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Abstract

There are two methods for finding the equilib-
rium strategies in repeated games with vanish-
ing actions. The method with one restricted
player which is linear programming problem
that returns the pure stationary best reply for
the unrestricted player to the stationary strat-
egy of the restricted player and the value of the
game for these strategies. The second method
for two restricted players depends uses the fic-
titious play property to find the equilibrium
strategies and according to these probabilities
determines what the value of the game will be.

1 Introduction
The repeated games with vanishing actions in this paper,
are two-person zero-sum games where one or both play-
ers have a restriction. In zero-sum games the entries in
the matrix indicate the value that player 2 has to pay to
player 1. So the expected average reward for player 1 is
value that player 2 is going to loose during the time the
game is played. The restriction in these repeated games
indicates after how many times not playing an action,
the action will be unlearned. Unlearning means that
the action cannot be played anymore by that player for
which this action was a possible option[2]. The player
looses this action from it’s set of possible actions. So
unlearning means making an action unavailable for that
player. For finding the optimal strategies, the focus lies
on zero-sum games that don’t contain a saddle point. If
a game contains a saddle point, this will be the value
of the game and the players always play the action that
will lead to the saddle point. A game without a saddle
point has as characteristic that the lowest entry on one
diagonal is bigger than the biggest entry on the other di-
agonal. So playing a certain row or column all the time
is not optimal for both players. For finding the strate-
gies in the repeated games, the repeated games will be
handled as stochastic games[2]. A stochastic game con-
sists of different states and the game will be in one of the
states every stage of the game. By playing the players’

actions determine to which state the game goes in the
following stage.

This leads to the following problem statement:
‘What is the best strategy for the players, so that they
can obtain an optimal game value?’. What the station-
ary equilibrium strategy is, that depends on the game
but also on the number of restricted players in the game.
If there is only one restricted player, than the best mixed
strategy for both players is to find the pure stationary
best reply for the unrestricted player to the stationary
strategy of the restricted player. So in that case the
problem statement should be interpreted as: ‘What is
the pure stationary best reply from player 2 (suppose
this is the unrestricted player) to the stationary strat-
egy of player 1?’. There are some theories about the
value of a repeated game and what kind of strategies the
players use if both players have a restriction, but there
is no algorithm for proving these theories. By finding an
algorithm that can calculate the value of the game and
with what strategies the players play, there will hope-
fully be more inside in the truth or falsity of the existing
theories.

In the next section there will be some background on
repeated games with vanishing actions. After that there
is a section which discusses the different methods that
are used for finding the optimal mixed strategies in the
different set-ups (one restricted player/ two restricted
players) for the game. The methods are followed by ex-
periments in which the methods of the preceding section
are tested for their working. Then the results of the
experiments are discussed in the result section. To con-
clude the conclusion of this research is given, together
with an answer to the problem statement and recom-
mendations for further research.

2 Background
A repeated game with vanishing actions is given by an
(m× n)-matrix, and two natural numbers r1 and r2. At
every stage t = 1, 2, 3, .. player 1 chooses a row i and
player 2 chooses a column j and the matrix entry (i, j)
is the payoff the players get at that stage of the game.
Player 1 has the action set {1, 2, ...,m} and if an action i
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not played for r1 consecutive stages, then this action will
be removed from the action set of player 1. For player 2
is the action set {1, 2, ..., n} and action j will be removed
from player 2’s action set if player 2 has not played it for
r2 consecutive stages. A repeated game can be viewed as
a special kind of stochastic game. This stochastic game
has a finite state space and also finite action spaces[2].
The state space consist of all the possible states in which
the game can be. The size of the state space depends on
the restrictions of the players and the number of possible
actions they have available. The action spaces for player
1 and 2 both consist of two actions, because the research
is on (2× 2)-matrices.

In those repeated games, player 1 and player 2 both
play with their own strategy. Player 1 tries to maximize
his expected average reward, while player 2 is trying to
minimize this expected average reward. The value of
the game then can be calculated according to the action
sequence played. If both players have restriction r = 1,
then the value of the game is the value of the action
pair selected. For the other values of r the strategies are
maximinjaij andminjmaxiaij for player 1 and player 2,
respectively[2]. Those strategies only apply if the game
has no saddle-point. If there is a saddle-point in the
game, the players will always end up playing the action
pair of the saddle point. A game has a saddle point if
there is for player 1 a row in which he always gets more
than in the other rows. So the entries in that row are
always bigger than the entries in other rows. For player
2 there is a column in which he always has to pay less
than in other columns.

For a (2× 2)-matrix, player 1 has to choose between
the action T for playing top and the action B for playing
bottom. The actions for player 2 are L for playing left
and R for playing right. If player 1 has restriction r ≥ 3
and player 2 has restriction r =∞, and the matrix is

M =
(
a b
c d

)
the value of the game can be calculated by the following
formula[3]:

g1 =
v · (a− b− c+ d)r − d · (a− b)r − a · (d− c)r

(a− b− c+ d)r − (a− b)r − (d− c)r
(1)

In this formula, v is the value of the game calculated
by taking the probability p for player 1 for playing B
and probability 1− p for playing T, if player 2 is playing
( 1
2 ,

1
2 ), and solve the equation v = a · (1− p) + c · p. The

r stands in formula 1 for the restriction of player 1.
There is no such formula for a repeated game with

both restricted players. A different idea about finding
the value in this game depends on the fictitious play

property of game theory. Fictitious play is an iterative
procedure. This procedure, for a normal matrix game,
can be interpreted as having the players play the game
repeatedly where at each stage each player is playing a
best reply to the mixed action that ‘fits best’ with the
opponents observed behavior[5]. One can start with an
arbitrary action and if there are more actions that are
a best reply to the observed mixed action, then a tie
breaking rule is used.

For the fictitious play process in repeated games,
things work a little bit different. First there are some
useful notations that help to explain how the fictitious
play works. Let i∗τ ∈ ∆m be the pure action that is se-
lected by player 1 at stage τ of the fictitious play process
and ft denote the action frequencies of the pure actions
of player 1 up to stage t. Analogously are for player 2
defined j∗t ∈ ∆n and gt ∈ ∆n. For the fictitious play
process the values of f and g are updated as follows[3]:

ft =
t− 1
t
· ft−1 +

1
t
· i∗t ∈ ∆m (2)

and
gt =

t− 1
t
· gt−1 +

1
t
· j∗t ∈ ∆n (3)

This fictitious play process converges if (ft, gt)inf
t=1 con-

verges. If every fictitious play converges to the set of
stationary equilibrium strategies than the game has the
fictitious play property. So a repeated game with the
fictitious play property will converge to the set of sta-
tionary equilibrium strategies[4].

The fictitious property is a useful property if the re-
peated game has two restricted players, but not that
much if only one player has a restriction. If there is one
restricted player than formula 1 will show to be a nice
formula for determining the game value.

3 Methods
There are two different methods for finding the optimal
strategy for a player. These methods depend on the
circumstances of the game. If the repeated game only
has one restricted player, then the aim is to find the
pure stationary best reply for the unrestricted player to
the stationary strategy of the restricted player. On the
other hand, if both players have a restriction than finding
the stationary equilibrium strategies depends on the best
play for both players.

3.1 One restricted player

In the case of a repeated game with a (2×2)-matrix and
one restricted player with the restriction r ≥ 3, the states
of the stochastic game representation of the repeated
game depends on the actions played by that player. If
player 1 is the restricted player and he has restriction
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r1 then the state space looks like the following: S =
{(0, 0), (0, 1), (0, 2), ..., (0, r1), (1, 0), (2, 0), ..., (r1, 0)}. In
the state space, (0, 0) is the initial state of the game and
(0, r1) and (r1, 0) are absorbing states in the game for
action T and action B, respectively[3]. The game starts
at the initial state and then it will never return to it.
By playing the game, player 1 will avoid ending up in
one of the absorbing state, because than player 2 can
minimize his expected average reward. For finding the
pure stationary best reply for player 2 to the stationary
strategy of player 1, the initial state and the absorbing
states are not important, so they can be left out.

The states (0, 1) till (0, r1 − 2) all look like the fol-
lowing state:

state(0, i) =


a b

(0, i+ 1) (0, i+ 1)
c d

(1, 0) (1, 0)


When player 1 plays action T, the game goes to the
state (0, i+ 1) and whenever the action B is played then
the game goes to state (1, 0). For the states (1, 0) till
(r1 − 2, 0) there is a same principle, when action T is
played in state (i, 0) the game goes to state (0, 1) and
the game goes to state (i+1, 0) when action B is played.
In state (0, r1−1) player 1 has only action B left, because
playing action T will lead to the absorbing state (0, r1).
The same holds for state (r1 − 1, 0) but with actions T
and B reversed.

In all the states, player 1 plays with the same station-
ary strategy. This strategy is playing T with probability
1−p and playing B with probability p. Finding the pure
stationary best reply for player 2 thus depends on find-
ing the probability q with which player 2 plays R. This
probability differs from state to state.

To find the probability for player 2 in every state,
imagine that the state space looks like a Markov chain.
In this Markov chain from every state (0, i), where i =
1, 2, ..., r1 − 1 there is a pointer to the state (1, 0). For
every state (i, 0) there is a pointer to state (0, 1). From
every state with i < r1 − 1 there is also a pointer to the
next state. By knowing this, the cycle in the Markov
chain provide a useful tool in calculating the value and
the probabilities. From the Markov chain a number of
equations can be formed, namely one equation for every
possible cycle in the Markov chain. If in a cycle the
action T is played, the term a · (1 − q) + b · q is added
to the left-hand side an equation. For action B, there
is added a term c · (1 − q) + d · q to the left-hand side
of the equation of the cycle. The right-hand side of the
equation is the value v multiplied with the number of
states for which a term is included in the equation. An
examples of such an equation are:

c+ (d− c)q01 + a+ (b− a)q10 = 2v

a+ (b− a)q01 + a+ (b− a)q10 + c+ (d− c)q02 = 3v

In these equation the terms for action T and B are rewrit-
ten, so the difference between the variable terms and the
constants is clearer. The variable q0i should be explained
as the probability in state (0, i), with i = 1, 2, ..., r1 − 2.
For the states (0, r1−1) and (r1−1, 0), the probability in
that state is determined by the entries in the matrix. For
those states, instead of entering a constant and a vari-
able, only a constant is entered. The value for v should
equal formula 1 if this formula gives a good calculation
for the game value.

From these equation, it is possible to build a linear
programming problem. In this LP all the variable terms
are put on the left-hand side, so term containing v is
brought to the other side. All the constants are put
on the right-hand side. The algorithm makes a matrix
A with length and width (r1 − 2) · 2 + 1 because this
is the number of variables that occur in the equations.
All the coefficients of the variables are entered in this
matrix. Then there is made a column vector B for all
the constants. By using the Matlab operator
, the linear programming problem is solved, and the q-
values for the different states in the game are returned.
The value of the game is returned separately from the
vector with the q-values.

The same algorithm can also be used if player 2 is the
restricted player and player 1 has no restriction. For that
case, instead of giving the game matrix as a parameter,
give the transposed matrix. The transposed of game
matrix M looks like:

M ′ =
(
−a −c
−b −d

)
The algorithm returns then a vector with the p-values for
player 1 in the different states and value. The returned
value is negative, so it has to be multiplied by −1 to find
the original value of the game.

3.2 Two restricted players

The algorithm used in the previous section is unuseful
for two restricted players. For two restricted players, the
equations following from the Markov chain are not linear
anymore. Another way is needed to find the probability p
for player 1 and probability q for player 2 in the different
states of the state space. The state space looks different
for two restricted players, because all the state look like
one of the following: (0, i, 0, j) if player 1 has played i
times T and player 2 has played j times L, (0, i, j, 0) for
playing i times T and playing j times R, states looking
like (i, 0, 0, j) stand for player 1 playing i times B and
player 2 playing j times L and there is another possible
state namely (i, 0, j, 0) where action B is played i times
and action R j times. The state (0, 0, 0, 0) is again the
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initial state of the game, and the states in which i = r1

and/or j = r2 are still avoid because then the game will
finally end up in an absorbing state.

For the algorithm the initial state and all the states
in which i = r1 and/or j = r2 are left out, because the
players assure that they will never reach such a state.
From the other states the transition matrix P of the
Markov chain can build. The algorithm builds a very
general transition matrix, which can be added in such a
way that it can be used in the different iterations for the
fictitious play process. In this matrix P is probability
one entered for all the states in which player 1 and/or
player 2 have played an action for r1− 1 or r2− 1 times,
respectively. Probability zero is entered for all the states
between which no connection exists in the Markov chain.
For all the states in which both players have their two
actions available, the corresponding action is entered for
the connection in the Markov chain. If the connection
in the matrix stands for playing action TL, then TL is
entered into the transition matrix, and the same goes for
the actions TR, BL and BR.

For the fictitious play process, after every time step
the probabibilities in the different states of the game are
updated according to formulas 2 and 3. Before these
updates can be done, for every possible action sequence
the expected average reward in the game is calculated.
For player 1, the best action sequence is the sequence
with which he gets the most and for player 2, the best
action sequence makes sure he pays the less. The tran-
sition matrix is, in an adapted form, used for the value
calculation of an action sequence. The action sequence
of player 1 consist of a combination with different T’s
and B’s. The transition matrix is adapted in such a way
that if action T belongs to a state that the entry in the
matrix containing action TL is replaced by the value for
1− q of that state, action TR in the matrix is replace by
q for that state and the actions BL and BR are replaced
by a zero. For action B in the action sequence, BR is
replaced by q, BL by 1− q and the others are zero. The
same construction works for player 2, but his action se-
quence is a combination with L and R. The transition
matrix then fills in p and 1 − p for action TL and BL,
respectively, if the action in the action sequence is L.
If the action is R then TR and BR are replaced by the
values p and 1− p.

After adapting the transition matrix, the algorithm
calculates the steady-state probabilities of the Markov
chain. The steady-state probability is the probability
of finding the process in a certain state[1]. For finding
the steady-state probabilities π the following formula is
applied:

π · P = π (4)

In this formula π is vector with the property that∑K
k=0 πk = 1. These πk uniquely satisfy the steady-state

equations[1]

πk =
K∑
l=0

πlpkl

This simply means the πk for state k is equal to the sum
of the probabilities in column k of the transition matrix
multiplied by the π of the other states.

The matrix game also has a certain value in every
state, depending on the value of p or q for that state and
the action played in the fictitious play process. By mul-
tiplying the probability π for every state with the value
of that state and summing this for an action sequence,
the expected average reward for that action sequence
is calculated. This iterative process is repeated several
times until a pre-specified number is reached or untill the
probabilities in the fictitious play process do not change
anymore.

At the point the fictitious play process does not
change anymore, there is also found the expected average
reward of the game. Since the strategies for both players
are optimal if there is no strategy left with which they
can optimize their play. There is a value found if con-
vergence in the probabilities and the game value occurs.
If the probabilities do not converge to a certain value,
then there the fictitious play property of the game is not
usable for finding the equilibrium strategies. This possi-
bility also has to be taken into account, since if there is
a cycle pattern in the fictitious play process than there
is no convergence to a specific point[4].

4 Experiments
In this section the experiments for testing the different
algorithms are discussed. The first experiment tests the
correctness of the value calculated by the algorithm for
one restricted player. The next experiment tests the re-
lation between the probability in the different states and
the restriction of the player in the case of one restricted
player. At the end there is an experiment for testing the
algorithm for two restricted players.

4.1 Experiment 1: Correctness of value
calculation

To test the correctness of the value the algorithm re-
turns, for different game matrix the value returned by
the algorithm is compared with formula 1 if player 1 is
the restricted player. Also to test the working if player
2 is the restricted player, the value is compared with the
next formula

g2 =
v · (a− b− c+ d)r − b · (a− c)r − c · (d− b)r

(a− b− c+ d)r − (a− c)r − (d− b)r
(5)
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game r player1 g1 player2 g2

M =

(
4 0
1 2

)
5 1.4038 1.4038 1.7432 1.7432

10 1.5519 1.5519 1.6098 1.6098

25 1.5985 1.5985 1.6000 1.6000

50 1.6000 1.6000 1.6000 1.6000

Table 1: Values for different restrictions

In this formula the r stands for the restriction of player 2,
since player 1 is in that case the unrestricted player. For
the correctness of the algorithm, the test is also done for
different restrictions to see if the restriction has influence
on the value of the game.

From table 1 it follows that there linear programming
algorithm estimates the value quite well. During the test
there was no game matrix with a big difference between
the value calculated by the algorithm and formulas 1 and
5 for player 1 and player 2, respectively.

4.2 Experiment 2: Relation between
probability and restriction

For this experiment is player 1 is always the restricted
player, but the value of the restriction is different all the
time. The following game matrix is used:

M =
(

4 0
1 2

)
For every restriction the q-values in the different states
for player 2 are calculated and plotted in a graph, to
see how theses values behave and if there is a relation
between the restriction and the consecutive times player
1 has played the same action.

The experiment did run the test for different values
of r, but plotted for the main aim of the experiment are
only the graphs of the values r = 5, r = 10, r = 25 and
r = 50 in figure 1. In the figure the red line corresponds
to the value of q in the states (0, i) and the blue line is
the value in the states (i, 0) with i = 1, 2, ..., r. The main
result that is noticed in this figure is that the bigger the
value of r, the longer it takes before the probabilities
in the states differ from their standard value. For the
matrix game the standard value for q equals 0.6, because
this is the value q gets if the player 1 plays ( 1

2 ,
1
2 ).

Another noticeable fact is that for the states (0, i) it
takes a lot longer before they are going away from the
standard probability. There against stands that that the
probabilities in the states (i, 0) don’t change that fast
from each other. In the graphs it also looks like, the
more flexible the restriction for player 1 the steeper the
line in the graph goes down.

Figure 1: Values for q with different values of r
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4.3 Experiment 3: Algorithm for two
restricted players

The focus in the fictitious play algorithm for two re-
stricted players lies on showing that the probabilities
converge to certain values. If they do not change any-
more than the equilibrium strategy is found and also the
expected average reward can be calculated. The aim of
this experiment is to show that there is convergence.

5 Discussion
From the first two experiments it follows that the lin-
ear programming algorithm gives good results in find-
ing the expected average reward of a game, but also
in finding the pure stationary best reply of the unre-
stricted player to the stationary strategy of the restricted
player. Although there were some strange results, like
why the probability in the states (0, i) stays longer at the
standard probability before moving away. Before seeing
the experiments the expection was that the probabili-
ties move away from the standard in sort of the same
way, but as figure 1 show that is all but the case. The
way by which the probability between the last number of
states changes is the kind of the same for all the restric-
tions. For all the restrictions the bigger the restriction
the longer the probability in a state stays near the stan-
dard probability.

6 Conclusion
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