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Abstract

In this thesis a new game model, Stochastic Games with Function Dependent Stage
Payoffs, is developed by combining Stochastic Games and Games with Frequency
Dependent Stage Payoffs so as to incorporate the effects of externalities arising from
players’ choices. To illustrate how the model can be applied to existing games, three
game models namely the Prisoners’ Dilemma, Small Fish War and the Battle of the
Sexes are used. For each of the examples three items are investigated using the
limiting average rewards criteria: 1. effect of memory length on average payoffs, 2.
threat strategies and threat points for each game, 3. sets of feasible payoffs. The
investigations will be based on stationary and pure cyclic strategies.

Results show that average payoffs for the Battle of the Sexes generally increase
with increasing memory length whilst for the Prisoners’ Dilemma and Small Fish War
there is no apparent clear pattern. Threat strategies for players in the Battle of the
Sexes game involved playing the preferred action with very high probabilities in both
states. For Prisoners’ Dilemma and Small Fish War games threat strategies involved
choosing action 1, “defecting” and fishing “without” respectively, with probability 1
for all memory lengths. Feasible payoffs regions for Small Fish War and Prisoners’
Dilemma games are similar to each other for all memory lengths and strategy types.
For the Battle of the Sexes game the feasible payoffs region change for both cyclic and
stationary strategies with increasing memory length. In the Prisoners’ Dilemma game
the best scenario is for the players to purely use action “cooperate”. For the Small
Fish War the best compromise is for both players to fish “with restraint”. The best
payoffs for the Battle of the Sexes game are obtained when the two players coordinate
to attend the two events equally using synchronised cyclic strategies.
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1. Introduction

1.1 Background

Game theory provides different models by which real life situations in which com-
peting agents make decisions repeatedly over time are replicated and analysed. The
common objective of agents is primarily to maximise their average rewards associ-
ated with the decisions they make at each decision moment. One such model is the
ordinary repeated game model, which uses a single n-matrix game to represent the
rewards at each decision moment. The key assumption made in this model is that the
stage payoffs remain fixed for the entirety of the game. However, empirical evidence
has shown that due to externalities generated by players’ choices, the payoffs fluctu-
ate between stages [6, 5, 10]. Consequently, Joosten et. al.[6] proposed a new class of
games -Games with Frequency-dependent stage payoffs- to incorporate fluctuations
arising from such externalities. Frequency-dependent (FD) games are infinitely re-
peated non-cooperative games in which the stage payoffs are dependent on the choices
of the players at that stage, as well as on the relative frequencies with which all actions
were chosen by the players at previous stages.

The novelty of this approach is that the stage payoffs are determined by the relative
frequencies of past actions and the action chosen at the current stage. To justify their
approach, the authors argued that players’ choices at each stage generate externalities
that accumulate as the play continues and these externalities have some effect on the
expected payoffs of future stages. For example, if we consider the littering game, the
more the players choose to litter, the more the overall payoffs decrease because of
environment degradation. The same can be said if one considers the small fish War
game model, if players choose to fish “without restraint” continuously then future
harvests will decrease due to dwindling fish population[3, 7, 1, 8].

Whilst this approach was an improvement towards a more realistic model, inherent
weaknesses in the model still exist. Amongst other things, FD games do not capture
the combined sharp effects of externalities and other natural phenomena which are
stochastic in nature. The approach in FD-games assumes rather smooth and slow
fluctuations of payoffs resulting only from the accumulative effects of externalities
arising from the players’ choices. This is not in agreement with observed patterns
in real life settings [9, 7] . For instance, if one considers the exploitation of common
pool problems,“one striking observation in real life renewable resource systems is
that the resource can be brought down in numbers (or quantity) rather quickly by over
exploitation” [7]. The same observation was made by Myers et. al. who observed that
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the salmon fish population dynamics of British Columbia and Alaska river systems
follow a stochastic nature with recurrent high and low peaks [2, 9]. The implication
being “highly variable harvests with one year’s harvest being a hundred times larger
–or smaller- than the previous year’s”[2]. Furthermore the FD method of adjusting
the stage payoffs is simplistic and problematic in that it fails to consider the sequence
in which the actions are chosen. For instance fishing “without restraint” n consecutive
times clearly has more drastic implications than if the agents fish “without restraint”
same number of times whilst fishing “with” in between over a specified time period. As
such an alternative would be to consider stochastic games which by design represent
the levels of expected rewards by finite bi-matrix games.

The original stochastic games as proposed by Lloyd Shapley in the early 1950’s
[11] require some adjustments to capture the effect of players’ action externalities on
the expected payoffs. Instead of adjusting the payoffs in each state, Joosten and Mei-
jboom [7] chose to reflect the combined effects of players’ choices and natural factors
in the transition probabilities between states. The project considers three variants of
randomness using different mechanisms to set and update transition probabilities be-
tween states. The first version involves transition probabilities which do not depend
on the action played by agents but the state. This approach captures the influence of
natural phenomenon and other random events not involving the players actions on the
stage payoffs. In addition to capturing natural phenomenon like in the first variant,
the second variant also includes the agents’ actions when modelling the transition
probabilities. The third variant uses game history, current state and action pairs cho-
sen when modelling and adjusting the transition probabilities. Whilst the stochastic
games with endogenous transitions capture the high and low peaks observed in real
life situations as well as reflecting the combined effect of the players’ choices and nat-
ural phenomena in the transition probabilities, the model fails to capture the local
oscillatory behaviour of expected payoffs in each state. It assumes that rewards are
constant in each state which is rather unlikely, as argued by Joosten et. al [6] and
implied by Cipra[2].

Given the importance of Game Theory in informing decision making as argued by
McKevely[2], it remains important to improve existing models towards being more
realistic ones. McKevey argues that“whilst the analysis from Game Theory offers a
simplified version of the real world, the story it tells when treated with caution can
be instructive and compelling”[2]. This will inform and educate policymakers dealing
with similar situations to come up with sound and effective policies. Whilst there are
several ways of improving proposed solutions, one way is to combine related models
and borrowing the strengths from each model to come up with more realistic models.
This project proposes to combine the two approaches, stochastic games with endoge-
nous transitions and FD-games, thereby creating a new game model called Stochastic
Games with function dependent payoffs. The project will however consider only the
case of semi-endogenous transitions. This is the second variant of the proposed game
setting in the stochastic games with endogenous transitions paper [7]. This is done so
as to strike a balance between the real life systems and computational complexities
arising from notation and representations. The new game model will be applied to
three game types namely The Prisoners’ Dilemma, Battle of the Sexes and Small Fish
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War.

1.2 Study Objectives

1. Develop a game model for stochastic games with function dependent stage pay-
offs for two players and two states.

2. Apply the model to Prisoners’ Dilemma, Battle of the Sexes and Small Fish
War game models.

3. Establish feasible rewards for each of the three games using the limiting average
criteria.

4. Determine equilibria for the three game classes -Prisoners’ Dilemma,Battle of
the Sexes, Small Fish War- under the model developed in this project.

1.3 Significance of Study

This work presents a novel approach for modelling scenarios where agents involved
have to make decisions repeatedly and the rewards associated with such decisions are
stochastic in nature. The model proposed in this project captures the strengths of
two previously proposed models, stochastic games with semi-endogenous transitions
and games with frequency dependent payoff. As such it is an improvement towards
the understanding of the modelled real life scenarios. This approach contributes new
knowledge to the existing knowledge base in game theory and provides an alternative
approach for future researchers investigating game models considered in this project.
More importantly, amongst other several applications, the model can be used to
inform decision and policy making for related real life situations. Using models from
the field with varying approaches, game theorists have arrived at many informative
conclusions and recommendations for decision makers [2, 1]. Additionally, research
done in the filed has proved to be of great importance in understanding policies used in
the real world modelled situations. For instance McKevely speaks of the importance
of the game theory models when drafting agreements between competing parties in
situations like the fish War between U.S and Canada concerning the Pacific salmon[2].

1.4 Methodology

The methodology of the project is divided into two phases, the first phase employs
literature review to develop the game model. The second phase is based on simula-
tions, which aim at assessing and testing the model. The simulations will be done in
MATLAB R© to establish sets of feasible rewards, threat points and threat strategies
using the limiting average payoff criteria.
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1.5 Organization of Study

In Chapter 2 the model under consideration is developed by combining two previously
developed models, Stochastic games and FD-games. Chapter 3 deals with the con-
cept of strategies and explains the criteria which will be used to analyse the model.
Illustrations of the model on three game classes namely Prisoners’ Dilemma, Small
Fish War and the Battle of the Sexes are given in Chapter 4. In Chapter 5 the results
obtained during the code development, code testing and simulations are presented to-
gether with an analysis and formalisations of the results. The last chapter concludes
and makes recommendations on future research based on the findings of the paper.
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2. The Model

2.1 Introduction

In this chapter a new game model in which the stage payoffs are adjusted using some
mechanism related to the players choices at each stage is developed. The model is a
combination of two earlier models FD-games and Stochastic games. In section 2.2 we
define the model and in section 2.3 we explain the factors which influence the payoffs
adjustment policies in the three game models investigated in this project.

2.2 The Model

The model under consideration is a 2-state stochastic game with a state space S :=
{1, 2} played by two players N = {1, 2}. As such each state s is associated with a
reward bi-matrix Ms where each entry (i, j) is defined as:

Ms(t, i, j) = R′
s(i, j) + cs ∗ f(ρt−1, ̺t−1)

Here R′
ij = (r1s(i, j), r

2

s(i, j)) are the payoffs quantities which are used in a normal
stochastic game. The scalar cs is an adjustment coefficient associated with state s.
The third component,
f(ρt, ̺t), is some function which is used to adjust the stage payoffs using variables ρt
and ̺t. At stage t, the relative frequency vector ρt = (ρ1t , ρ

2

t ) captures the relative
frequency by which player k has played action 1 up to stage t. The matrices ̺st stores
relative frequencies of action pairs {i, j} in state s for the t stages. The relative
frequency vector ,ρit, will be used for the Prisoners’ Dilemma and Small Fish War
games whilst the action pair relative frequencies will be used to adjust the payoffs in
the Battle of the Sexes game.

In addition to the payoffs matrices, there are associated probability matrices, Ps

for s ∈ {1, 2}, with Ps(i, j) being the transition probability distribution over the
2 states if action pair {i, j} is played in state s. Since we only consider two states
games, the transition probability matrices are reduced to have only one entry, ps(i, j),
showing the probability of the game moving to state 1. At each stage, both players
influence the course of the game system by the actions they choose from the available
finite set of actions with the players guided by their play rules called strategies. In
this project we assume that the number of actions in all states is constant and fixed
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at two. Then A1(s) = {1, 2} and A2(s) = {1, 2} denote the actions sets for state
s ∈ {1, 2} for players 1 and 2 respectively.

If at stage t the game is in state s and player 1 chooses action i and player 2
chooses action j (this is done simultaneously and independently of one another with
the full knowledge of the other player’s past play), 2 things happen consecutively:

1. Player one earns the immediate payoff M1

s (i, j) and player 2 earns immediate
payoff M2

s (i, j).

Ms(t) =





R′
s(1, 1) + cs ∗ f(ρt−1, ̺t−1) R′

s(1, 2) + cs ∗ f(ρt−1, ̺t−1)

R′
s(2, 1) + cs ∗ f(ρt−1, ̺t−1) R′

s(2, 2) + cs ∗ f(ρt−1, ̺t−1)





2. The state at the next stage is determined in a stochastic manner using entry
{i, j} in Ps i.e the game will transit to state 1 with probability ps(i, j) and to
state 2 with probability 1− ps(i, j).

Ps =





ps(1, 1) ps(1, 2)

ps(2, 1) ps(2, 2)





It is assumed that the players wish to maximise their average rewards and that they
have complete information with regards to the current state of the game and expected
payoffs for the current stage. It is also assumed that both the players have perfect
information of the game’s history. The strategies for player 1 and 2 are denoted by π

and σ respectively.

2.3 Stage Payoffs Adjustment

The mechanism of payoff adjustment forms the basis of this game model. An entry
point into developing a sound adjustment policy should observe that in addition to
influencing the state in which the game transits to in the next stage, the choices of
the players also generate externalities resulting in fluctuations in the payoffs of the
next stages[2, 6]. As such, a way to adjust the payoffs would be to consider the
relative frequencies of actions or action pairs for both players depending on the type
of the game under consideration.Whilst the adjustment policy will differ from game
to game depending on how the rewards are related to the frequencies, the policies
should seek to reward ‘good’ behavior and punish ‘bad’ behavior. Other game types
require additional parameters for effective adjustment policies, for instance the Battle
of the Sexes game model is sensitive to time. Examples of how adjustment policies
can be developed for games are illustrated in chapter 4.

One other aspect related to the payoff adjustment is how much information from
the past play is used to adjust the payoffs. This approach is premised on the as-
sumption that when modelling natural phenomena, e.g. fish population dynamics
and weather, a limited history span can fully model the current state of the observed
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phenomena. For example Myers et. al.[9] found out that the salmon fish of the British
Columbia can be modelled using four year cycles, i.e. in order to model the current
population information from the previous four decision moments is adequate. Thus
there is need to investigate if either the entire memory or only a part is necessary to
fully replicate the real life systems dynamics. In this thesis both two approaches will
be investigated, when using only part of the history to update the payoffs the history
span will ne referred to as ‘memory length’.

Several issues are problematic with this approach of updating the payoffs, the
most obvious being the failure of the adjustment policy to take into consideration the
order in which the actions were chosen. For example if we consider the Small Fish
War game, continuously choosing to fish “without restraint” will not only deplete
the fish population but will also most likely lead to the complete destruction of the
fishery. The same applies to the Battle of the Sexes game, the continuous appear-
ance of partners at different venues will most likely lead towards a collapse of the
relationship. There are several ways which complications arising from this weakness
can be addressed. One way used by Joosten et. al. [6] is to also adjust the transition
probabilities using the relative frequencies by which actions are chosen. Alternatively
one can also include an extra absorbing state which signals the collapse of the game
system. In this project we will investigate the model without addressing this issue.

CHAPTER 2. THE MODEL 7



3. Strategies

3.1 Introduction

Stochastic games, like repeated games are not one shot games where the players
choose an action once; instead this is a game where the players involved choose
actions repeatedly. Naturally, players approach the game with a plan to fulfill some
defined objective. Such plans are known as strategies and are a key concept in game
theory. In addition, strategies allow the analysis of the game in terms of expected
payoffs. This chapter explains the concept of strategies in general and explains in
depth strategies employed in this research. An average reward criteria which will be
used to analyse the game is explained under section 3.2. Threat strategies, which are
used by players to ensure that their opponents are cooperating, are also introduced
under section 3.3.

3.2 Strategies

In Filar and Vrieze[4] a player’s strategy is a specification of a probability distribution,
at each stage and state, over the available actions, conditional on the history of the
play. A history of the game shows the states which the game visited and the actions
which the players chose in the previous stages:

ht = (s0, a
1

0
, a2

0
, s1, a

1

1
, a2

1
, ..., st)

The triplet (st, a
1

t , a
2

t ) captures the state, the action played by player 1 and the action
played by player 2 at the decision moment t respectively.

Conventionally, strategies for player 1 are denoted by π and strategies for player 2
by σ. Strategies can be classified into different categories basing on how the strategies
are constructed. Filar and Vrieze[4] give three classes of strategies, namely behav-
ior strategies, Markov strategies and stationary strategies. Behavior strategies are
strategies which specify a randomization over the available actions as a function of
the history. Behavior strategies can be represented by a sequence π = (f0, f1, f3, ...)
were for each t = 0, 1, 2, ..., the decision rule ft is a randomization over the actions as
a function of the history.

For Markov strategies the decision rule ft for every decision moment t = {0, 1, 2, 3..}
is determined by the current state st and the moment t. A stationary strategy is a
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Markov strategy where for every t the decision rule ft is completely determined by
the current state. As such a stationary strategy for player k is be denoted by:

πk = (f, f, f, ...)

where f = (f(1), f(2)) specifies for each state s ∈ {1, 2} a probability vector f(s) over
the action set in that state Ai(s). In other words a strategy is stationary if for each
state it specifies a fixed probability vector for each state whenever that state is being
visited. A stationary strategy is called pure if prescribes for every state and every
possible history one action to be played with probability 1. Stationary Strategies that
are not pure are called mixed strategies. The Markov strategies used in this project
are pure cyclic and stationary strategies (both pure and mixed). Cyclic strategies are
strategies in which a player plays a repeated sequence of actions. Both the stationary
and cyclic strategies used in this thesis are state specific.

At each stage and according to the strategy pair (π, σ) each player receives a
payoff. If we use Rk

t (π, σ) to represent the expected stage payoff at stage t for player
k given by strategy pair (π, σ), then (π, σ) determines a stochastic process on the
stage payoffs. If the game is played for an infinite number of stages the limiting
average reward for player k is given by:

γk(π, σ) = Eπσ(lim inf
T→∞

1

T

T
∑

t=1

Rk
t ) (3.1)

We will assume that the goal of the players is to maximise their limiting average
rewards. For some strategy pairs, (π′, σ′), no player has an incentive to deviate
from his or her chosen strategy after considering an opponent’s choice as this will
not improve the players expected average payoffs. The strategy pair (π′, σ′) is an
equilibrium, i.e.:

γ1(π′, σ′) ≥ γ1(π, σ′)∀π (3.2)

γ2(π′, σ′) ≥ γ2(π′, σ)∀σ (3.3)

In other words, an individual will not receive an incremental benefit if he deviates
from his strategy assuming that the other player does not change their strategy.

3.3 Threat Strategies

Players often need to incorporate mechanisms of punishing the other player in case of
deviation from initial strategies. A way to come up with such strategies is to consider
a situation were a player is trying to maximise his reward whilst his opponent is
minimising that reward. For the minimising player there exist a strategy, π⋆ (for
player 1) or σ⋆ ( for player 2), such that the player who is trying to maximise (the
one being punished) will not get a payoff above a certain value regardless of the
strategy he employs. These strategies, π⋆ and σ⋆, are called retaliation or threat
strategies and the associated payoffs (v1, v2) is called the threat or retaliation point.
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γ1(π, σ⋆) ≤ v1∀π (3.4)

γ2(π⋆, σ) ≥ v2∀σ (3.5)

Thus if either of the two players deviate from an equilibrium the opponent can
always invoke the threat strategy thereby ensuring that the player will not get any
reward above the threat point. This in essence forces players to stick to their strategy
allowing all feasible rewards above the threat point to be obtained as equilibrium
rewards.
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4. Application Examples

4.1 Introduction

The model proposed in this thesis is applicable to many situations modelled by or-
dinary repeated and stochastic games. Notable examples are the Small Fish War,
Prisoners’ Dilemma and the Battle of the Sexes game models. In each type of game,
the two states are defined in such a way that the level of rewards for action pairs
in state 1 are higher when compared to corresponding action pairs in state 2. The
following subsections explain how the proposed game settings can be interpreted and
adapted using the following type of games: Small Fish War, Battle of the Sexes and
Prisoners’ Dilemma. The final section explains under what circumstances the model
can be applied to other game models.

4.2 Small Fish War

A Small Fish War game replicates a situation where two agents own fishing rights
to a fishery. Under the model considered in this project, the fish population at any
stage is either high (State 1) or low (State 2). At each stage the agents have two
options, either to fish“without restraint” (Action 1) or ”with restraint” (Action 2).
Action “with restraint” refers to the action for which the agents employ resource
friendly exploiting methods which maintains the viability of the resource by allowing
the resource to recover e.g. limiting the quantities harvested per each fishing cycle or
using sparse nets. The action ”without restraint” is when the agents are maximising
their immediate earnings without paying concern to the fish population e.g using fine
mazed fishing nets and not limiting quantities harvested. Clearly the action ”without
restraint” is dominant and drives the fish population downwards whereas the action
”with restraint” allows the resource to recover.

Action 1

Action 2

Action 1 Action 2




11

2
, 11

2
6, 7

2

7

2
, 6 4, 4





State 1
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Action 1

Action 2

Action 1 Action 2
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4
, 11

4
3, 7

4

7

4
, 3 2, 2





State 2

The above setup assumes that the payoffs in each state are fixed thus the agents
are assured of a certain quantity whenever they use the same action in some state.
However empirical evidence [6] has shown that this is not the case. The fish population
as shown by the empirical study conducted by Myers et. al.[9] is not constant but
rather dynamic. Thus besides the huge jumps between the highs and lows (states) we
should also introduce mechanisms to replicate the fluctuations within states. One way
is to observe that fishing “without restraint” results in nondiscriminatory catching of
fish including those of the reproductive age which are supposed to replenish the fish
population [7]. It follows that fish population is negatively related to the continuous
use of action 1 and thus we can choose to lower the stage payoffs by some factor
multiplied by the relative frequencies by which players have used action “without
restraint”. Thus if at stage t we use the relative frequency vector ρkt to represent the
relative frequencies for which player k has played action 1 then the stage payoffs for
stage t+ 1 are denoted by:

Ms(t+ 1) =





R′
1,1 − cs ∗ (ρ

1

t + ρ2t ) R′
1,2 − cs ∗ (ρ

1

t + ρ2t )

R′
2,1 − cs ∗ (ρ

1

t + ρ2t ) R′
2,2 − cs ∗ (ρ

1

t + ρ2t )





Restrictions on the payoffs can be imposed after observing that action 1 dominates
action 2 and that by design the corresponding payoffs in state 2 are less than those
in state 1. If rks (i, j) is the payoff for player k when player 1 is playing action i and
player 2 is playing action j in state s then:

r1s(1, 1) ≥ r1s(2, 1) , r
1

s(1, 2) ≥ r1s(2, 2) and r1
1
(i, j) ≥ r1

2
(i, j) (4.1)

r2s(1, 1) ≥ r2s(1, 2) , r
2

s(2, 1) ≥ r2s(2, 2) and r2
1
(i, j) ≥ r2

2
(i, j) (4.2)

To have a meaningful model, we should also impose restrictions on the transition
probabilities considering the implications of each action pair within states as argued
for by Joosten et. al. [7]. We further assume symmetry on the players actions impact
on the resource and observe that both players fishing “without restraint” is worse
than if one player uses this action. Furthermore one player using action 1 (fishing
“without restraint”) is clearly worse than if none of the player uses this action in any
of the state. Additionally, it is logical to make the assumption that the system is more
vulnerable when the fish population is low. Consequently corresponding transition
probabilities in state 2 are at most equal to those in state 1. Let ps(i, j) be the
probability of the game moving to state 1 given state s and action pair {i, j}, then:

0 < ps(1, 1) ≤ ps(1, 2) = ps(2, 1) ≤ ps(2, 2) < 1 ∀ s ∈ {1, 2} (4.3)

p1(i, j) ≥ p2(i, j) ∀ i, j (4.4)
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The following example is an instance of a Small Fish War game modeled under the
model developed in this project and it will also be used later in the analysis of the
model in following chapters.

Example SFW1: Two agents hold fishing rights to a fishery and they have an option
of fishing “with restraint” (action 1) or “without restraint” (action 2). Additionally
the fish population is either high -State 1- or low -State 2-. Using the above proposed
payoff adjustment regime with adjustments coefficient matrix c=[1 0.5], the stage
payoffs for stage t+ 1 are captured as follows:

Player 1 =





5.50− 1.0 ∗ (ρ1t + ρ2t ) 6.00− 1.0 ∗ (ρ1t + ρ2t )

3.50− 1.0 ∗ (ρ1t + ρ2t ) 4.00− 1.0 ∗ (ρ1t + ρ2t )





State 1

= Player 2⊤

Player 1 =





2.75− 0.5 ∗ (ρ1t + ρ2t ) 3.00− 0.5 ∗ (ρ1t + ρ2t )

1.75− 0.5 ∗ (ρ1t + ρ2t ) 2.00− 0.5 ∗ (ρ1t + ρ2t )





State 2

= Player 2⊤

The coefficients c1 and c2 can be set arbitrarily with c1 > c2, we chose c1 = 2 ∗ c2
to get all payoffs in state 1 twice as big as in state 2. This maybe intuitionally be
justified that the lesser the population the less the players can catch hence the small
the impact of their actions assuming all other variables remaining unchanged. The
transition probabilities of such a game can also be set arbitrarily as long they obey
the restrictions specified above. Whilst there are many possible valid combinations
of the values, we use the following example to demonstrate one such instant of the
combinations. Good combinations should however replicate the real dynamics of the
system and this is not in the scope of the thesis. Simulations will also be used to
investigate if the values of transition probabilities have any bearing on the results
obtained.
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State 2

4.3 Battle of the Sexes

The classical Battle of the Sexes is a two-player coordination game which can be fully
described by the following scenario. Suppose a couple that agree to meet in evening,
but cannot remember if they are to go to the movie or a football match. The wife
prefers going to a movie more than going to watch a football match. The husband on
the other hand prefers watching football more than going to watch a movie. However
the best situation for both partners is to go to the same event together. Then the
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situation can be described by the following bi-matrix game where the wife chooses
the row and the husband chooses the column:

Movie
Football

Movie Football
[

7, 5 4, 4
2, 2 5, 7

]

A two state stochastic Battle of the Sexes game arises from the repeated single state
game if we take into consideration the mood in the relationship at each decision
moment. We use two states to capture the mood level in the relationship with state
1 being the situation when the mood is high and state 2 representing a low mood.
Rewards for state 2 are obtained by multiplying those of state 1 by a fraction. A
fraction of 0.5 is the one used in the project unless otherwise stated.

It is important to note that the desirable behavior is defined by action pairs, not
individual actions, i.e. it will be desirable for the players to attend the same event. We
can impose restrictions on the transition probabilities by observing that appearing
at the same event is more desirable and drives the system towards the high state
whereas appearing at different events does the opposite. If we assume symmetry, i.e.
both players derive the same rewards in the preferred events and vice versa then the
following inequalities hold for the transition probabilities:

1 > ps(1, 1) = ps(2, 2) ≥ ps(1, 2) = ps(2, 1) > 0 ∀ s ∈ {1, 2} (4.5)

p1(i, j) ≥ p2(i, j) ∀ i, j (4.6)

With regards to adjusting the payoffs we can note the following about the players’
action pairs in relation to the expected payoffs:

• Attending events together for the couple is the best scenario, however this should
be balanced between the two events. Thus we can choose to look at the fre-
quencies by which the partners attend the same event together and adjust by
reducing over attendance of one event. The reduction takes care of possible
disgruntlements from one partner whose preferred event is under-attended:

et =
2

∑

s=1

| ̺s
1,1(t)− ̺s

2,2(t) | (4.7)

• Attending different events (sad moments) leads to a reduction in payoffs and
the reduction is inversely proportional to time, i.e attending events during the
early stage of the game is more detrimental than if the same happens during
the later stages of the game. As such the following quantity will be deducted
from the payoffs for stage t+ 1:

ft =
2

∑

s=1

̺s
1,2(t) + ̺s

2,1(t)

min{t,m}
(4.8)
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• Attending same events (happy moments) has an incremental effect on future
stage payoffs. Thus with time the payoffs for both players when attending
individually preferred events alone will increase as a function of previous atten-
dance of events together. The following term will be added to rewards in entries
{i, j} = {1, 2} in both states:

gt =
2

∑

s=1

̺s
1,1(t) + ̺s

2,2(t) (4.9)

The three adjustment quantities are combined giving the following structure quanti-
ties which are used to update the relevant entries in the reward matrices:

φi,j(t) =

{

et + ft − gt {i, j} = {1, 2}

et + ft otherwise

If we incorporate quantity φi,j(t) for stage payoffs in state s ∈ {1, 2}, then the payoffs
at stage t+ 1 are:

Ms(t+ 1) =





R′
s(1, 1)− cs ∗ φi,j(t) R′

s(1, 2)− cs ∗ φi,j(t)

R′
s(2, 1)− cs ∗ φi,j(t) R′

s(2, 2)− cs ∗ φi,j(t)





The above setup is demonstrated in the following example which will also be used in
the following chapters.

Example BS1:A couple has to decide where to go on a date with the preference
from the two being to spend the evening together. However the man prefers watching
football whilst the woman prefers going to watch a movie. If the payoff adjustment
is considered using c=[1 0.5] the payoffs at stage t+ 1 are:

M1

1
(t+ 1) =





7.0− 1.0 ∗ φ1,1(t) 4.0− 1.0 ∗ φ1,2(t)

2.0− 1.0 ∗ φ2,1(t) 5.0− 1.0 ∗ φ2,2(t)





M2

1
(t+ 1) =





5.0− 1.0 ∗ φ1,1(t) 4.0− 1.0 ∗ φ1,2(t)

2.0− 1.0 ∗ φ2,1(t) 7.0− 1.0 ∗ φ2,2(t)





M1

2
(t+ 1) =





3.5− 0.5 ∗ φ1,1(t) 2.0− 0.5 ∗ φ1,2(t)

1.0− 0.5 ∗ φ2,1(t) 2.5− 0.5 ∗ φ2,2(t)





M2

2
(t+ 1) =





2.5− 0.5 ∗ φ1,1(t) 2.0− 0.5 ∗ φ1,2(t)

1.0− 0.5 ∗ φ2,1(t) 3.5− 0.5 ∗ φ2,2(t)
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The accompanying transition probabilities which are arbitrarily set to obey the
above proposed restrictions are as follows:
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0.4 0.8





P1





0.6 0.2

0.2 0.6





P2

4.4 Prisoners’ Dilemma

In the original one state repeated Prisoners’ Dilemma, two suspects have committed
a crime together and are interrogated separately. Each suspect has two choices,
cooperating with his partner and keeping quite (action 2) or choosing to defect and
implicate his partner (action 1). If both players cooperate each suspect is convicted
for a minor crime. Defecting by both players also implies a reduced sentence to both
suspects which is however bigger than the sentence when they both cooperate. If
one of the suspects defects while the other one cooperates then the one who defected
serves a lesser sentence than the one who cooperated who in turns serves a larger
sentence. The following payoff matrix reflects the given situation:

Defect
Cooperate

Defect Cooperate
[

4, 4 9, 2
2, 9 6, 6

]

Using the rationale which justifies the repeated game i.e. the continued association
of the suspects in future crimes, one critical observation is made with regards to
the trust between the two. Cooperating reinforces the trust between the two and
this leads to the duo committing more serious crimes together. On the contrary if
both defect or if either of the suspects defect, the trust between the two is negatively
affected and the chance for the pair committing a big crime together is less. This can
be interpreted as a stochastic game with two states. State 1 is a situation where the
trust level between the two is high enough for them to commit big crimes hence the
higher rewards as compared to state 2. In state 2 trust level is low and the suspects
have committed small crimes hence the small payoffs as compared to state 1. The
stage payoffs are adjusted using relative frequencies to capture the shocks which are
brought about by bad behavior, i.e. defecting by the players. Coefficients cs will be
used to differentiate the quantities deducted in state 1 and 2 the rationale being that
the system responds differently when in each state.

Ms(t+ 1) =





R′
s(1, 1) + cs ∗ f(ρ

1

t−1
, ρ2t−1

) R′
s(1, 2) + cs ∗ f(ρ

1

t−1
, ρ2t−1

)

R′
s(2, 1) + cs ∗ f(ρ

1

t−1
, ρ2t−1

) R′
s(2, 2) + cs ∗ f(ρ

1

t−1
, ρ2t−1

)





In order to fully describe the Prisoners’ Dilemma as modelled under the stochastic
game with frequency dependent payoffs model, a mechanism of setting up the tran-
sition probability needs to be set up. As in the Small Fish War above, assuming
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symmetry, both players cooperating means thats the game is more likely in state 1
in the next stage as the trust levels are kept high. On the contrary, defecting drives
the game system towards state 2 and this is worse when it is done by both players.
It also follows that the system is more vulnerable when in state 2, consequently the
restrictions developed for the transition probability for the small fish also holds for
this game.

Example PD1:Two suspects who are jointly charged with a crime are being interro-
gated by the police. Both have a chance of either to defecting, i.e confessing (Action
1) or cooperating, i.e. remaining silent (Action 2). Taking into account the payoff
adjustment for c=[1 0.5], the stage payoffs for stage t+ 1 are:

Player 1 =





4.0− 1.0 ∗ (ρ1t + ρ2t ) 9.0− 1.0 ∗ (ρ1t + ρ2t )

2.0− 1.0 ∗ (ρ1t + ρ2t ) 6.0− 1.0 ∗ (ρ1t + ρ2t )





State 1

= Player 2⊤

Player 1 =





2.0− 0.5 ∗ (ρ1t + ρ2t ) 4.5− 0.5 ∗ (ρ1
1
+ ρ2t )

1.0− 0.5 ∗ (ρ1t + ρ2t ) 3.0− 0.5 ∗ (ρ1
1
+ ρ2t )





State 2

= Player 2⊤

The payoffs for state 2 can be obtained by multiplying the state 1 payoff matrix by a
fraction. In this project we consider a fraction of 0.5. The accompanying transition
probabilities will be as follows:
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State 1





0.2 0.4

0.4 0.6





State 2

It should be noted that the structure of the rewards adjustments and the transition
probabilities are almost identical to the Small Fish War since the game systems dy-
namics are essentially the same.

The above examples have demonstrated how the model introduced in chapter 2 can
be used in many problems which have been investigated before. It is important at
this juncture to mention that whilst the model can be applied to several other related
games, this project will only investigate the above three types of games. Attempts
to model other games under this model should first address how different states may
arise. Secondly it is important to also establish externalities generated by the players’
actions and how they are related to payoffs.
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5. Simulations: Results and

Analysis

5.1 Introduction

In this chapter design descriptions of the functions used to fulfill the project objectives
are given. This will be done in section 5.2. Section 5.3 explains the tests done on the
code and issues arising. The results obtained during the simulations are presented in
three separate sections. Section 5.4 investigates the effect of memory length on stage
payoffs dynamics as well as average payoffs. Section 5.5 deals with threat strategies
and threat points, investigating how they relate to memory length used to update the
payoffs. Section 5.6 presents the results for the structure of feasible average payoffs
areas for the three game examples used in this project.

5.2 MATLAB R© Functions

This subsection explains the design of MATLAB R© functions which were used for the
simulations of play involving stationary and cyclic strategies. Only the main files will
be explained under this section. Several other files which were used to do tasks like
plotting and results will not be included. The actual files and functions are attached
together with this report in the Appendix.

5.2.1 Payoff Adjustment

To adjust the payoffs at each stage we use the function PayoffAdjustor. As input
the function needs game type to determine the type of adjustment to be used. The
game type is given as a string: ‘PD’ for Prisoners Dilemma, ‘SFW’ for Small Fish
War and ‘BS’ for Battle of the Sexes. Additionally the function also needs the rela-
tive frequency of action 1 if the game type is Prisoners Dilemma or the Small Fish
War,which is given as a vector with 2 entries. The first (second) entry is the relative
frequency which player 1 (2) has played action 1. If the game type is Battle of the
Sexes then action pairs relative frequencies are given instead. The function also needs
the adjusting coefficients as input which is a vector with 2 entries. The first (second)
entry adjusts payoffs in state 1 (2). As output it gives four 2× 2 matrices which are
used to adjust payoff for each players reward matrices.
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5.2.2 Stationary Play

The stationary play routines which were designed for this project are capable of
handling both pure and mixed stationary strategies. There are basically two ways in
which the simulations are carried out, the first version executes a single simulation.
This is done using the function StationaryPlay, which uses a single stationary strategy
pair and calculates stage payoffs for T stages for each memory length. As stated in
section 2.3 memory length refers to the number of previous stages whose history is
used to update the payoffs. The strategy for each player is a 2 × 1 vector with the
first(second) entry being the probability of playing the first action in state 1(2). As
output it gives the two sets of stage payoffs, one for each player. For each player the
payoffs are in a nm×T matrix with nm being the number of different memory lengths
used to adjust the payoffs. In this project we will use the following memory lengths
m=[1 2 5 10 20 50 75 ∞], so in this case nm = 8. The second version, StaSimulate,
involves an exhaustive iteration through input supplied sets of strategies for each
player with the first method executed at each simulation with a strategy pair derived
from the strategy sets. The strategy sets are created by generating a row vector of
ns
k points from a given strategy range, rangesk for player k state in s. The range is

an interval between 0 and 1.

5.2.3 Cyclic Play

Play involving pure cyclic strategies have two versions similar to those of stationary
play with the difference being the structure of strategies used. The cyclic strategies
considered in this project are state specific. Consequently, the one simulation ver-
sion,CyclicPlay function, of cyclic play has as part of input two 2 × lk matrices,π
and σ, one for each player’s strategy with lk being the length of players k’s strategy.
The first(second) row specifies actions to be played if the game is in state 1(2). This
version gives as output a series of stage payoffs and average payoffs for both players.
The second version outputs two sets of average payoffs, one for each player, for the
given strategy sets. Each set of strategies is a rsi × li matrix with rsi being the number
of cyclic strategies for player i in state s. This routine is implemented in the function
CycSimulateR and requires the CyclicPlay function.

5.3 Code Testing

The first step after developing the MATLAB R© code was to test if the code was
working as expected and efficiently. With regards to producing expected results, the
testing was done by comparing and verifying results to those obtained from calcu-
lations done by hand. Based on several trials the code passed this test as it was
producing expected results. With respect to efficiency, both the one simulation func-
tions, CyclePlay and StationaryPlay, produced results well under a second. For the
multi-simulation functions, StatSimulate and CycSimulate, efficiency with regards to
time was a challenge. This is expected as both routines are based on a brute force
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Figure 5.1: T = 1300, distribution for average payoffs for strategy pair π =
[0.7 0.3]σ = [0.3 0.7].

search through the provided strategy sets.
After testing, simulations were carried out in MATLAB R© to address several issues

amongst them: investigate effect of memory length on average expected payoffs, to
establish sets of feasible average payoffs and determine threat points for each type of
game.

An important observation made during the trial simulations was that for a given
strategy pair the average payoff for each simulation varied in size with the difference
explained by different sequences of states and/or actions generated in each simulation
for the same strategy pair. This presented challenges when determining the relation-
ship between average payoffs and memory length as well as when establishing threat
points. In order to get a good approximation of the true average payoff associated
with a strategy pair very large values for the number of stages, T , are supposed to be
used to minimise the observed differences. However this comes with computational
challenges thus there was need to balance between running time and the quality of
results. Investigations were done to determine the number of stages which assured
good approximates within reasonable amount of time. Consequently 300 simulations
based on the same strategy pair for a fixed number of stages were done. The process
was repeated for 10 different values of T and the results were analysed. The average
payoffs were found to be following a normal distribution. Figure 5.1 shows the his-
togram of average payoffs for the strategy pair π = [0.7 0.3]σ = [0.3 0.7] on the Battle
of the Sexes example given in section 4.3 for T = 1300. From figure 5.2b the standard
deviations decrease with increasing the number of stages. From T = 1500 the rate
at which the standard deviation decreases sharply and the associated improvement
in estimating the true average payoff with increasing T is insignificant. Figure 5.2a
shows that the running time are linear with increasing T . Consequently, T was set
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(a) (b)

Figure 5.2: (a)computing and (b) standard deviations of average payoffs for
strategy pair π = [0.7 0.3]σ = [0.3 0.7]

at 1500 for the analysis of average payoffs and threat points. Given that even for
T = 1500 there were still variance in the average payoff associated with a strategy
pair and that the average payoffs followed a normal distribution we used the central
theorem to approximate the average payoffs using a 95% confidence interval. The
sample size for each strategy pair was set at 200.

Table 5.1: Standard deviations for different stages, Example BS1, π =
[0.7 0.3]σ = [0.3 0.7]

T T ime 1 2 5 10 20 50 75 ∞
500 85.0480 0.088795 0.092271 0.093862 0.095026 0.095996 0.097384 0.097824 0.098730
700 121.2315 0.082164 0.084406 0.086780 0.087687 0.088429 0.089213 0.089776 0.090715
900 157.8010 0.076988 0.080344 0.082076 0.082688 0.083735 0.084642 0.084870 0.085975
1100 198.7120 0.062793 0.065501 0.066664 0.067404 0.067883 0.068712 0.069250 0.069735
1300 237.6486 0.056431 0.059073 0.061209 0.062195 0.062706 0.063137 0.063686 0.064583
1500 276.5111 0.053045 0.054016 0.055989 0.056541 0.057011 0.057489 0.057715 0.057656
1700 315.3298 0.049232 0.050820 0.052694 0.053449 0.054083 0.054654 0.054709 0.055595
1900 352.8572 0.048351 0.050153 0.052162 0.053169 0.053877 0.054740 0.054874 0.055421
2100 391.9091 0.045761 0.046856 0.048169 0.048956 0.049742 0.050016 0.050160 0.051220

5.4 Results: Expected Stage and Average Payoffs

In order to investigate the effect of memory length on the stage payoff adjustments, a
sequence of 1500 actions and states generated for each strategy pair. This was done
to remove differences arising from different sequences of actions and states of each
simulation. Using this sequence, stage payoffs where then calculated for each of the
memory lengths considered in this thesis. The memory lengths used are 1, 2, 5, 10,
20, 50, 75 and ∞ . The results for each game are presented below.
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5.4.1 Battle of the Sexes

We use the example from section 4.3 to investigate the effect of the memory length
on stage payoffs and consequently average payoffs for Battle of the Sexes games. In
each simulation of 1500 stages, the payoffs obtained by each player for each memory
length was recorded. To illustrate the dynamics during each simulation , the payoffs
obtained by player 1 during the simulation are plotted in figures 5.3. Similar trends
are observed for player 2’s payoffs and more figures are found in the appendix. To
give a clear picture the plot are zoomed for only 50 stages from t = 501 to t = 550.
The strategy pair associated with the two plots is π = [0, 0], σ = [1, 1].

Figure 5.3: Player 1’s stage payoffs for π = [0, 0], σ = [1, 1]

From the plot of player 1’s stage payoffs, figure 5.3, it can be seen that for memory
length 1, the stage payoffs have a lower bound of 0 and an upper bound of 5. For
memory length of 2, fewer 0’s are obtained and there are two 6’s obtained which does
not happen for memory length 1. For other memory lengths the main difference with
memory lengths of 1 and 2, is that no 0’s are obtained and also that in some stages
payoffs larger than 6 are obtained. However the difference amongst themselves is not
clearly evident to the naked eye. A good picture of the differences is shown taking
average stage payoffs for each memory length for every strategy pair considered. The
results for a selected few strategy pairs are shown in tables 5.2 and 5.3.

From tables 5.2 and 5.3 the first pattern to notice is that players receive a constant
expected average reward regardless of the memory length when both employ pure sta-
tionary strategies that lead to the action pair {1,1} or {2,2} being chosen in all states
at all stages . As can be seen from the top subfigure in figure 5.4 the expected average
payoff based on a 95% confidence interval remains within the range 5.2486±0.082356
for player 1 when the players are using π = [1.0, 1.0], σ = [1.0, 1.0]. Player 2’s payoff
for the same strategy pair also remains fixed within the range 3.4993±0.54904 for all
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memory lengths as shown in the third row of table 5.2. This pattern is a result of the
fact that for this particular strategy pair the quantity φi,j(t) = 1 for {1,1} or {2,2}
since for all memory lengths et = 1 and ft = 0 as none of actions pairs [{1,2},{2,1}]
are chosen at any of the stages.

Any other strategy pair leads to the general trend which suggests that increasing
memory length is associated with an increase in the expected average reward for the
Battle of the Sexes game. This trend is illustrated in figure 5.4 bottom subfigure. In
this case the players are using the strategy pair π = [0, 0], σ = [1, 1] yielding average
payoffs lying in the range 0.7511±0.015564 for both players when memory length of
one is used to adjust the stage payoffs. The average payoff increases for the same
strategy pair with increasing memory length reaching a maximum within the range
of 1.4968±0.031066 when using full memory to adjust the payoffs. The updating
component dealing with sad moments explains this trend. For mixed strategies in-
creasing the memory length, m, reduces this quantity as the relative frequencies are
proportionally the same since there are based on the same strategy pair.

The same pattern is observed when the players are using cyclic strategy pairs.
Table 5.4 displays average payoffs for a selected 9 strategy pairs. Cyclic strategy
pairs in which the players use the same action for each state lead to average payoffs
that remain the same with increasing memory length. This is expected as such
strategies are equal to pure stationary strategy. Any other cyclic strategy pair yields
average payoffs which increase with increasing memory length. A special case is when
the players are using π = [1212; 1212], σ = [1212; 1212], this yields expected average
rewards of 4.3757±0.067399 for memory length 1 and 5.0748±0.077872 for memory 5
which are well below the average payoffs for other memory lengths. This is shown in
figure 5.5 subfigure 2. For even memory lengths the average payoffs are almost equal
and for odd memory lengths the average payoffs increase with increasing memory
length and it approaches the payoffs for even memory length. This is because for
even numbers both the reducing components, et = 0 and ft = 0, and the increasing
component( which is not relevant since the actions pairs being chosen are always
{1,1} and {2,2}) is always 1. On the contrary, for odd memory lengths the quantity
et decreases with increasing memory length approaching zero for bigger values of m
leading to increasing average payoffs. This is because at each updating moment the
quantity et reduces to:

et =
1

min{t,m}

This clearly decreases with increasing memory length approaching 0 for large values
of both m and t.
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Figure 5.4: Subfigure 1 the players are using strategy pair π = [1.0, 1.0], σ =
[1.0, 1.0]. For subfigure 2 the players are using π = [0.0, 0.0], σ = [1.0, 1.0].
Each line represents average payoffs obtained in a single simulation of 1500
stages. The coloured band is the 95% confidence interval of the average payoffs
associated with the strategy pair.

Figure 5.5: Subfigure 1 the players are using strategy pair π = [1212; 1212], σ =
[1212; 1212]. In the second subfigure the players are using π = [1221; 2122], σ =
[2112; 1212].Each line represents average payoffs obtained in a single simulation
of 1500 stages. The coloured band is the 95% confidence interval of the average
payoffs associated with the strategy pair.
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5.4.2 Prisoners’ Dilemma

We examined example PD1 from section 4.4 to establish the effect of the memory
length on average payoffs for a Prisoners’ Dilemma game.

In each simulation of 1500 stages, the payoffs obtained by each player for each
memory length was recorded. An example of stage payoffs obtained by each player
at each stage is illustrated for strategy pair π = [0.8, 0.1], σ = [1.0, 1.0] in figure 5.6.
The figure zooms out a small portion of the stages and shows that the payoffs changes
with changing memory length. For memory length 1, player one receives a reward of
3 in several stages which rarely happen for memory length of 2 and does not happen
for the other memory lengths. The patterns are also clearly different despite the fact
that the payoff sequences are based on the same states and action sequences.

Figure 5.6: Player 1’s stage payoffs for π = [0.8, 0.1], σ = [1.0, 1.0]

A summary of the average stage payoffs for a selected nine stationary strategy pairs
is shown in table 5.5 for player 1 and table for 5.6 for player 2. For pure stationary
strategies, when used by both players in both states, the average payoffs obtained
by both players remain the same with increasing memory length. If purely cooperat-
ing the players are assured an average payoff which is in the range 5.2461±0.083938
each regardless of the memory length. The average payoffs for the strategy pair
π = [0.0, 0.0], σ = [0.0, 0.0] is plotted in subfigure 1 of figure 5.7. The same pat-
tern is observed when both players are purely defecting and this yields an average
payoff within a 95% confidence interval of 1.2241±0.022021. This is explained by
noting that for pure stationary strategy pairs, the relative frequencies for action one
which is used to reduce the payoffs will be the same for all memory lengths, zero
for π = [0.0, 0.0], σ = [0.0, 0.0], one for π = [1.0, 1.0], σ = [1.0, 1.0] and 0.5 for
π = [0.0, 0.0], σ = [1.0, 1.0]. Thus the same quantity is deducted for the payoffs at
each stage for all memory lengths leading to equal average payoffs.
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Figure 5.7: Top: π = [0, 0], σ = [0, 0]. Bottom: π = [ 8

10
, 1

10
], σ = [ 8

10
, 1

10
].

Each line represents average payoffs obtained in a single simulation of 1500
stages. The coloured band is the 95% confidence interval of the average payoffs
associated with the strategy pair.

If one of the players employs a mixed stationary strategy then the average payoffs
for each player will slightly decrease with increasing memory length. Subfigure 2 in
figure 5.7 shows the average payoffs for strategy pair π = [ 8

10
, 1

10
], σ = [ 8

10
, 1

10
] which

has an interval of 3.1328±0.094043 for memory length 1. For the same strategy pair
both players will get average payoffs in the interval 3.0740±0.089688 if the payoffs are
adjusted with full memory length. This rather unexpected anomaly, though insignifi-
cant was further investigated to ascertain how it arises. The investigations focused on
the average reductions and it was found that apparently, reductions in some cases may
increase with increasing memory lengths whilst in some cases the average reduction
may decrease with increasing memory length. Strategy pairs associated with the for-
mer coincidentally involve playing action 1 with high probabilities whereas the latter
involves playing action 1 with relatively low probabilities. Figure 5.9 subfigures top
and centre shows reductions associated with strategy pairs π = [ 6

10
, 5

10
], σ = [ 6

10
, 5

10
]

and π = [ 8

10
, 1

10
], σ = [ 8

10
, 1

10
] respectively and these seem to increase with increasing

memory length. The bottom subfigure in figure 5.9 shows average reductions asso-
ciated with the strategy pair π = [0, 5

10
], σ = [1, 1] which decrease with increasing

memory length. No plausible explanations could be given for this observation.
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Figure 5.8: Top: π = [1221; 1111], σ = [1121; 2111]. Bottom: π =
[1112; 1122], σ = [2111; 1112].Each line represents average payoffs obtained in
a single simulation of 1500 stages. The coloured band is the 95% confidence
interval of the average payoffs associated with the strategy pair.

Figure 5.9: Average reductions for stationary strategy pairs. Top: π =
[ 6
10
, 5

10
], σ = [ 6

10
, 5

10
]. Centre: π = [ 8

10
, 1

10
], σ = [ 8

10
, 1

10
]. Bottom: π = [0, 5

10
], σ =

[1, 1].
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For the Prisoners’ Dilemma example cyclic strategy pairs have similar patterns ob-
served for stationary strategy pairs. If players use cyclic strategies with the same
action for each state, this is similar to pure stationary strategies, then all the players
will receive the same average rewards for all memory lengths. Any other cyclic strat-
egy pair will produce similar results as those of mixed stationary strategies however
with tighter intervals since only the states sequences will contribute towards the dif-
ferences. Figure 5.8 shows average payoffs for cyclic strategies of length four. The
same reasoning used to explain the trend stationary strategies, pure and mixed, also
applies for cyclic strategies.

5.4.3 Small Fish War

The example presented in section 4.2 is investigated for to establish the relationship
between memory length and average payoffs for a Small Fish War games. Using
preliminary results from trial simulations, a few strategy pairs were selected and
simulations for of 1500 stages each were done for each strategy pair. Figure 5.6
displays a portion of the stage rewards obtained by player 1 for the stationary strategy
pair π = [0, 0.0], σ = [1.0, 0.1].

Figure 5.10: Player 1’s stage payoffs for π = [0.0, 0.0], σ = [1.0, 0.1]

As expected and similar to the other two games, mixed stationary strategies lead
to different stage payoffs for different memory lengths. A close inspection of figure
5.10 shows that the patterns of the stage rewards are different from each other. A
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summary of player 1’s average stage payoffs for selected nine stationary strategy pairs
is shown in table 5.7 and table 5.8 for player 2. The average payoffs are given as a
95% confidence interval as in the other two games to take care of changing actions
and states sequence in each simulation.

Figure 5.11: Subfigure 1: π = [0, 0], σ = [0, 0]. Subfigure 2: π = [1, 1

10
], σ =

[1, 1

10
]. Each line represents average payoffs obtained in a single simulation of

1500 stages. The coloured band is the 95% confidence interval of the average
payoffs associated with the strategy pair.

The Small Fish War updating mechanism is similar to the one used for the Pris-
oners’ Dilemma and thus the trends of the average payoffs are identical for the two
games. Average payoffs for pure stationary strategy pairs are the same for all memory
lengths’ for each strategy pair simulation. For instance if the players use the strategy
pair π = [0, 0], σ = [0, 0], subfigure 1 in figure 5.11 shows that player 2 will receive an
average payoff of 3.5041±0.051059 for all memory lengths. Player 1 will also receive
the same amounts as shown in table 5.8 row one. If both players choose to fish with-
out restraint, π = [1, 1], σ = [1, 1], then both players will receive an average payoff
of 2.1413±0.039476 apiece. Just as in the case involving the Prisoners’ Dilemma,
the pattern is explained by noting that the relative frequency for the first action will
always be the same for all memory lengths at each adjusting moment. If the strategy
pair involves some mixed strategy by any of the players then the expected aver-
age payoffs may decrease or increase, though insignificantly, with increasing memory
length. Figure 5.11 subfigure 2 shows instances of payoffs obtained when the players
are employing strategy pairs π = [1, 1

10
], σ = [1, 1

10
]. As stated earlier when explaining

the trends for the Prisoners’ Dilemma no plausible explanation can be given for this
trend and further work needs to be done to ascertain causes of this trend.

Similar patterns for average payoffs to those based on stationary strategy pairs
are observed for the Small Fish War’s game if players use cyclic strategy pairs.
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If both the strategy sets for the two players have the same action for each state then
all the players will receive constant average rewards for all memory lengths. Subfigure
2 in figure 5.12 shows that for the strategy pair π = [2222; 2222], σ = [2222; 2222]
the players receive an average payoff of 3.5173. Any other cyclic strategy pair will
produce similar results as those of mixed stationary strategies. For the strategy
pair π = [1221; 1111], σ = [1121; 2111], the players receive payoffs similar to those
in subfigure 1 of 5.12. The same reasoning used to explain the trend stationary
strategies, pure and mixed, for the same game also apply for cyclic strategies.

Figure 5.12: Subfigure 1: π = [1221; 1111], σ = [1121; 2111]. Subfigure 2: π =
[2222; 2222], σ = [2222; 2222]. Each line represents average payoffs obtained in
a single simulation of 1500 stages. The coloured band is the 95% confidence
interval of the average payoffs associated with the strategy pair.

5.5 Results: Threat Points

Effect of memory length on threat point values was done using stationary strategy
pairs and setting the range of each of the players strategy to [0 1] in both the states.
Using the linspace function, n points were generated from each range thus creating
n4 possible strategy pairs. Average payoffs were obtained for each strategy pair. To
obtain the threat points of player 1(2) the n2 payoffs generated from each combination
of player 2(1)’s strategy pair were grouped together and the maximum was stored.
This was done for all player 2(1)’s strategy pairs and for each memory length. The
minimum maximum was set as the threat point and the accompanying strategy from
the minimising player was stored as the threat strategy. Given that the running time
of the routine is of order O(n4), a balance had to be made between the quality of
results and time needed to obtain the results. Consequently n was set at 11 which
implied a step size of 0.1 for the strategy pairs. The threat points obtained in each
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simulation for all memory lengths was always changing in magnitude due to different
actions and states sequences. As such the threat point of the game is given as a
95% approximate calculated from a sample size of 200. For each strategy pair, 1000
stages were used to obtain the average payoffs after which the maximum as for each
memory length was taken as the threat point approximate of that simulation . Below
are the results for several games. Given that the games considered in this project
are symmetrical the threat points should be equal and the threat strategies should
be similar.

5.5.1 Battle of the Sexes

The Battle of the Sexes game investigated under this section is Example BS1.Table
5.9 shows the threat points V (given as a 95% confidence interval estimate) and the
threat strategies, π⋆ and σ⋆, for each memory length.

Table 5.9: Threat point 95% confidence interval for the game Example BS1

Memory Length V π⋆ σ⋆

1 3.1573±0.0499 [0.8,0.7] [0.2,0.3]
2 3.4048±0.0491 [0.9,0.8] [0.1,0.2]
5 3.5299±0.0451 [0.9,0.9] [0.1,0.1]
10 3.5836±0.0468 [0.9,0.9] [0.1,0.1]
20 3.6113±0.0483 [0.9,0.9] [0.1,0.1]
50 3.6276±0.0473 [0.9,0.9] [0.1,0.1]
75 3.6311±0.0477 [0.9,0.9] [0.1,0.1]
∞ 3.6388±0.0481 [0.9,0.9] [0.1,0.1]

For the Battle of the Sexes game, the threat point increases with increasing memory
length. This trend follows the observed trend for average payoffs and thus is explained
with the same line of reasoning: for similar mixed stationary strategy pairs the re-
ductions are larger for smaller memory lengths and as such the associated payoffs
increase with increasing memory length. Table 5.9 shows that when minimising the
other players payoffs, the player concerned should play their preferred action with a
very high probability. For memory length 1, both players play their preferred action
with probability 0.8 in state 1 and use probabilities 0.7 in state 2. Memory length
of 2 requires the players to play their preferred action with probability 0.9 in state 1
and 0.8 in state 2 as retaliation strategies. For the other memory lengths used in this
project, both players play their preferred actions with a probability of 0.9 in both
states. Since the threat point obtained in this project is an approximate due to the
fact that we took steps of 0.1 when generating the strategy sets, the best response to
the threat strategy will always change due to varying actions and states sequences.
A more precise threat point with the associated threat strategies can be obtained if
the step taken when dividing the strategy range in each state is reduced, however this
come with computational challenges. Since both players’ threat strategies involve sta-
tionary strategies where each player play their preferred action with high probability,
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the threat points are sensitive to the choice of the reduction coefficients c.

Figure 5.13: Threat point 95% confidence (filled region)interval for Example
BS1. The lines are threat points obtained in a single simulation.

5.5.2 Prisoners’ Dilemma

We consider the game described under Example PD1 and use the same procedure
as described in the beginning of this section to determine threat points. Since the
game is symmetric the threat point values are equal. As stated earlier the average
payoffs for a strategy pair will be marginally different for each simulation thus several
simulations are done for the threat strategy and the entire set of strategies for the
maximising player. The threat point of the game is then calculated and given as a
95% confidence interval based on 200 simulations. The results for example PD1 are
displayed in table 5.10.
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Table 5.10: Threat point values Example PD1

Memory Length V π⋆=σ⋆

1 1.2414±0.0211 [1.0,1.0]
2 1.2376±0.0217 [1.0,1.0]
5 1.2356±0.0219 [1.0,1.0]
10 1.2350±0.0222 [1.0,1.0]
20 1.2346±0.0223 [1.0,1.0]
50 1.2344±0.0223 [1.0,1.0]
75 1.2344±0.0223 [1.0,1.0]
∞ 1.2353±0.0223 [1.0,1.0]

Figure 5.14: Threat point 95% confidence (filled region)interval for Example
PD1. The lines are typical threat points obtained in a single simulation.

The threat point magnitude follows the trend observed for stage average payoffs.
The payoffs are insignificantly different as they lie within the same 95% confidence
interval. The differences in some cases (some lines from figure 5.14 are not horizontal)
though insignificant, may be explained by the fact that when determining the threat
points, we did not use a fixed best reply to the threat strategy, but rather we used
the entire strategy range and took the maximum in each simulation. Thus the best
replies differed in each simulation hence the small differences.

5.5.3 Small Fish War

Reconsider the Small Fish War game described under Example SFW1. Table 5.11
shows the threats point value, V expressed as a 95% confidence interval of 200 sam-
ples and associated threat strategies,π⋆ and σ⋆, employed by the two players when
retaliating.
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Table 5.11: Threat point values for Example SFW1

Hist Length V π⋆=σ⋆

1 2.2457±0.0419 [1.0,1.0]
2 2.2367±0.0415 [1.0,1.0]
5 2.2323±0.0412 [1.0,1.0]
10 2.2307±0.0413 [1.0,1.0]
20 2.2298±0.0417 [1.0,1.0]
50 2.2291±0.0418 [1.0,1.0]
75 2.2290±0.0417 [1.0,1.0]
∞ 2.2299±0.0422 [1.0,1.0]

Figure 5.15: Threat point 95% confidence (filled region)interval for Example
SFW1. The lines are typical threat points obtained in a single simulation.

Table 5.11 shows that the threat points 95% confidence interval follows a similar
trend like those observed for the Prisoners’ Dilemma game. The confidence interval
overlaps for all memory lengths and the difference are thus insignificant. The reasons
why there seem to be differences were suggested in the previous section. For threat
strategies both players have to resort to choosing action 1 (fishing without restraint)
if the other player deviates from their initial strategies. The threat strategies found
in this game are similar to the results obtained by Joosten et.al.[7] thus there is no
apparent change in behaviour of the players in their threat strategies.
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5.6 Feasible Rewards

The third and final objective of the project was determining the set of feasible re-
wards for the examples investigated in this thesis as well as distinguishing between
irrational and rational feasible rewards. Feasible rewards were determined for both
cyclic and stationary strategies. To obtain a set of feasible rewards for stationary
strategies the strategy range was set to [0 1] for all states and players. To get a good
approximation of the feasible payoff region the strategies are generated by creating
uniformly spread strategies in each range. A balance also had to be reached between
computing time and quality of results thus there is need to limit the number of strate-
gies in each state. After several trials the number of strategies in each range was set
at 11 implying a step of 0.1. For cyclic strategies, the entire set of strategy length
lstr was created using the function StrategyGenerator and payoffs were calculated for
all possible combinations of strategy pairs. Trimming down the strategy set in an at-
tempt to reduce computational time however with a good representation of the entire
strategy set proved to be a tedious task. Consequently only strategy lengths of up
to 4 were considered. For strategy length 4 the computing time was 35224 seconds.
Distinguishing between rational(RFRs) and irrational(IFRs) average payoffs is done
using threat points obtained using the routine described in the section 5.5.

5.6.1 Small Fish War: Example SFW1

For the SFW game, example SFW1, the feasible payoffs region for memory length 1
is shown in figures 5.16a and 5.16b. The shapes of the feasible regions are similar
for both classes of strategies and all memory lengths. As can be seen from both the
figures, 5.16a and 5.16b, the threat point is low in both cases making most of the
feasible average rewards rational feasible rewards. Thus if players incorporate threats
into their strategies, playing action 1(fishing “without restraint”) always, they can
easily get any average pair reward above the game value (2.2457,2.2457)±0.0419 each.
The best compromise for both players is to fish “with restraint”, both using [0 0],
and this yields expected average payoffs within the range 3.5006±0.053500 for each
player. This payoff combination is the average of the entries Ms,2,2 in both states.
Any deviation by either one of the players will lead to the other player invoking the
threat strategy. If both players using action 1 purely, then each player will get an
expected average payoffs within the range 0.9194±0.017594. In addition to the very
low average payoffs, this might as well lead to the collapse of the system.

For other memory lengths the average payoffs region stays the same but with
slightly lower threat points. The reason for this was discussed before in the previous
section dealing with threat points. Investigations made during the simulations showed
that changing adjusting coefficients, c, has an effect on the shape of the feasible
average rewards. For coefficients of c = [2 1] and other variables remaining the same
leads to noticeable changes in the average payoffs area shapes. For the strategy pair,
π = [0, 0], σ = [0, 0], the average payoffs remains in the interval 3.5006±0.53500
whilst the lower vertex of the feasible payoff region is stretched towards the origin
as the reductions associated with this strategy pair increases from 2 to 4 since ̺1t +
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(a) (b)

Figure 5.16: Cyclic strategies of length 4, memory length 1. The 95% confidence
interval of the threat point is V=2.2457±0.0419

̺2t = 2 always. The other two vertices associated with the strategy pair where one
player purely chooses action 1 whilst the other purely chooses action 2 always almost
disappears as players get smaller payoffs such strategy pairs. In this case associated
reductions increase to 2 since ̺1t + ̺2t = 1 always. Consequently, average rewards
obtained from the strategy pair [π = [0, 0], σ = [0, 0]] requires no threat strategies as
it yields the maximum possible payoff for each player. Figures 5.17a and 5.17b shows
the average payoffs associated with c = [2 1] and other variables remaining the same
for example SFW1.

The results obtained in this game are similar to the results obtained by Joosten
et.al.[7] in terms of best strategies for the players and behavior. Joosten et. al.
found that the payoffs associated with using action 1 always yielded rewards which
were slightly higher if the players used action 2. Furthermore the threat strategies in
Joosten et.al.[7] are the same as those found in this project. Since the threat strategies
are the same we may infer that the players strategies may not necessarily change.
However it becomes necessary for the players to use the action 2 (fish “with restraint”)
if the effects of externalities are very high (large values for c) as the payoffs associated
with action 1 are very low for huge values of c where as the payoffs associated with
always using action 1 remain the same..

5.6.2 Prisoners’ Dilemma: Example PD1

The feasible average payoffs region for the Prisoners’ Dilemma game is similar to
that of the Small Fish war game and is convex in shape. This shape is the same
for all memory lengths with the difference being slight movements towards and away
from the origin. The threat point for all memory lengths are very low making most
of the points rational feasible rewards. The threat point coincides with the average
payoffs which the players obtain if they both play the action 1 with probability 1.
The top vertex of the region in figure 5.18a is obtained when both payers choose
the second action with probability one. This yields an expected average payoff of
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Figure 5.17: (a)full memory length,(b)memory length 5, c = [2 1].

(a) (b)

Figure 5.18: Cyclic strategies of length 4, memory length 1. The 95% confidence
interval of the threat point is V=1.2414±0.0211

5.2461± 0.083938 for each player, which is the best compromise for both players. If
one of the players’ purely chooses action 1 whilst the other purely plays action 2, the
players are excepted to earn 6.0015 ± 0.114050 and 0.7508 ± 0.014256 respectively.
This average payoff pair is outside the rational feasible payoff for both players. The
same shapes are obtained for cyclic strategies and figure 5.18b shows the feasible
payoffs for memory length 1.

5.6.3 Battle of the Sexes: Example BS1

Unlike the other two games investigated in this thesis the Battles of the Sexes game
has different results for the feasible average payoffs. To begin with, the rational fea-
sible average payoff region is smaller as compared to the other two games. Further-
more the feasible average payoff region shapes are different for stationary strategies
and cyclic strategy pairs and these also change with changing memory length. Fig-
ure 5.19a shows average payoffs for memory length one when the players are using
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Figure 5.19: Cyclic strategies of length 4, memory length 1. The 95% confidence
interval of the threat point is 3.1573±0.0499

stationary strategies. The two peaks at the top of the cone are obtained when one of
the player plays his preferred action with probability 1 whilst the other player plays
their preferred action with probability 0. The gap, curving inwards between the two
peaks towards the origin, results from players employing mixed stationary strategy
pairs result in only entries {i, j} ∈ [{1, 1}, {2, 2}] being chosen all the time. This will
result in the average payoffs falling inwards due to two factors. The first is that the
mixed strategy pair will result in the entries {i, j} ∈ [{1, 2}, {2, 1}] being chosen in
some stages which by default have smaller payoffs for each player. Additionally the
mixed strategies will also cause reductions from attending different events as well as
unbalanced attending of the events. This holds for all other memory lengths as well.
This will lead to an average which is less than those at the peaks for each player,
hence the curving inwards.

For cyclic strategy pairs, the shape is cone-like but with almost a flat top. Fig-
ure 5.19b shows the feasible payoff for cyclic strategy pairs of length 4. This is a
consequence of synchronised alternating between the entries {i, j} ∈ [{1, 1}, {2, 2}]
which happens with certainty. Thus the averages defined by the line joining the two
peaks can be obtained as long as the cyclic strategies lead to the two entries being
chosen. Other cyclic strategy pairs will result in the other entries being chosen and
this produces average payoffs which are smaller than any combination of the entries
{i, j} ∈ [{1, 1}, {2, 2}].

Increasing the memory length to 2 leads to similar shapes for stationary strategy
pairs however with slight differences at the peak. Figure 5.20a shows the average
payoffs for stationary strategy pairs with the payoffs being adjusted using memory
length 2. The inner part of the cone head is slightly stretched upwards. For cyclic
strategies the change in the shape is more defined as seen in figure 5.20b. The
peaks are stretched out with the middle being the biggest, with the peak resembling
the average payoffs the players obtain if they use cyclic strategies where the entries
{i, j} ∈ [{1, 1}, {2, 2}] are chosen 50% of the time each. The immediate peak to the
right (left) is when players are synchronised but with entry {1,1} ({2,2}) being chosen
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Figure 5.20: Cyclic strategies of length 4, memory length 2. The 95% confidence
interval of the threat point is 3.4048±0.0491

3

4
of the time and entry 2,2} ({1,1}) being chosen 1

4
of the time. The outer peaks

are produced when one player plays their preferred action with probability 1 and the
other chooses the preferred action with probability 0. The observed increase of the
average payoffs results from reduced reductions. For coordinated cyclic strategy pairs
(these are the strategy pairs which gives the peaks), et = 0 at all adjusting moments
as relative frequencies for the action pairs {i, j} ∈ [{1, 1}, {2, 2}] are both 0.5. On
the contrary, using the same coordinated cyclic strategies for memory length 1 et = 1
always as only 1 action pair has been played in the previous stage. The other two
adjusting components stay the same for both memory lengths but are not relevant
for the coordinated strategy pairs.

Subsequent increase of the memory length does lead to small changes in shapes
of feasible payoffs regions for both stationary and cyclic strategy pairs. However the
top of the cone is stretched upwards giving slightly higher payoffs for longer memory
lengths. Figures 5.21a and 5.21b shows feasible average payoffs for the example
BS1 game for full memory length which are similar to those obtained when using
memory length 2. For all memory lengths and adjustments coefficients of c=[1 0.5]
all rational feasible payoffs can only be obtained as equilibrium average payoffs if
players incorporate the necessary threat strategies.
Using different cycle lengths for cyclic strategies leads to different results. Figure
5.22a shows that for cyclic strategy of length 3 and memory length 1 the top of
the cone is different from that of strategy length 4 (figure 5.19b). In this case the
two middle peaks are still obtained when the players synchronise between entries
{i, j} ∈ [{1, 1}, {2, 2}]. The central peak present in average payoffs for strategies of
length 4disappears as any synchronization will always lead to either of the entries
{1,1} or {2,2} being chosen 2

3
of the time.

Increasing memory length yields different results, the two middle peaks are stretched
upwards as for cycle length 4 due to reduced reductions in the et component. Figure
5.22b shows the feasible payoffs for cyclic strategies of length 3 obtained using memory
length of 2 to adjust the payoffs.
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Figure 5.21: Cyclic strategies of length 4, full memory length. The 95% confi-
dence interval of the threat point is 3.6388±0.0481

(a) (b)

Figure 5.22: Cyclic strategies are of length 3. The payoffs are adjusted using
memory length 1 and full respectively. The 95% confidence interval of the threat
point values are (a) 3.1573±0.0499 and (b) 3.6388±0.0481
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5.7 Summary

The chapter first presented the design of MATLAB R© routines and functions used in
this project. Challenges and shortfalls identified during the testing were presented.
One of the main issue noted during tests concerns poor efficiency with respect to time
of the two routines that carry out exhaustive simulations of given strategy sets Cyclic-
SimulateRoutine and StationarySimulateRoutine. This limited the maximum number
of strategies in each set to 11 for stationary strategies and 16 for cyclic strategies.
For both PD and SFW examples, pure stationary strategy pairs led to constant pay-
offs for all memory lengths whilst mixed strategy pairs led to average payoffs which
slightly change with increasing memory length. For mixed strategies where action
1 is played with relatively high probability, the average payoffs apparently decrease
with increasing memory length whilst average payoffs seem to increase slightly if ac-
tion 1 is played with relatively low probability. The average payoffs for the Battle
of the Sexes generally increase with increasing memory length. Threat strategies for
players in the Battle of the Sexes game involved playing the preferred action with
very high probabilities in both states. For Prisoners’ Dilemma and Small Fish War
games, threat strategies involved choosing action 1 with probability 1 for all memory
lengths. Feasible payoffs regions for Small Fish War and Prisoners’ Dilemma games
are similar to each other for all memory lengths. For the Battle of the Sexes game the
feasible payoffs region change for cyclic strategies with increasing memory length. In
the Prisoners’ Dilemma game the best scenario is for the players to purely use action
“cooperate”. For the Small Fish War the best compromise is for both players to
fish “with restraint” and this yields payoffs which are bigger than when both players
resort to fishing “without restraint”. In addition to relatively high average payoffs
this will also ensure that the system remains viable. The best payoffs for the Battle
of the Sexes game are obtained when the two players coordinate to attend the two
events equally.
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6. Conclusions

6.1 Conclusions

A new game model, Stochastic Games with Frequency Dependent Stage Payoffs, was
proposed and developed in this project. The way by which two state stochastic games
may arise from one state repeated game was explained for three game models: Battle
of the Sexes, Prisoners’ Dilemma and the Small Fish War. The game model was
motivated by observing that the stage payoffs are not fixed but fluctuate for many
repeated games. These fluctuations are a result of externalities generated by the
players’ choices as well as natural factors which are stochastic. To incorporate the
effects of these externalities, relative frequencies by which players have used action
1 for the Prisoners’ Dilemma (defecting) and the Small Fish War (fishing “without
restraint”) were used. For the Battle of the Sexes game the payoffs are adjusted using
the relative frequencies of action pairs. Each of the three games applied to this model
was then investigated using the limiting average reward criteria to determine three
aspects.

The first aspect investigated is the effect of memory length on the average stage
payoffs and associated stage payoffs fluctuations. For the Prisoners’ Dilemma and
the Small Fish War games the average payoffs remained the same for all memory
lengths when both players used pure stationary strategies. If any of the players
uses a mixed stationary strategy, the average payoffs slightly changes with increasing
memory length depending on the probability by which action 1 is played. The same
trend is observed for cyclic strategies. For the Battle of the Sexes game, the average
payoffs for mixed stationary strategies increase with increasing memory length. For
pure strategies the pattern depends on the entries which are implied by the strategy
pair. Cyclic strategy pairs yield similar patterns with a special case arising when
the players synchronise their cyclic strategies to choose their preferred actions in all
the stages. In this case both players obtain payoffs which are almost equal for even
memory lengths. For odd memory lengths the average payoffs increase with increasing
memory length and subsequently approaching those of even memory lengths.

The project also investigated threat points and strategies for the three game
classes. The threat points of the Prisoners’ Dilemma and Small Fish War games
remain almost the same with increasing memory length. Threat strategies for both
players in the two games involve purely playing the action 1 (defecting for the Pris-
oners’ Dilemma and fishing without restraint for the Small Fish War). For the Battle
of the Sexes, the threat point increase with increasing memory length and threat
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strategies involve the players choosing their preferred action with high probability.
The final aspect investigated the nature of feasible average payoffs areas for each

type of the three game in which the model was applied. Again the SFW and PD
examples yielded similar results with the shape of the feasible average payoffs being
convex and similar for both cyclic and stationary strategies. The best compromise
in the Prisoners’ Dilemma is for the players to purely use action “cooperate”. For
the Small Fish War the best compromise is for both players to fish “with restraint”.
In addition to relatively high average payoffs this will also ensure that the system
remains viable. The Battle of the Sexes example had different results for the cyclic
and stationary strategies. Cyclic strategy pairs yield slightly higher payoffs for all
memory lengths with best results obtained when the two players coordinate to attend
the two events equally.

6.2 Future Work

The main feature of this model was to incorporate fluctuations arising from external-
ities associated with the players actions. However several issues need to be addressed
for the model to fully replicate the real life scenarios it models. Further research
should be done to establish good approximations of the following variables: the ad-
justment coefficients, rewards levels and transition probabilities. In this research
only two classes of strategies were used, it is interesting to see what type of results
are obtained when players use other types of strategy pairs, for example behavior
strategies. Future research should also expand the model in terms of the number of
players, states and actions. Lastly the routines developed for the simulations require
improvements for them to handle larger strategy sets and give results in less time.
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A. MATLAB R© Functions

A.1 Function PayoffAdjuster

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 function [M1_1Adjustor M1_2Adjustor M2_1Adjustor M2_2Adjustor] = ...

3 PayoffAdjuster(rho,c,Type)

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5 %%Developed by Wellington Mahohoma

6 %THE FUNCTION CALCULATES THE PAYOFF ADJUSTMENTS FOR STAGE t+1

7 %Input:

8 %rho: if Type is PD or SFW then relative frequency for action 1, for BS

9 %action pairs relative

10 %frequency

11 %c: adjusting coefficients

12 %Type: game type

13

14 %Output

15 % Adjustments matrices for players payoffs for stage t+1

16 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

17 %For either Small Fish Wars or Prisoners’ Dilemma gam

18 if strcmpi(’SFW’,Type)==1||strcmpi(’PD’,Type)==1 e

19 M1_2Adjustor=c(2)*(sum(rho))*ones(2,2);

20 M1_1Adjustor=c(1)*(sum(rho))*ones(2,2);

21 M2_1Adjustor=M1_1Adjustor;

22 M2_2Adjustor=M1_2Adjustor;

23 else strcmpi(’BS’,Type)==1 %for Battle of the Sexes game.

24 tt=sum(rho);

25 red=((rho(2)+rho(3)+rho(6)+rho(7))/ttˆ2)+(abs(rho(1)+rho(5)-rho(4)-rho(8))/tt);

26 ad=(rho(1)+rho(4)+rho(5)+rho(8))/tt;

27

28 M1_1Adjustor=c(1)*[red red-ad; red red];

29 M2_1Adjustor=c(1)*[red red-ad; red red];

30 M1_2Adjustor=c(2)*[red red-ad; red red];

31 M2_2Adjustor=c(2)*[red red-ad; red red];

32

33 end

34

35

36 end

37 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A.2 Function StationaryPlay

1 function [SP_1,SP_2]=...

2 StationaryPlay(M1_1,M1_2,M2_1,M2_2,Pi,Sigma,P_1,P_2,t0,T,c,memo_length,Type)

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 %Developed by Wellington Mahohoma

5 %THE FUNCTION CALCULATES STAGE PAYOFFS FOR A GIVEN STARTEGY PAIR

6 %Input:
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7 %M1_1,M1_2: rewards payoff matrices for player 1 in state 1 and 2 .

8 %M2_1,M2_2: rewards payoff matrices for player 2 in state 1 and 2 .

9 %P_1,P_2: Transtion probability matrices.

10 %t0: initial state.

11 %T: number of stages.

12 %pi: stratetegy for player 1.

13 %sigma: stratetegy for player 2.

14 %c: adjustments coefficients

15 %Type (’BS’,’PD’ and ’SFW’): game type.

16

17 %Output:

18 %AvePay1,AvePay2: Average payoffs for players 1 and 2 repectively

19 %Strats: Strategy pairs for the simulations.

20 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

21 %PREALLOCATIONG LOCAL VARIABLES

22 States=zeros(1,T);

23 Actions=zeros(2,T);

24 Action1_Freq=zeros(2,T);

25 ActionPairs=zeros(T,8);

26 memo_length=[memo_length 2*T];

27 SP_1=zeros(size(memo_length,2),T);

28 SP_2=zeros(size(memo_length,2),T);

29

30

31 %initialising the state to t0

32 nextState=t0;

33 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

34 %% GENERATING SEQUENCE OF ACTIONS AND STATES

35 for i=1:1:T

36

37 state=nextState;%Updating current state of the game.

38

39

40 actionToss1=rand; %To be used to decide action for player 1

41 actionToss2=rand; %To be used to decide action for player 1

42

43 if state==1 %GAME IN STATE 1

44 States(1,i)=1;

45 P1_i=(actionToss1>=Pi(1,1))+1; %Player 1’s action for stage t

46 P2_i=(actionToss2>=Sigma(1,1))+1; %Player 2’s action for stage t

47 Actions(:,i)=[P1_i;P2_i]; %Storing the actions for players.

48 PrNextState=P_1(P1_i,P2_i); %probability to state 1 for stage i+1.

49

50

51 if P1_i==1&&P2_i==1 %Player 1 plays 1 and player 2 plays 1

52 ActionPairs(t,:)=[1,0,0,0,0,0,0,0];

53 Action1_Freq(:,t)=[1;1];

54 elseif P1_i==1&&P2_i==2 %Player 1 plays 1 and player 2 plays 2.

55 ActionPairs(t,:)=[0,1,0,0,0,0,0,0];

56 Action1_Freq(:,t)=[1;0];

57 elseif P1_i==2&&P2_i==1 %Player 1 plays 2 and player 2 plays 1.

58 ActionPairs(t,:)=[0,0,1,0,0,0,0,0];

59 Action1_Freq(:,t)=[0;1];

60 else %Player 1 plays 2 and player 2 plays right.

61 ActionPairs(t,:)=[0,0,0,1,0,0,0,0];

62 Action1_Freq(:,t)=[0;0];

63 end

64

65 else %THE GAME IS IN STATE TWO

66 States(1,i)=2;

67 P1_i=(actionToss1>=Pi(1,2))+1;

68 P2_i=(actionToss2>=Sigma(1,2))+1;

69 Actions(:,i)=[P1_i;P2_i];

70 PrNextState=P_2(P1_i,P2_i); %prob to state 1 for stage i+1.

71

72 if P1_i==1&&P2_i==1 %Player 1 plays 1 and player 2 plays 1

73 ActionPairs(t,:)=[0,0,0,0,1,0,0,0];

74 Action1_Freq(:,t)=[1;1];

APPENDIX A. MATLAB R© FUNCTIONS 49



75 elseif P1_i==1&&P2_i==2 %Player 1 plays 1 and player 2 plays 2.

76 ActionPairs(t,:)=[0,0,0,0,0,1,0,0];

77 Action1_Freq(:,t)=[1;0];

78 elseif P1_i==2&&P2_i==1 %Player 1 plays 2 and player 2 plays 1.

79 ActionPairs(t,:)=[0,0,0,0,0,0,1,0];

80 Action1_Freq(:,t)=[0;1];

81 else %Player 1 plays 2 and player 2 plays right.

82 ActionPairs(t,:)=[0,0,0,0,0,0,0,1];

83 Action1_Freq(:,t)=[0;0];

84

85 end

86 end

87

88 %SETTING THE STATE FOR THE NEXT STAGE

89 StateDecider=rand;

90 if PrNextState==0 %Next state is 2.

91 nextState=2;

92 elseif PrNextState==1 %Next state is 1.

93 nextState=1;

94 else %The next state is decided by comparing StateDecider to PrNextState.

95 nextState=(StateDecider>=PrNextState)+1;

96 end

97 end

98

99 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

100 %% CALCULATING STAGE PAYOFFS

101 for y=1:1:size(mem_length,2)

102 A_S1=M1_1;

103 A_S2=M1_2;

104 B_S1=M2_1;

105 B_S2=M2_2;

106

107 P1_StagePayoffs=zeros(1,T);

108 P2_StagePayoffs=zeros(1,T);

109

110 for t=1:1:T

111 %Assiging the relevant payoff matrices using current state for stage t.

112 if States(t)==1

113 A=A_S1; B=B_S1;

114 else

115 A=A_S2; B=B_S2;

116 end

117

118 %Payoffs for stage t

119 P1_StagePayoffs(1,t)=A(Actions(1,t),Actions(2,t));

120 P2_StagePayoffs(1,t)=B(Actions(1,t),Actions(2,t));

121

122 %Calculating relative frequency for action 1/action pairs depending on the game

123 if strcmpi(’BS’,Type)==1

124 if mem_length(1,y)>t

125 RelFreq=sum(ActionPairs(1:t,:),1);

126 else

127 g=t-mem_length(1,y)+1;

128 RelFreq=sum(ActionPairs(g:t,:),1);

129 end

130 else

131 if mem_length(y)>t %Calculating the relative frequency for acti 1

132 RelFreq=sum(Action1_Freq(:,1:t),2)/t;

133 else %Calculating the relative frequency for action 1 for t>mem_length.

134 g=t-mem_length(1,y)+1;

135 RelFreq=sum(Action1_Freq(:,g:t),2)/mem_length(1,y);

136 end

137 end

138

139 %Determining payoff adjustmets for stage t+1

140 [AH_SA,AL_SA,BH_SA,BL_SA] = PayoffAdjuster(RelFreq,c,Type);

141

142 %Adjusting the payoffs for stage t+1
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143 A_S1=M1_1+AH_SA;

144 A_S2=M1_2+AL_SA;

145 B_S1=M2_1+BH_SA;

146 B_S2=M2_2+BL_SA;

147

148 end

149 %Storing the stage payoffs for for memory length mem_length(y).

150 SP_1(y,:)=P1_StagePayoffs;

151 SP_2(y,:)=P2_StagePayoffs;

152 end

153

154 end

A.3 Function StatSimulate

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 function [AP1,AP2,Strats]= ...

3 StatSimRouHist(M1_1,M1_2,M2_1,M2_2,P_1,P_2,t0,T,mem_length,R1,R2,n,m,c,Type)

4

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 %THE FUNCTION CALCULATES FOR A GIVEN STARTEGY SETS AVERAGE PAYOFFS FOR EACH PLAYER.

8 %Input:

9 %M1_1,M1_2: rewards payoff matrices for player 1 in state 1 and 2 respectively.

10 %M2_1,M2_2: rewards payoff matrices for player 2 in state 1 and 2 respectively.

11 %P_1,P_2: Transtion probability matrices.

12 %t0: initial state.

13 %T: number of stages.

14 %R1: strategy range for player 1 in states 1 and 2 respectively.

15 %R2: stratetegy range for player 2 in states 1 and 2 respectively.

16 %n,m: number of startegies to be generated in the states for players 1 and 2

17 % respectively. Both should

18 % be 2*1 vectors

19 %c: adjustments coefficients

20 %Type (’BS’,’PD’ and ’SFW’): game type.

21

22 %Output:

23 %AP1,AP2: Average payoffs for players 1 and 2 repectively

24 %Strats: Strategy pairs for the simulations.

25 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

26 %CREATING STRATEGY SETS

27 %Strategies for player 1 in state 1

28 pi1=linspace(R1(1,1),R1(1,2),n(1));

29 %Strategies for player 1 in state 2

30 pi2=linspace(R1(2,1),R1(2,2),n(2));

31 %Strategies for player 2 in state 1

32 sigma1=linspace(R2(1,1),R2(1,2),m(1));

33 %Strategies for player 2 in state 2

34 sigma2=linspace(R2(2,1),R2(2,2),m(2));

35

36 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

37 %PREALLOCATING VARIBLES

38 rounds=n(1)*n(2)*m(1)*m(2); %number of all possible combinations

39 rows=size(mem_length,2)+1; %number of memory lengths used

40 AP1=zeros(rows,rounds); %Average payoffs for player 1

41 AP2=zeros(rows,rounds); %Average payoffs for player 2

42 Strats=zeros(4,rounds); %Strategy pairs for players.

43 k=1;

44

45 for a=1:1:n(1)

46 for b=1:1:n(2)

47 for c=1:1:m(1)

48 for d=1:1:m(2)

49 Pi=[pi1(a) pi2(b)];
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50 Sigma=[sigma1(c) sigma2(d)];

51 [SP_1,SP_2]=StationaryPlay(M1_1,M1_2,M2_1,M2_2,Pi,Sigma,P_1,P_2,t0,T,c,mem_length,Type);

52 AP1(:,k)=mean(SP_1,2);

53 AP2(:,k)=mean(SP_2,2);

54 Strats(:,k)=[pi1(a);pi2(b);sigma1(c);sigma2(d)];%Storing strategy pair in column k in

55 k=k+1

56

57 end

58 end

59 end

60 end

61

62 end

63 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A.4 Function CyclicPlay

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 function [SP_1 SP_2]=...

3 CyclicPlayHistory(M1_1,M1_2,M2_1,M2_2,pi,sigma,P_1,P_2,t0,T,c,mem_length,Type)

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5 %THE FUNCTION CALCULATES STAGE PAYOFFS FOR A GIVEN CYCLIC STARTEGY PAIR

6 %Input:

7 %M1_1,M1_2: rewards payoff matrices for player 1 in state 1 and 2 respectively.

8 %M2_1,M2_2: rewards payoff matrices for player 2 in state 1 and 2 respectively.

9 %P_1,P_2: Transtion probability matrices.

10 %t0: initial state.

11 %T: number of stages.

12 %pi: stratetegy for player 1.

13 %sigma: stratetegy for player 2.

14 %c: adjustments coefficients

15 %Type (’BS’,’PD’ and ’SFW’): game type.

16

17 %Output:

18 %AvePay1,AvePay2: Average payoffs for players 1 and 2 repectively

19 %Strats: Strategy pairs for the simulations.

20 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

21 %PREALLOCATIONG LOCAL VARIABLES

22 States=zeros(1,T); %To store states the games visits

23 Actions=zeros(2,T); %Stores which players choose at each stage

24 Action1_Freq=zeros(2,T); %Stores each instance action 1 is used

25 ActionPairs=zeros(T,8); %To store action pairs occurance

26 mem_length=[mem_length 2*T]; %Adding an entry for full memomry length

27 SP_1=zeros(size(mem_length,2),T); %stage payoffs for player 1

28 SP_2=zeros(size(mem_length,2),T); %stage payoffs for player 1

29

30

31 nextState=t0;

32

33 pi_length=size(pi,2);

34 sigma_length=size(sigma,2);

35

36 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

37 %% GENERATING SEQUENCE OF ACTIONS AND STATES

38 for t=1:1:T

39

40 States(1,t)=nextState;

41 %Determining the strategy entry index

42 index_1=mod(t,pi_length);

43 index_2=mod(t,sigma_length);

44 if index_1==0

45 index_1=pi_length;

46 end

47 if index_2==0
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48 index_2=sigma_length;

49 end

50

51 %GAME IS IN STATE 1

52 if States(1,t)==1

53

54 P1_i=pi(2,index_1); %action for player 1 at stage t

55 P2_i=sigma(2,index_2); %action for player 2 at stage t

56 Actions(:,t)=[P1_i;P2_i]; %Storing actions for stage 1

57 PrNextState=P_2(P1_i,P2_i); %probality of game moving to state 1

58

59 if P1_i==1&&P2_i==1 %Player 1 plays 1 and player 2 plays 1

60 ActionPairs(t,:)=[1,0,0,0,0,0,0,0];

61 Action1_Freq(:,t)=[1;1];

62 elseif P1_i==1&&P2_i==2 %Player 1 plays top and player 2 plays right.

63 ActionPairs(t,:)=[0,1,0,0,0,0,0,0];

64 Action1_Freq(:,t)=[1;0];

65 elseif P1_i==2&&P2_i==1 %Player 1 plays 2 and player 2 plays 2.

66 ActionPairs(t,:)=[0,0,1,0,0,0,0,0];

67 Action1_Freq(:,t)=[0;1];

68 else %Player 1 plays 2 and player 2 plays right.

69 ActionPairs(t,:)=[0,0,0,1,0,0,0,0];

70 Action1_Freq(:,t)=[0;0];

71 end

72

73 %GAME IS IN STATE 2

74 else

75 P1_i=pi(2,index_1); %action for player 1 at stage t

76 P2_i=sigma(2,index_2); %action for player 2 at stage t

77 Actions(:,t)=[P1_i;P2_i]; %Storing actions for stage 1

78 PrNextState=P_2(P1_i,P2_i); %probality for the game to state 1

79

80 if P1_i==1&&P2_i==1 %Player 1 plays 1 and player 2 plays 1

81 ActionPairs(t,:)=[0,0,0,0,1,0,0,0];

82 Action1_Freq(:,t)=[1;1];

83 elseif P1_i==1&&P2_i==2 %Player 1 plays 1 and player 2 plays 2.

84 ActionPairs(t,:)=[0,0,0,0,0,1,0,0];

85 Action1_Freq(:,t)=[1;0];

86 elseif P1_i==2&&P2_i==1 %Player 1 plays 2 and player 2 plays 1.

87 ActionPairs(t,:)=[0,0,0,0,0,0,1,0];

88 Action1_Freq(:,t)=[0;1];

89 else %Player 1 plays 2 and player 2 plays right.

90 ActionPairs(t,:)=[0,0,0,0,0,0,0,1];

91 Action1_Freq(:,t)=[0;0];

92 end

93 end

94

95 %SETTING THE STATE FOR THE NEXT STAGE

96 StateDecider=rand;

97 if PrNextState==0 %Next state is 2.

98 nextState=2;

99 elseif PrNextState==1 %Next state is 1.

100 nextState=1;

101 else %next state is decided by comparing StateDecider to PrNextState.

102 nextState=(StateDecider>=PrNextState)+1;

103 end

104

105 end

106 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

107 %% CALCULATING STAGE PAYOFFS

108 for y=1:1:size(mem_length,2)

109 A_S1=M1_1;

110 A_S2=M1_2;

111 B_S1=M2_1;

112 B_S2=M2_2;

113

114 P1_StagePayoffs=zeros(1,T);

115 P2_StagePayoffs=zeros(1,T);
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116

117 for t=1:1:T

118 %Assiging the relevant payoff matrices using current state for stage t.

119 if States(t)==1

120 A=A_S1; B=B_S1;

121 else

122 A=A_S2; B=B_S2;

123 end

124

125 %Payoffs for stage t

126 P1_StagePayoffs(1,t)=A(Actions(1,t),Actions(2,t));

127 P2_StagePayoffs(1,t)=B(Actions(1,t),Actions(2,t));

128

129 %Calculating relative frequency for action 1/ pairs depending on the game

130 if strcmpi(’BS’,Type)==1

131 if mem_length(1,y)>t

132 RelFreq=sum(ActionPairs(1:t,:),1);

133 else %Calculating the relative frequency for act pairs for t>mem_length

134 g=t-mem_length(1,y)+1;

135 RelFreq=sum(ActionPairs(g:t,:),1);

136 end

137 else

138 if mem_length(y)>t %Calculating the rel freq of act 1 for t=<mem_length.

139 RelFreq=sum(Action1_Freq(:,1:t),2)/t;

140 else %Calculating the relative frequency for action 1 for t>mem_length.

141 g=t-mem_length(1,y)+1;

142 RelFreq=sum(Action1_Freq(:,g:t),2)/mem_length(1,y);

143 end

144 end

145

146 %Determining payoff adjustmets for stage t+1

147 [AH_SA,AL_SA,BH_SA,BL_SA] = PayoffAdjuster(RelFreq,c,Type);

148

149 %Adjusting the payoffs for stage t+1

150 A_S1=M1_1+AH_SA;

151 A_S2=M1_2+AL_SA;

152 B_S1=M2_1+BH_SA;

153 B_S2=M2_2+BL_SA;

154

155 end

156 %Storing the stage payoffs for for memory length mem_length(y).

157 SP_1(y,:)=P1_StagePayoffs;

158 SP_2(y,:)=P2_StagePayoffs;

159 end

160

161 end

162 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A.5 Function CycSimulate

1 function [AvePay1,AvePay2,Strats]=...

2 CycSimulate(M1_1,M1_2,M2_1,M2_2,P_1,P_2,t0,T,mem_length,pi1,pi2,sigma1,sigma2,c,Type)

3

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5

6 %THE FUNCTION CALCULATES FOR A GIVEN STARTEGY SETS AVERAGE PAYOFFS FOR EACH PLAYER.

7 %Input:

8 %M1_1,M1_2: rewards payoff matrices for player 1 in state 1 and 2 respectively.

9 %M2_1,M2_2: rewards payoff matrices for player 2 in state 1 and 2 respectively.

10 %P_1,P_2: Transtion probability matrices.

11 %t0: initial state.

12 %T: number of stages.

13 %pi1,pi2: stratetegy sets for player 1 in states 1 and 2 respectively.

14 %sigma1,sigma2: stratetegy sets for player 2 in states 1 and 2 respectively.
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15 %c: adjustments coefficients

16 %Type (’BS’,’PD’ and ’SFW’): game type.

17

18 %Output:

19 %AvePay1,AvePay2: Average payoffs for players 1 and 2 repectively

20 %Strats: Strategy pairs for the simulations.

21 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

22

23 n1=size(pi1,1); %number of strategies in state 1 for player 1

24 n2=size(pi2,1); %number of strategies in state 2 for player 1

25 m1=size(sigma1,1); %number of strategies in state 1 for player 2

26 m2=size(sigma2,1); %number of strategies in state 2 for player 2

27 rows=size(mem_length,2)+1; %number of average payoff sets

28 rounds=n1*n2*m1*m2; %number of all combinations of strategies

29 AvePay1=zeros(rows,rounds); %preallocating average payoffs for player 1

30 AvePay2=zeros(rows,rounds); %preallocating average payoffs for player 1

31 Strats=zeros(4,rounds); %storing strategy pairs for simulation k

32 k=1; %simulation index

33 for a=1:1:n1

34 for b=1:1:n2

35 for c=1:1:m1

36 for d=1:1:m2

37 Pi=[pi1(a,:); pi2(b,:)]; %Strategy for player 1

38 Sigma=[sigma2(c,:); sigma2(d,:)]; %Strategy for player 2

39 [SP_1,SP_2]=CyclicPlay(M1_1,M1_2,M2_1,M2_2,Pi,Sigma,P_1,P_2,t0,T,c,mem_length,Type);

40 AvePay1(:,k)=mean(SP_1,2);

41 AvePay2(:,k)=mean(SP_2,2);

42 Strats(:,k)=[a;b;c;d];

43 k=k+1

44 end

45 end

46 end

47 end

48 end

49 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A.6 Function Threats

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 function [V_1,V_2,Pie_star,Sigma_star]=...

3 Threats(AvePayoffs_P1,AvePayoffs_P2,Strats)

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5 %Developed by Wellington Mahohoma

6 %The function detemines for a given sets of payoffs for each player and the

7 %associated strategy pairs the threat point and threat strategies.The

8 %strategy sets used to produce the payoffs should cover the entire range

9 %from 0 to 1.

10 %INPUT:

11 %AvePayoffs_P1: Average payoffs for player 1.

12 %AvePayoffs_P2: Average payoffs for player 2.

13 %Strats: strategy pairs that produced the average payoffs sequences.

14 %OUTPUT:

15 % V_1,V_2: Threat point values for player 1 and 2 respectively.

16 % Pie_star,Sigma_star: threat strategies

17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

18 %Preallocating varibales for speed

19 V_1=zeros(1,size(AvePayoffs_P1,1)); %Threat point value vector for player 1

20 V_2=zeros(1,size(AvePayoffs_P1,1)); %Threat point value vector for player 2

21 Pie_star=zeros(4,size(AvePayoffs_P1,1)); %Threat strategy matrix for player 1

22 Sigma_star=zeros(4,size(AvePayoffs_P1,1)); %Threat strategy matrix for player 2

23

24 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

25 %Threat point for player 2. The payoffs from each strategy from player 1 and the

26 %enetrie strategies of player 2 are grouped together and the maximum is stored.
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27 %At each iteration if the maximum is less than the current threat value the threat

28 % value is updated.

29 a=size(Strats,2);

30 b=aˆ0.25;

31 c=bˆ2;

32 for i=1:1:size(AvePayoffs_P1,1)

33 u=1;

34 TP=10000000; %Initialising local varible of the threat point to some big number.

35 e=1;

36 for l=1:1:c

37 maxS = max(AvePayoffs_P2(i,e:u*c),[],2);

38 if TP>=maxS

39 TP=maxS;

40 V_2(1,i)=maxS;

41 Pie_star(:,i)=Strats(:,e);

42 end

43 u=u+1;

44 e=e+c;

45 end

46 end

47 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

48 %Threat point for player 1. The payoffs from each strategy from player 2 and the

49 %enetrie strategies of player 1 are grouped together and the maximum is stored.

50 %At each iteration if the maximum is less than the current threat value the threat

51 % value is updated.

52 for i=1:1:size(AvePayoffs_P1,1)

53 TP=1000000; %Initialising local varible of the threat point to some big number.

54 for g=1:1:c

55 E2=zeros(1,c);

56 f=g;

57 r=1;

58

59 %Grouping the payoffs from staretgy i of P 2 and all startegies of P 1

60 while f<=a

61 E2(1,r)=AvePayoffs_P1(i,f);

62 f=f+c;

63 r=r+1;

64 end

65 maxT = max(E2,[],2);

66 if TP>=maxT

67 TP=maxT;

68 V_1(1,i)=maxT;

69 Sigma_star(:,i)=Strats(:,g);

70 end

71

72 end

73

74 end

75 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

76 end

77 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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B.2 Prisoners’ Dilemma

(a) (b)

Figure B.6: Memory Length 2, cyclic strategies are of length 4

(a) (b)

Figure B.7: Memory Length 5,cyclic strategies are of length 4
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(a) (b)

Figure B.8: Memory Length 10,cyclic strategies are of length 4

(a) (b)

Figure B.9: Memory Length 20,cyclic strategies are of length 4

(a) (b)

Figure B.10: Memory Length 50,cyclic strategies are of length 4
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B.3 Small Fish War

(a) (b)

Figure B.11: Memory Length 2, cyclic strategies are of length 4

(a) (b)

Figure B.12: Memory Length 5, cyclic strategies are of length 4.
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(a) (b)

Figure B.13: Memory Length 10, cyclic strategies are of length 4

(a) (b)

Figure B.14: Memory Length 20, cyclic strategies are of length 4

(a) (b)

Figure B.15: Memory Length 50, cyclic strategies are of length 4
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