30000 random games. For these 30000 games, we
simulated three times 10000 games with different starting seeds. The exact
results for each simulation can be found in appendix B.1. For the simulations
we used the function threeplayers leaving out the part of gsolve for finding the
equilibria where at least one player has a pure stationary strategy. After that
we call minmaxdif, with the parameters m=5, a= 1

11000000 and type=0, to see if

CHAPTER 3. EXPERIMENTS AND RESULTS 30

Figure 3.3: The categories in which the found equilibria can be divided: A:
games with pure equilibria, B: games with equilibria where two players ran-
domize, and C: games with completely mixed equilibria.

category I category II category III

A ∪B ∪ C 27246 24777 29532

C 3237 3158 17026
C\(A ∩B) 426 772 3222
(C ∩A)\B 2249 1841 12506
(C ∩B)\A 125 150 5
C ∩A ∩B 437 395 1293

(A ∪B)\C 24009 21619 12506
A\(B ∩ C) 20748 18341 12429
B\(A ∩ C) 755 1000 2
(A ∩B)\C 2506 2278 75

Table 3.4: Equilibria found when simulating 30000 random games divided into
the categories as shown by figure 3.3. The games can also be divided into three
different categories: I: positive random games, II: random games with payoffs
between -1 and 1, and III: cyclicly symmetric random games

the game contains a completely mixed equilibrium. We chose the value EPS, in
such a way that the grid is refined ten times. The results of the simulations can
be found in table 3.4.
For cyclicly symmetric random games, approximately 98% of the games have a
stationary equilibrium and in 57% of the games a completely mixed equilibrium
exists. If a cyclicly symmetric random game has a completely mixed equilibrium,
the chance of having also a pure equilibrium is very high. On the other hand,
if a cyclicly symmetric random game has a completely mixed equilibrium, it is
very rare that the game also has an equilibrium where two players randomize
and the third plays a pure stationary strategy. If a cyclicly symmetric random
games does not have a completely mixed equilibrium, it most likely has a pure
equilibrium while equilibria where two players randomize are less common in
cyclicly symmetric random games.
For random games with positive payoffs and payoffs between -1 and 1, the prob-
ability of having a stationary equilibrium is lower than for cyclicly symmetric

CHAPTER 3. EXPERIMENTS AND RESULTS 31

random games. Approximately 91% of the positive random games have a sta-
tionary equilibrium and for the random games with payoffs between -1 and 1
this is approximately 83%. The percentage of games with a completely mixed
equilibrium is in both categories approximately 11%. There are some differ-
ences: in positive random games there is a bigger chance of having also a pure
equilibrium if the game has a completely mixed equilibrium and for random
games with payoffs between -1 and 1, the probability that the completely mixed
equilibrium is the only equilibrium in the game is bigger.

3.4 Some examples of 3-player quitting games

In this section we discuss some specific examples of 3-player quitting games.

Example 18:
Consider the symmetric 3-player quitting game:

3
2 2

1
0,0,0 0,0,0 1,1,1

0,0,0 1,1,1 1,1,1 0,0,0

In this game the following equilibria exist:

x1 x2 x3

0 0 0
0 1 1
1 0 1
1 1 0
1 1

2
1
2

1
2 1 1

2
1
2

1
2 1

3
2 −

√
3
2

3
2 −

√
3
2

3
2 −

√
3
2

The game has 8 stationary equilibria.
(c,c,c) is an equilibrium, because by deviating the players also get payoff 0 so
deviating is not profitable for them.(c,q,q), (q,c,q) and (q,q,c) are all equilibria,
because of the symmetric of the game and in these matrix entries the players
have payoff 1 while by deviation they receive payoff 0. (c, 12 ,

1
2), (1

2 , c,
1
2) and

(1
2 ,

1
2 , c) are all equilibria because (1

2 ,
1
2) is an equilibrium for the 2-player quit-

ting game and the third player cannot gain anything by deviating to quit.

A completely mixed equilibrium, like (3
2 −

√
3
2 , 3

2 −
√
3
2 , 3

2 −
√
3
2) only exists if

all players are indifferent. For all players to be indifferent in a symmetric game,
x1 = x2 = x3. So we can calculate the completely mixed equilibrium by assum-
ing that player 1 and 2 both quit with probability x. Player 3 is indifferent for
a value of x where his payoff for playing continue equals the payoff for playing

CHAPTER 3. EXPERIMENTS AND RESULTS 32

quit. Now, continue yields player 3 a payoff of:

continue:
x2

1− (1− x)2

and quit yields a payoff of:
quit:2x(1− x)

Solving the equation continue = quit, yields x = 3
2 −

√
3
2 which are the values

for x1, x2, x3 in the completely mixed equilibrium.

The game in the following example is similar to the game in example 3 in chapter
1. The only difference is that the payoffs with value 3 are changed to payoffs
with value 2.

Example 19:
Consider the cyclicly symmetric 3-player quitting game:

3
2 2

1
0,1,2 2,0,1 1,1,0

1,2,0 1,0,1 0,1,1 0,0,0

The stationary equilibrium for this game is:

x1 x2 x3

ε ε ε

When trying to find the equilibrium in this game, the function threeplayers

has no solutions. Therefore, we used the function minmaxdif to determine if
a completely mixed equilibrium exists. When solving [EPS,x]=minmaxdif(A,

5, 1/11000000, 0), where A is the game matrix, we find the following:

a = 1.4964 · 10−8

and
x = 10−8 ·

[
0.8269 0.8269 0.8269

]
Because the values for x are smaller than the value for EPS and close to zero, we
may assume that the equilibrium is quitting with probability ε for all players.
When players quit with probability ε, the probability that two players quit
at the same time is negligible. If the probability with which the players quit
increases, then the chance of two players quitting at the same time also increases.
Therefore, quitting with probability ε is an equilibrium. Looking at the game it
shows that quitting with a small probability is better for all players than playing
continue all the time.

Chapter 4

Conclusion and
recommendations

Before giving an overall conclusion about the problem statement, we will first
answer reseach questions.
The first research question is: Is it possible to set up an algorithm for finding
stationary (ε−)equilibria in 2-player quitting games? Since we wrote an algo-
rithm which finds all stationary (ε-)equilibria in a 2-player game, it is possible
to set up an algorithm for finding these equilibria. The simplest way to do so,
is to use calculate for every stationary strategy of one player, the other player’s
stationary best replies. We tested the algorithm with different games, like games
with only positive or negative payoffs, symmetric games and games with pay-
offs between -1 and 1. In every situation our algorithm twoplayers returned
the correct equilibria, which we verified by doing the calculations manually for
finding the equilibrium.
The second research question is: Is it possible to set up an algorithm that
correctly identifies a stationary equilibrium in a 3-player quitting game, or that
says that there exists no stationary equilibrium? For 3-player quitting games we
have written an algorithm that can identify a stationary equilibrium if it exists.
Here we also used different types of games to test the working, like symmetric
random games and random games with payoffs between -1 and 1. The algorithm
threeplayers returns the equilibria for which one or more players have a pure
stationary strategy and also the equilibria for which all players randomize. So
it can correctly identify all stationary equilibria in a 3-player quitting game.
The third research question is: Can an algorithm prove the existence of equilibria
in 3-player quitting games? In specific 3-player quitting games our algorithms
are able to find the stationary equilibria, but this does not apply to all 3-person
quitting games. So the algorithms we wrote are not able to prove the existence
of equilibria in general 3-person quitting games but only in specific cases.
Our problem statement is : ‘Using Matlab to find stationary (ε-)equilibria in 2-
and 3-player quitting games’. Matlab is a useful tool when writing algorithms

33

CHAPTER 4. CONCLUSION AND RECOMMENDATIONS 34

to find stationary (ε-)equilibria in quitting games. Matlab is able to identify
and find all possible stationary equilibria that exist in 2- and 3-player quitting
games. For finding completely mixed stationary equilibria in 3-player quitting
games the only drawback of using Matlab is the time it takes before Matlab has
calculated such an equilibrium.
The research, conducted in this thesis, has led to some interesting results in
2- and 3-player quitting games. These games are the simplest kind of quitting
games, because the verification of the results can be done by hand. For quit-
ting games with n ≥ 4 players, the games get more complicated. It might be
interesting to see if our algorithms can be extended in such a way, that they
are also applicable for larger and more complex quitting games. For finding the
completely mixed equilibria in quitting games with n ≥ 4 players, this might
not be a problem since gsolve can be used. For finding the stationary equilibria
where at least one player does not randomize over the action the situation is
different and it might be a challenge to change our algorithms such that they
are suitable to use.
Since we only focussed on finding the stationary equilibria in quitting games,
another interesting research area would be the finding of cyclic equilibria in n-
player quitting games. From examples 3 and 4 in chapter 1, we know that cyclic
equilibria can exist in quitting games that have no stationary equilibrium. Since
we can set up algorithms for finding stationary equilibria, a challenge would be
to set up an algorithm that detects a cyclic equilibrium.

Bibliography

[1] D. Blackwell and T.S. Ferguson. The big match. The Annals of Mathe-
matical Statistics, 39(1):159–163, 1968.

[2] H. Everett. Recursive games. In M. Dresher, A. Tucker, and P. Wolfe,
editors, Contributions to the Theory of Games, Vol. III, Annals of Mathe-
matics Studies 39, pages 47–78. Princeton University Press, 1957.

[3] J. Flesch, J. Kuipers, G. Schoenmakers, and K. Vrieze. Subgame-perfection
in free transition games. Research memorandum, Maastricht University,
2011.

[4] J. Flesch, F. Thuijsman, and K. Vrieze. Cyclic markov equilibria in stochas-
tic games. International Journal of Game Theory, 26:303–314, 1997.

[5] J. Flesch, F. Thuijsman, and O.J. Vrieze. Recursive repeated games with
absorbing states. Mathematics of Operations Research, 21(4):1016–1022,
November 1996.

[6] D. Gillette. Stochastic games with zero stop probabilities. In M. Dresher,
A. Tucker, and P. Wolfe, editors, Contributions to the Theory of Games,
Vol. III, Annals of Mathematics Studies 39, pages 197–208. Princeton Uni-
versity Press, 1957.

[7] J. Kuipers, J. Flesch, G. Schoenmakers, and K. Vrieze. Pure subgame-
perfect equilibria in free transition games. European Journal of Operational
Research, 199(2):442–447, December 2009.

[8] E. Solan. Three-player absorbing games. Mathematics of Operations Re-
search, 24(3):669–698, August 1999.

[9] E. Solan and N. Vieille. Quitting games. Mathematics of Operations Re-
search, 26(2):265–285, May 2001.

[10] E. Solan and N. Vieille. Quitting games - an example. International Journal
of Game Theory, 31:365–381, 2002.

[11] O.J. Vrieze and F. Thuijsman. On equilibria in repeated games with ab-
sorbing states. International Journal of Game Theory, 18:293–310, 1989.

35

Appendix A

Source code of the
algorithms

Here, the Matlab code for the algorithms is given. First some functions for
the algorithm which finds the equilibria for two players, then the algorithm for
finding the equilibria in games with 3 players. After that some functions used
for the validation of the algorithm for 3 players.

A.1 Finding equilibria for two players

The algorithm for two players consist of a main function where the game is
inputted, this function then calls the other functions that are needed to calculate
the equilibria in the 2-player game. Below the main function called twoplayers

is given.

Function 1 twoplayers

Input: game
Output: equilibrium

function eq=twoplayers(game)

% 2 players

% look at the best reply from one player to a stationary strategy

% of the other and see if there are matches between them

% the match is the epsilon-equilibrium of the game

% change the game in two subgames, one for each player, which

% later can be used to calculate the best reply

% player1’s game

game1 = [game(1,1), game(1,3); game(2,1), game(2,3)]’;

% player2’s game

game2 = [game(1,2), game(1,4); game(2,2), game(2,4)];

36

APPENDIX A. SOURCE CODE OF THE ALGORITHMS 37

% initialize the matrix for storing a strategy with the best

% reply, the left column is action player 1, the right column

% is action player 2, this is useful for later comparison in

% finding equilibrium

s1 = []; % strategies for player 1, reply player 2

s2 = []; % strategies for player 2, reply player 1

% there are three possible actions to be played, namely continue,

% quit and a mixed action of continue and quit

for i=1:3

% first the reply for the stationary strategy

action = i;

[action1, reply2] = findreply2p(action, game2);

[action2, reply1] = findreply2p(action, game1);

% store results in strategies matrices

s1 = [s1; action1, reply2];

s2 = [s2; reply1, action2];

end

% find equilibrium

eq=findeq2p(s1,s2);

The first and most important part of finding the equilibria in a game for two
players, is to look at one player’s stationary strategy and find the best reply for
the other player. The function described below, tries to find the best reply for
a player.

Function 2 findreply2p

Input: action, game
Output: action, reply

function [action, reply] = findreply2p(action, game)

eps=10−4;
if(action == 1) % continue

action = [0,0];

if(game(1,1)== game(1,2))

reply = [0,1];

elseif(game(1,1) > game(1,2))

reply = [0,0];

else

reply = [0+eps,1];

end

elseif(action == 2) %quit

action = [1,1];

if(game(2,1)==game(2,2))

reply = [0,1];

elseif(game(2,1)>game(2,2))

APPENDIX A. SOURCE CODE OF THE ALGORITHMS 38

reply = [0,0];

else

reply = [1,1];

end

else % mixed action of continue and quit

% if the payoff for continue is higher or equal, then the sum of

% the payoffs for quit, the player should always continue

% if the payoffs for quit are positive and always higher then the

% payoff for continue, the player should quit all the time

% if the above situations don’t occur, the player should do a

% mixed action as best reply

b = game(1,2);

c = game(2,1);

d = game(2,2);

if(b==d==c)

action=[eps,1-eps];

reply=[0,1];

elseif(c>= max(b,d))

action = [eps,1-eps];

reply = [0,0];

elseif(c<= min(b,d))

action = [eps,1-eps];

reply = [1,1];

else

% solve the equation: c = x*d + (1-x)*b (x is act)

act = (b-c)/(b-d);

% if act is between 0 and 1, then for the value of act, the

% reply can be anything, and look also for a small added or

% subtracted value from act what the best reply is else

% there is only one best reply for the action [x, 1-x]

action = [act, act; eps, act-eps;act+eps, 1-eps];

r1 = [0,1];

if(b>d)

r2=[1, 1; 0, 0];

else

r2=[0, 0; 1, 1];

end

reply = [r1;r2];

end

end

After searching for the best replies, there are two matrices created which contain
the strategy pairs for both players. For an equilibrium, look for the strategy
pairs that are best replies to each other or in other words, look for strategy pairs
that both players have in common. For that the following function is used:

APPENDIX A. SOURCE CODE OF THE ALGORITHMS 39

Function 3 findeq2p

Input: 2 lists of strategies
Output: equilibrium

function finaleq = findeq2p(s1, s2)

eps=10−4;
l1 = size(s1,1);

l2 = size(s2,1);

eq=[];

% compare the two matrices with strategies to see, where the

% equilibrium is

for j=1:l1

for k=1:l2

% do comparing

overlap1=intervaloverlap(s1(j,1:2),s2(k,1:2));

overlap2=intervaloverlap(s1(j,3:4),s2(k,3:4));

if((isempty(overlap1))&&(isempty(overlap2)))

eq=[eq; overlap1, overlap2];

end

end

end

m=size(eq,1);

% if the size of eq is bigger then 1, look if there as an action

% for which the other player has multiple best replies and

% combine these replies (if possible) into 1 reply

if(m>1)

% first check if player 1 strategies can be combined

eqtemp=sortrows(eq, [3 1]);

eq1=findadjacent(eqtemp,eps,1);

% check if strategies of player 2 can be combined

eqtemp2=sortrows(eq1, [1 3]);

eq2=findadjacent(eqtemp2, eps,2);

eq=eq2;

end

finaleq=eq;

The previous function uses two other functions, namely intervaloverlap and
findadjacent. The function intervaloverlap checks if the intervals have
some overlapping values and the overlap is then part of the equilibria.

Function 4 intervaloverlap

Input: Two pairs of intervals
Output: The overlap in intervals

APPENDIX A. SOURCE CODE OF THE ALGORITHMS 40

function overlap = intervaloverlap(int1, int2)

x1=int1(1,1);

x2=int2(1,1);

y1=int1(1,2);

y2=int2(1,2);

overlap=[];

if(x1>=x2)

if(y2>=y1)

overlap=int1;

elseif((y2<=y1)&&(x1<=y2))

overlap=[x1,y2];

end

elseif(x1<=x2)

if((y2>=y1)&&(x2<=y1))

overlap=[x2,y1];

elseif(y2<=y1)

overlap=int2;

end

end

The function findadjacent looks if the intervals ensuring the equilibria can be
combined into a bigger interval for the equilibrium.

Function 5 findadjacent

Input: The list with equilibria, the value for epsilon and the number of players
Output: The list with equilibria

function eqout = findadjacent(eqin, eps, playerno)

% this function checks if for one actionpair, the other players

% actions can be grouped together

m=size(eqin,1);

counter=1;

% ensures that there are no more loops than size of matrix

i=1; % keeps track of index in matrix

while(counter<m)

if(playerno==1)

eq1=eqin(i,3:end);

eq2=eqin(i+1,3:end);

elseif(size(eqin,2)==(2*playerno))

eq1=eqin(i,1:(end-2));

eq2=eqin(i+1,1:(end-2));

else

eq1=[eqin(i,1:(2*(playerno-1))),eqin(i,(2*playerno+1):end)];

eq2=[eqin(i+1,1:(2*(playerno-1))),eqin(i,(2*playerno+1):end)];

end

APPENDIX A. SOURCE CODE OF THE ALGORITHMS 41

str1=num2str(eq1,4); % values are strings with 4 digits

str2=num2str(eq2,4);

% check if the strategies for the first player(s) in row i

% and row i+1 are the same before checking if the strategy

% of the last player in row i and row i+1 is a follow up

% (difference smaller or equal to eps)

if(strcmp(str1,str2))

if((eqin(i+1,(2*playerno-1))-eqin(i,(2*playerno)))<=eps)

eqin(i,(2*playerno))=eqin(i+1,(2*playerno));

eqin(i+1,:)=[];

else

i=i+1;

end

else

i=i+1;

end

counter=counter+1;

end

eqout=eqin;

A.2 Finding equilibria for 3 players

The algorithm for finding equilibria in games with 3 players consists of two
functions. The main function is gsolve, where the game is inputted and the
sets of players that continue or quit.

Function 6 gsolve

Input: game, set of players that continue, set of players that quit
Output: values for x for indifferent players

function [Q,B]=gsolve(A,Sc,Sq)

d=size(A); n=d(1); N=d(2);

syms x1 x2 x3 x4 x5 x6 x7 x8 x9 positive

x=[x1 x2 x3 x4 x5 x6 x7 x8 x9];

x=x(1:n);

c=1; I=[];

for i=1:n

if bitget(Sq,i)

x(i)=1;

elseif bitget(Sc,i)

x(i)=0;

else

I=[I,i];

APPENDIX A. SOURCE CODE OF THE ALGORITHMS 42

end

c=c*(1-x(i));

end

B=[];

for i=I

y1=x; y1(i)=1; y1=mgame(y1);

y0=x; y0(i)=0; y0=mgame(y0);

B=[B;(1-c/(1-x(i)))*A(i,:)*y1’-A(i,:)*y0’];

end

Q=solve(B);

The function gsolve uses the function mgame where the vector with probabilities
is calculated according to the values for x(i) for player i which is indifferent.

Function 7 mgame

Input: vector with probabilities
Output: vector with probabilities

function y=mgame(q,i)

if nargin>1

if i<0

q(-i)=eps;

else

q(i)=1;

end

end

y=q(1); c=1;

for i=2:length(q)

c=c*(1-q(i-1));

y=[y*(1-q(i)), q(i)*c, y*q(i)];

end

A.3 Functions for the validation of gsolve

For the validation of the function gsolve, the following function was written
which uses as an input the game in the same form as the function gsolve and
as an output the values for x, so the probabilities with which players quit, are
given:

APPENDIX A. SOURCE CODE OF THE ALGORITHMS 43

Function 8 findx2p

Input: game
Output: probabilities

function Q = findx2p(A)

Q = zeros(1,2);

for i=1:2

Q(i)=(A(i,i)-A(i,3-i))/(A(i,i)-A(i,3));

end

A.4 Algorithm for finding equilibria in 3-player
games

The main function for this algorithm is threeplayers. The function uses as an
input a game as given in equation 2.5 and the output is a matrix with equilibria
if they exist.

Function 9 threeplayers

Input: game
Output: equilibrium

function eq = threeplayers(A)

eq=[];

% first check if the game has a pure stationary equilibrium

for i=0:1 % action for player 1

for j=0:1 % action for player 2

for k=0:1 % action for player 3

x=[i, j, k];

tempeq = checkpure(A, x);

eq=[eq;tempeq];

end

end

end

% check if the game has an equilibrium for which two players are

% indifferent and the third player plays a fixed action

for i=1:3

Atempq=[];

Atempc=[];

for j=1:7

if bitget(j,i)

Atempq=[Atempq, A(:,j)];

APPENDIX A. SOURCE CODE OF THE ALGORITHMS 44

else

Atempc=[Atempc, A(:,j)];

end

end

Atempq(i,:)=[];

Atempc(i,:)=[];

Qc=findx2p(Atempc);

Qq=findxbimatrix(Atempq);

xc = Qc(1);

yc = Qc(2);

if(xc>0 && xc<1 && yc>0 && yc<1)

tempeq = checkcontinue(A, Qc, i);

eq=[eq; tempeq];

end

xq = Qq(1);

yq = Qq(2);

if(xq>0 && xq<1 && yq>0 && yq<1)

tempeq = checkquit(A, Qq, i);

eq=[eq; tempeq];

end

end

% check if the game has an equilibrium for which all players are

% indifferent Q = gsolve(A,0,0);

if isempty(Q)

x1=double(Q.x1);

x2=double(Q.x2);

x3=double(Q.x3);

if(x1<1 && x2<1 && x3<1)

eq=[eq;x1 x2 x3];

end

end

For finding strategy sets if one of the players has a fixed strategy, the functions
findx2p and findxbimatrix are used. The function findx2p is the function
described in section A.3. The function findxbimatrix is similar, but now the
input is a 2-player bimatrix game.

Function 10 findxbimatrix
Input: game
Output: probabilities

function Q = findxbimatrix(A)

Q = zeros(1,2);

for i=1:2

Q(i)=(A(i,1)-A(i,i+1))/(A(i,1)-A(i,2)-A(i,3)+A(i,4));

APPENDIX A. SOURCE CODE OF THE ALGORITHMS 45

end

The main function threeplayers also uses the following three functions to
check if the set of strategies found is indeed an equilibrium of the 3-player game
provided as input to the function. The first function is checkpure which looks
if a set of pure strategies are an equilibrium, if not an empty matrix is given as
output.

Function 11 checkpure

Input: game, set of strategies
Output: equilibrium

function eq = checkpure(A, x)

eq=[];

bool = 1;

for i=1:3

x2=x;

x2(i)=mod(x(i)+1,2);

if(x== zeros(1,3))

a1 = 0;

else

index = x(1)+x(2)*2+x(3)*4;

a1 = A(i, index);

end

if(x2 == zeros(1,3))

a2=0;

else

index = x2(1)+x2(2)*2+x2(3)*4;

a2=A(i, index);

end

if (a1 >= a2)

bool = 0;

break;

end

end

if bool

eq=x;

end

The functions checkcontinue and checkquit are used to check if the set of
strategies found when one of the players plays the pure strategy continue or
quit is an equilibrium.
function eq = checkcontinue(A, Q, i)

eq=[];

APPENDIX A. SOURCE CODE OF THE ALGORITHMS 46

Function 12 checkcontinue
Input: game, set of strategies, playernumber
Output: equilibrium

xc = zeros(1,3);

xq = zeros(1,3);

xc(i) = 0;

xq(i) = 1;

c= 1- (1-Q(1))*(1-Q(2));

counter = 1;

for j=1:3

if (i==j)

xc(j)=Q(counter);

xq(j)=Q(counter);

counter = counter+1;

end

end

xc2=mgame(xc);

xq2=mgame(xq);

con = A*xc2’/c;

quit = A*xq2’;

if con>=quit

eq=xc;

end

The function checkquit is similar to the function checkcontinue described
above, the only difference is that now you look if con<=quit.
Since we not only simulate random games, but also symmetric random games,
we have written a short function randsym for creating a symmetric random
game, which looks as follows:

a5, a1, a4 a4, a5, a1 a2, a6, a7
a1, a4, a5 a6, a7, a2 a7, a2, a6 a3, a3, a3

or as input for the algorithms,

the game is returned by randsym in the form as given in equation 2.5:a1 a5 a6 a4 a7 a2 a3
a4 a1 a7 a5 a2 a6 a3
a5 a4 a2 a1 a6 a7 a3



Function 13 randsym

Output: symmetric random game

function G=randsym()

APPENDIX A. SOURCE CODE OF THE ALGORITHMS 47

% computes a random symmetric 3-person quitting game

a=rand(1,7)*2-1;

G=[a([1 5 6 4 7 2 3]); a([4 1 7 5 2 6 3]); a([5 4 2 1 6 7 3])];

A.5 Algorithm for finding mixed equilibria in 3-
player games

Since the function gsolve tries to find the exact completely mixed equilibria,
we have written a different function called minmaxdif which estimates if a ran-
dom game has a completely mixed stationary equilibrium without calculating
it exactly.

Function 14 minmaxdif
Input: game, indicator for number of grid points, value for stopping, type
Output: difference, set of stationary strategies

function [EPS,x,n]=minmaxdif(A,m,a,type)

% input A: a 3-person quitting game.

% output ‘EPS’,‘x’: in stationary strategy ‘x’ the two payoffs

% p0 and p1 for any player after deviating to continue, resp.

% quit, differ by at most ‘EPS’, and there is no other strategy

% with smaller ‘EPS’.

if nargin<4, type=0; end

if nargin<3, a=0.0000001; end

if nargin<2, m=5; % with m=5, meaning 11 gridpoints van -5 t/m 5

X=[];

for i=-m:m, for j=-m:m, for k=-m:m, X=[X;[i j k]]; end, end, end

if type

m=1/(2*m+1); % grid shrinks with m at each step

X=X*m; % regular grid of overall width 1 minus the border

else

m=1/(m+1); % grid shrinks with m at each step

X=(X*m)/2;

end

w=1; % grid width of the search space

x=[1 1 1]/2; % starting point

n=1;

while w>a

n=n+1;

X1=[w*X(:,1)+x(1),w*X(:,2)+x(2),w*X(:,3)+x(3)];

SS=maxdif(A,X1);

[EPS,i]=min(SS);

x=X1(i,:);

APPENDIX A. SOURCE CODE OF THE ALGORITHMS 48

w=w*m;

end

The function minmaxdif uses the function maxdif to calculate the value by
which the players can improve when deviating from the given strategies.

Function 15 maxdif
Input: game, sequence of stationary strategies, eps
Output: the maximum the players can improve by deviating

function SS=maxdif(A,X)

% Input:

% A is an n-person quitting game, and

% X a sequence of stationary strategies

% Considering for each player the payoffs p0 and p1, the

% first when deviating by playing continue and the second by

% playing quit, the outcome SS(j) stores the maximum |p0-p1|

% over all players.

TOLR=10*eps;

d=size(A); n=d(1); N=d(2);

d=size(X); m=d(1);

SS=zeros(1,m);

for j=1:m

x=X(j,:);

c=(1-x(1)); for i=2:n, c=c*(1-x(i)); end

S=0;

for i=1:n

y1=x; y1(i)=1; y1=mgame(y1); p1=A(i,:)*y1’;

if x(i)>1-TOLR, ci=0; else ci=c/(1-x(i)); end

y0=x; y0(i)=0; y0=mgame(y0); p0=(A(i,:)*y0’)/(1-ci);

S=max([S,p1-p0,p0-p1]);

end

SS(j)=S;

end

Appendix B

Tables with results of
simulations

For reproducability of the simulations for the experiments, some tables with
results are given here. First a table with results for determining the probability
that a stationary equilibrium exist in a random 3-player game is given and after
that a table with results for the validation of gsolve.

B.1 Results for stationary equilibria in random
3-player games

The results for finding stationary equilibria in random 3-player quitting games,
for each simulation of 10000 games with a specified starting seed.

Figure B.1: The categories in which the found equilibria can be divided: A:
games with pure equilibria, B: games with equilibria where two players ran-
domize, and C: games with completely mixed equilibria.

49

APPENDIX B. TABLES WITH RESULTS OF SIMULATIONS 50

seed 19870106 19810601 20100803

A ∪B ∪ C 9053 9118 9075

C 1077 1085 1075
C\(A ∩B) 149 136 141
(C ∩A)\B 743 764 742
(C ∩B)\A 37 49 39
C ∩A ∩B 148 136 153

(A ∪B)\C 7976 8033 8000
A\(B ∩ C) 6917 6914 6917
B\(A ∩ C) 244 254 257
(A ∩B)\C 815 865 826

Table B.1: The number of equilibria found when simulating 10000 positive
random games, divided into the categories as shown by figure B.1.

seed 19870106 19810601 20100803

A ∪B ∪ C 8235 8251 8291

C 1047 1056 1055
C\(A ∩B) 276 235 261
(C ∩A)\B 591 643 607
(C ∩B)\A 46 57 47
C ∩A ∩B 134 121 140

(A ∪B)\C 7188 7195 7236
A\(B ∩ C) 6124 6069 6148
B\(A ∩ C) 330 335 335
(A ∩B)\C 734 791 753

Table B.2: The number of equilibria found when simulating 10000 random
games with payoffs between -1 and 1, divided into the categories as shown by
figure B.1.

APPENDIX B. TABLES WITH RESULTS OF SIMULATIONS 51

seed 19870106 19810601 20100803

A ∪B ∪ C 9850 9850 9832

C 5606 5811 5609
C\(A ∩B) 1075 1081 1066
(C ∩A)\B 4138 4269 4099
(C ∩B)\A 0 1 4
C ∩A ∩B 393 460 440

(A ∪B)\C 4244 4039 4223
A\(B ∩ C) 4220 4018 4191
B\(A ∩ C) 0 0 2
(A ∩B)\C 24 21 30

Table B.3: The number of equilibria found when simulating 10000 cyclicly sym-
metric random games, divided into the categories as shown by figure B.1.

B.2 Results for the validation of gsolve

Here is a list with the values as shown in figure 3.1 in section 3.2:
seed check seed check seed check seed check

1 1133 2 1106 3 1124 4 1100
5 1074 6 1163 7 1146 8 1087
9 1080 10 1108 11 1063 12 1082
13 1082 14 1102 15 1131 16 1070
17 1088 18 1173 19 1087 20 1124
21 1106 22 1098 23 1125 24 1084
25 1147 26 1072 27 1067 28 1084
29 1082 30 1130 31 1137 32 1111
33 1101 34 1116 35 1111 36 1123
37 1094 38 1127 39 1094 40 1064
41 1140 42 1124 43 1140 44 1159
45 1154 46 1144 47 1060 48 1127
49 1089 50 1111 51 1150 52 1200
53 1103 54 1154 55 1114 56 1072
57 1099 58 1094 59 1172 60 1108
61 1115 62 1128 63 1123 64 1125
65 1112 66 1128 67 1123 68 1220
69 1084 70 1112 71 1085 72 1106
73 1084 74 1114 75 1169 76 1132
77 1074 78 1092 79 1089 80 1040
81 1104 82 1086 83 1075 84 1082
85 1139 86 1136 87 1095 88 1077
89 1122 90 1114 91 1158 92 1119
93 1132 94 1114 95 1048 96 1062
97 1132 98 1091 99 1096 100 1139

