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Abstract. Recent advancements in computing technology allowed both
scientific and business applications to produce large datasets with
increasing complexity and dimensionality. Clustering algorithms are use-
ful in analyzing these large datasets but often fall short to provide com-
pletely satisfactory results. Integrating clustering and visualization not
only yields better clustering results but also leads to a higher degree of
confidence in the findings. Self-Organizing Map (SOM) is a neural net-
work model which is used to obtain a topology-preserving mapping from
the (usually high dimensional) input/feature space to an output/map
space of fewer dimensions (usually two or three in order to facilitate
visualization). Neurons in the output space are connected with each
other but this structure remains fixed throughout training and learn-
ing is achieved through the updating of neuron reference vectors in fea-
ture space. Despite the fact that growing variants of SOM overcome the
fixed structure limitation, they increase computational cost and also do
not allow the removal of a neuron after its introduction. In this paper,
a variant of SOM is presented called AMSOM (Adaptive Moving Self-
Organizing Map) that on the one hand creates a more flexible structure
where neuron positions are dynamically altered during training and on
the other hand tackles the drawback of having a predefined grid by allow-
ing neuron addition and/or removal during training. Experimental evalu-
ation on different literature datasets with diverse characteristics improves
SOM training performance, leads to a better visualization of the input
dataset, and provides a framework for determining the optimal number
and structure of neurons as well as the optimal number of clusters.

Keywords: Self-Organizing Maps · Clustering · Visualization ·
Unsupervised learning

1 Introduction

Clustering is one of the basic data analysis tasks: It is a process of organizing
data into similar groups, without any prior knowledge or training. With the
increasing graphics capabilities of the available computers, researchers realized
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[2,8] that integrating the visual component into the clustering process helps to
improve the effectiveness of automated clustering algorithms. This synthesis of
computational clustering methods and interactive visualization techniques not
only yields better clustering results but allows exploration and refinement of the
clustering structure. Designing such embedded algorithms is tricky mainly due
to two limitations: (a) automated clustering algorithms are sensitive to input
parameters and results may significantly vary and (b) large data spaces often
have skewed distributions which are difficult to be approximated.

The Self-Organizing Map (SOM) [27] is an unsupervised neural network
model which effectively maps high-dimensional data to a low-dimensional space
(usually two-dimensional). The low-dimensional space (also called output space)
consists of a grid of neurons connected with each other, according to a spe-
cific structure (can be hexagonal, rectangular, etc.). This structure allows the
topology preservation of input data (i.e., similar input patterns are expected
to be mapped to neighboring neurons in the output grid) [24]. By this way,
SOM manages to achieve dimensionality reduction, abstraction, clustering and
visualization of the input data and this is the reason that it has been applied suc-
cessfully to many different domains and datasets like financial data [12], speech
recognition [25], image classification [31], document clustering [29,40].

The SOM algorithm raises some issues and problems: (a) SOM’s architecture
is fixed and predefined in terms of number and arrangement of neurons. In case
of largely unknown input data, it is difficult to determine apriori the correct
structure that provides satisfactory results. There is some work in this area in
order to how to add/remove neurons but none of current approaches adjusts
neuron positions on the grid based on training progress. (b) Training a SOM
comes with a large computation cost, especially in cases of large datasets and/or
large maps. Many epochs might be needed in order for the SOM to converge and
the map to reach a final state.

In this paper we study how an extension of the traditional SOM can effec-
tively be used for visual clustering and handles both issues described above:
First, it allows neurons to change positions during training which provides bet-
ter visualization and faster training time. Second, number of neurons can be
adjusted (neurons can be either added or removed) according to dataset require-
ments and training progress. Due to this enhanced training scheme, the number
of epochs required for training is significantly reduced. The rest of the paper is
organized as follows. Section 2 presents background work on SOM, extensions
on the traditional algorithm and their limitations. The proposed method is pre-
sented in Sect. 3 while experimental setup is described in Sect. 4. Finally, Sect. 5
concludes the paper.

2 Related Work

2.1 SOM and Competitive Learning

The Self-Organizing Map (SOM) is a fully connected single-layer linear neural
network. The SOM uses a set of neurons, often arranged in a 2-D rectangular
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or hexagonal grid, to form a discrete topological mapping of an input space,
X ∈ RD. Input space consists of a set of vectors xj ∈ RD:

xj = [xj1, xj2, . . . , xjD]T (1)

wi is the weight vector associated to neuron i and is a vector of the same
dimension (D) of the input space, M is the total number of neurons. Obviously,
these weights represent the synaptic connections of each neuron i and can be
denoted:

wi = [wi1, wi2, . . . , wiD]T (2)

The fundamental principle of SOM is the soft competition between the
nodes in the output layer; not only the node (winner) but also its neighbors
are updated [28].

A SOM architecture can be found in Fig. 1.

Fig. 1. The SOM (fully connected) architecture.

All the weights w1,w2, . . . ,wM are initialized to random numbers, in the
range of the corresponding input characteristics. We also introduce a discrete
time index t such that x(t), t = 0, 1, . . . is presented to network at time t and
wi(t) is the weight vector of neuron i computed at time t. The available input
vectors are recycled during the training (or learning) process: a single pass over
the input data is called an epoch.

On-Line Training of SOM. In the conventional “on-line” or “flow-through”
method, the weight vectors are updated recursively after the presentation of each
input vector. As each input vector is presented, the Euclidean distance between
the input vector and each weight vector is computed:

di(t) = ||x(t) − wi(t)||2 (3)

Next, the winning or best-matching node (denoted by subscript c) is deter-
mined by:

c = {i,minidi(t)} (4)
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Note that we suppress the implicit dependence of c on discrete time t. The
weight vectors are updated using the following rule:

wi(t + 1) = wi(t) + α(t) · hci(t) · [x(t) − wi(t)] (5)

where α(t) is the learning-rate factor and hci(t) is the neighborhood function.
The learning rate factor controls the overall magnitude of the correction to the
weight vectors, and is reduced monotonically during the training phase. The
neighborhood function controls the extent to which wi(t) is allowed to adjust in
response to an input most closely resembling wc(t) and is typically a decreasing
function of the distance on the 2-D lattice between nodes c and i. We use the
standard Gaussian neighborhood function:

hci(t) = exp

(
−||ri − rc||2

σ(t)2

)
(6)

where ri and rc denote the coordinates of nodes i and c, respectively, on the
output space (usually two-dimensional grid). The width σ(t) of the neighbor-
hood function decreases during training, from an initial value comparable to the
dimension of the lattice to a final value effectively equal to the width of a sin-
gle cell. It is this procedure which produces the self-organization and topology
preserving capabilities of the SOM: presentation of each input vector adjusts
the weight vector of the winning node along with those of its topological neigh-
bors to more closely resemble the input vector. The converged weight vectors
approximate the input probability distribution function, and can be viewed as
prototypes representing the input data.

Batch Training of SOM. The SOM update given by Eq. (5) is “on-line” in the
sense that the weight vectors are updated after the presentation of each input
record. In the batch SOM algorithm (proposed in [26]), the weights are updated
only at the end of each epoch according to:

wi(tf ) =

∑t′=tf
t′=t0

h̃ci(t′) · x(t′)∑t′=tf
t′=t0

h̃ci(t′)
(7)

where t0 and tf denote the start and finish of the present epoch, respectively, and
wi(tf ) are the weight vectors computed at the end of the present epoch. Hence,
the summations are accumulated during one complete pass over the input data.
The winning node at each presentation of new input vector is computed using:

d̃i(t) = ||x(t) − wi(t0)||2 (8)
c = {i,minid̃i(t)} (9)

where wi(t0) are the weight vectors computed at the end of the previous epoch.
The neighborhood functions h̃ci(t) are computed using Eq. (6), but with the
winning nodes determined from Eq. (9). This procedure for computing the neigh-
borhood function is identical to the Voronoi partinioning. As is in the on-line
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method, the width of the neighborhood function decreases monotonically over
the training phase.

A more concrete explanation of the batch algorithm is given by the following
equation:

wi =

∑
j nj · hji · x̃j∑

j nj · hji
(10)

where nj is the number of input items mapped into node j and the index j runs
over the nodes in the neighborhood of node i. The basic idea is that for every
node j in the grid, the average x̃j of all those input items x(t) is formed that
have node j (i.e., vector wj) as the closest node. The above equation is used for
updating the node weight vectors and this is repeated for a few times, always
using the same batch of input data items to determine the updated x̃j .

The batch SOM offers several advantages over the conventional on-line SOM
method. Since the weight updates are not recursive, there is no dependence upon
the order in which the input records are presented. In addition to facilitating the
development of data-partitioned parallel methods, this also eliminates concerns
[34] that input records encountered later in the training sequence may overly
influence the final results. The learning rate parameter α(t) does not appear in
the batch SOM algorithm, thus eliminating a potential source of poor conver-
gence [9] if this parameter is not properly specified.

The mathematical theory of SOM is very complicated and only the one-
dimensional case has been analyzed completely [16], since SOM belongs to the “ill
posed” problems in mathematics. The SOM can also be looked at as a “nonlinear
projection” of the probability density function of high-dimensional input data
onto the two-dimensional display.

Usually, the input is mapped onto a 1- or 2-dimensional map. Mapping onto
higher dimensions is possible as well, but complicates the visualization. The
neurons connected to adjacent neurons by a neighborhood relationship define
the structure of the map. The two most common 2-dimensional grids are the
hexagonal grid and the rectangular grid and are shown in Fig. 2.

(a) Hexagonal grid (b) Rectangular grid

Fig. 2. Typical SOM grids with different neighborhoods around the winner neuron.

The neighborhood function defines the correlation between neurons. The sim-
plest neighborhood function is called bubble; it is constant over the neighborhood
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of the winner neuron and zero otherwise. The neighborhood of different sizes in
rectangular and hexagonal maps can be seen in Fig. 2. A more flexible definition
is the gaussian neighborhood function defined by Eq. (6).

The number of neurons, the dimensions of the map grid, the map lattice and
shape must be specified before training. The more neurons the grid has, the more
flexible the mapping becomes but the computation complexity of the training
phase increases as well. The choice of the map structure and size is both related
to the type of problem and the subjective choice of the user.

2.2 Flexible Structure in Neural Networks and SOM

The norm in artificial neural nets is that classic techniques involve simple and
often fixed network topologies trained via stimulus-based methods such as back-
propagation. However, there are cases in which the structural design of the net-
work is strongly influenced by the environment and by utilizing constructive and
pruning algorithms. Both these algorithmic categories deliver a network which
is gradually adjusted in response to training data. There are many approaches
which apply these algorithms in classic neural networks [6,21,23,35,46].

Also, there are many variations of SOM that allow a more flexible structure
of the output map which can be divided into two categories: In the first type, we
include growing grid (GG) [18], incremental GG [5], growing SOM (GSOM) [1]
all coming with different variants. GG is the only variant which allows growing
a new node from the interior of the grid (but this is a whole row or column of
nodes). In the rest cases, new nodes are generated by a boundary node, despite
the fact that the highest error could have been generated by an internal node.
The idea is that the error will be propagated to the exterior to guarantee that
growing can only be from the boundaries but this process can lead to a map
structure with not perfect topology preservation. Therefore, map size becomes
very wide after a limited number of insertions, with some additional nodes, which
have no effect. MIGSOM [3] allows a more flexible structure by adding neurons
both internally and from the boundary but still does not offer the ability to
remove neurons if necessary.

In the second type of growing variants, the rectangular grid is replaced
with some connected nodes. We distinguish growing cell structures (GCSs) [17],
growing neural gas (GNG) [19] and growing where required [33]. These works
just add the necessary nodes at the same time, to fine-tune the optimal map
size. Nevertheless, GCS and GNG are facing many difficulties for visualizing
high-dimensional data. Visualization in these cases is guaranteed only with low-
dimensional data.

Limitations in growing and visualization led to hierarchical variants of
the previous model like the Growing Hierarchical SOM (GHSOM) [39]. With
GHSOM you can get an idea of the hierarchical structure of the map, but
the growing parameter of the map has to be determined beforehand. Other
approaches (like TreeGNG [13] or TreeGCS [22]) use dendrograms for represen-
tation but due to this tree structure they lose the topological properties.
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Disadvantages of these approaches are: (a) the high computational cost due
to the fact that structure starts from a very basic architecture and has to grow
in order to reach an acceptable structure for the data and (b) the fact that after
adding neurons there is not the possibility of removing a neuron if performance
is not improving.

3 Expanding the Idea of Self-organization in Neuron
Locations

During the classic SOM algorithm neuron positions remain unchanged and the
grid is fixed from the beginning till the end of the training. This facilitates the
process of learning (since neighborhood structure is known beforehand) but is
restricting regarding the final result and ways of visualizing it. We propose a
different and more flexible scheme in regard to position vectors ri of neurons,
which allows a more adaptive form of the neuron grid and acts as an extension
to the batch learning algorithm.

Starting from an already grown map size, AMSOM can adapt both its size
and structure in order to better represent the data at a specific level of detail.
After a specific number of steps, neurons are analyzed to see whether the level of
representation is sufficient or adjustments are needed: removal and/or addition of
neurons. Initially, connections between neurons are determined based on the grid
structure but as training advances, these can change and adjust according to the
way that neuron positions are also changed during the process. The algorithm
flow is described in Fig. 3 and more details about the steps are presented in the
following subsections.

3.1 Phase I: AMSOM Initialization

Grid Structure and Size. The first step of AMSOM algorithm is to define
the initial grid structure (as the classic SOM). This process facilitates training
time in contrast to starting from a small-size structure and building on that as
other approaches do [43]. It is also in agreement with the neural development
which suggests that nearly all neural cells used through human lifetime have
been produced in the first months of life [14]. This overproduction of neuron
cells is thought to have evolved as a competitive strategy for the establishment
of efficient connectivity [10].

Having this in mind, the initial structure of SOM is determined. Several
empirical rules [37] suggest that the number of neurons should be 5·√N where N
is the number of patterns in the dataset. In this case, the two largest eigenvalues
of the training data are first calculated, then the ratio between side lengths of the
map grid is set to the ratio between the two maximum eigenvalues. The actual
side lengths are finally set so that their product is close to the number of map
units determined according to [43] rule. The eigenvalues ratio shows how well the
data is flattened and elongated [15]. At this point a more precise determination
of the number of neurons is not essential, since this number will be fine tuned
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1. Initialization Phase
1.1: Derive initial grid structure and size (number of neurons M ) of the AMSOM
1.2: Initialize weight vectors (wi) to random values (according to the value range of features).
1.3: Initialize position vectors (ri) according to the initial grid structure
1.4: Initialize edge connectivity matrix (E) values according to the grid connections
1.5: Initialize edge age matrix (A) values to zero
1.6: Define growing threshold (GT ) according to dimension of the data D and a spreading
factor (SF ).
2. Training phase
for t = 1 : maxepochs do

for i = 1 : P do
2.1: Find winner neuronNa according to Equation (9) and increase times that neuron

Na is winner by 1
2.2: Find second best matching neuron Nb (using Equation (9) and excluding Na

from the search)
2.3: Age of all edges between Na and its neighbors increased by one
2.4: Connect Na with Nb (if they were not already connected)
2.5: Reset age between Na and Nb to zero

end for
2.6: Use Equations 12-13 to update neuron weights.
2.7: Use Equations 14-15 to update neuron positions.
2.8:
if neurons need to be added/removed (check agemax and tadd) then add/remove neurons

and update accordingly
end if
2.9:
if error does not change significantly then end training phase
elseContinue
end if

end for
3. Smoothing phase
3.1: Fine-tune weights and deliver the AMSOM neuron weight vectors and positions
3.2: Utilize edge connectivity matrix E and similarity between neuron weight vectors wi in
order to find the optimal number of clusters

Fig. 3. AMSOM algorithm overview.

during the training process. Initially, neurons are connected with their neighbors
following the idea of Fig. 2 using a rectangular or hexagonal grid. For example, if
the algorithm suggests that the initial grid of the AMSOM should be 5×4 (let’s
suppose rectangular), every neuron has 4 neighbors (except the marginal ones).
Figure 4 demonstrates two different topologies, a rectangular and a hexagonal
one with the corresponding connections between neurons.

Vector, Matrix and Parameters Initialization. For each neuron the fol-
lowing are defined and initialized accordingly:
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Fig. 4. Initial grid example (hexagonal and rectangular).

– Neuron vector (weight vector, wi): It is the same as the classic SOM (see Eq.
(2)) and shows the representation of the neuron in the feature (input) space.
Initialization of neuron vectors is random according to literature standards.

– Neuron position (position vector, ri): Depending on the output space (mostly
it is two-dimensional), it’s a vector that shows the position of the neuron.
Initial position vectors are equal to the positions of the neurons in the grid,
i.e., in Fig. 4 one can see the coordinates of neurons according to the structure
(hexagonal or rectangular).

Since the structure of the grid is subject to changes during training, we need
to keep track of the neighbors of each neuron. There is the possibility that some
neurons which where connected in the initial grid become disconnected after
some time (or vice versa). In order to keep track of these changes we introduce
the orthogonal and symmetrical matrices E and A (both size M × M) where
E(p, q) shows if neurons p and q are connected (0 translates to no connection, 1
translates to connected neurons) and A(p, q) shows the age of edge (as implied
by E(p, q)) between neurons p and q: This will be used in order to determine
which neurons had incidental connections to other neurons or strong connections
as training moves forward. When A(p, q) is 0 that means that neurons p and q
were closest neighbors at current epoch but any other value (i.e., 2) implies that
neurons p and q were closest neighbors some epochs before (i.e., 2). An example
of matrices E and A is seen in Fig. 5.

In this example, neurons number (M) is 4 and connectivity matrix E shows
how neurons are connected to each other (as implied by the graph). Age matrix
A shows how many epochs an edge has “survived”: Connection between neuron
#1 and #2 has age 2 whereas connection between neuron #2 and #4 has age
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A =

0 2 4 0
2 0 0 0
4 0 0 1
0 0 1 0

, E =

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

Fig. 5. Example of matrices A and E describing connections between AMSOM neurons.

0. Notice that age 0 can either mean that neurons are not connected, like neu-
rons #1 and #4 or that neurons are connected at this current epoch (so their
connection is “recent”), like neurons #2 and #4.

Also, at this stage the growing threshold GT of the map is defined as a
function of data dimension (D) and a spread factor (SF ) defined by the user.
Formula used is adapted from [1] and is the following:

GT = −ln(D) × ln(SF ) (11)

Generally, a SF value of 0.5 always yields good results but its fine tuning is
up to the user requirements and the dataset structure.

3.2 Phase II: Training

Weight and Position Updating. For the weight learning of neurons, the SOM
batch algorithm is utilized, as it was given in Eqs. 7–10, which are repeated here
for clarity.

wi(t + 1) =

∑
j nj(t) · hji(t) · x̃j(t)∑

j nj(t) · hji(t)
(12)

hji(t) = exp

(
−||rj − ri||2

σ(t)2

)
(13)

where:

– wi(t + 1) marks neurons i updated weight (at epoch t + 1),
– t marks current epoch and t + 1 marks the next epoch,
– nj(t) marks the number of patterns that are assigned to neuron j,
– hji(t) marks the neighborhood function and is a measure of how close are

neuron j and neuron i,
– x̃j(t) is the mean feature vector of all x that are assigned to neuron j at epoch

t,
– rj , ri are the position vectors (in the output space) for neurons j and i,
– σ(t) is the adaptation factor, decreasing through training.

Building on top of this, at the end of each epoch, the neuron position vectors
are adjusted in a similar manner to the SOM training algorithm. In more detail,
at the end of each epoch and after the neuron weight vectors update is over, the
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distances between the neuron vectors (wi) are computed. These distances show
how close neurons are (in the input space) and can be used as a measure in order
to update neuron positions (in the output space). This is achieved through the
following equations:

ri(t + 1) = ri(t) + α(t) ·
∑

j nj(t) · δji(t)(rj(t) − ri(t))∑
j nj(t) · δji(t)

(14)

δji(t) = exp

(
−||wj − wi||2

γ × σ(t)2

)
(15)

where:

– t, nj(t) were defined in Eqs. 12 and 13,
– α(t) denotes the learning rate at epoch t and controls the rate that positions

of neurons are moving,
– δji(t) is a neighborhood function denoting how close neurons j and i are

(during time t and is based on their distance in the input space (i.e., distance
computed based on their vectors wi),

– γ is a parameter that controls the neighborhood shrinking as a fraction of σ
which was used in Eq. (13).

Notice the similarity of δji with hji: both are neighborhood functions and
are used to determine how close two neurons are but the first one does so using
their distances in the feature (input) space while the latter does so using their
distances in the output space (map).

Equation (14) will adjust neuron’s i position vector according to the neurons
which proved winners for more patterns in its neighborhood and less (or even
none) according to neurons which were winners for few patterns (or none). This
process enhances the concept of neighborhood around the neurons that attract
more patterns and also allows to cover any empty spaces in the data representa-
tion. It is expected to improve the training speed, since position updating will
lead to more accurate position vectors that will be used for the next training
epoch and leads to more insightful representations of the neurons in the output
space.

Learning rate α(t) can also be set to a small value 0.01 since the neighborhood
function controls well the percentage of change in the position vectors. It was
selected to update the position vectors with this hybrid on-line-batch SOM rule,
due to the fact that output space is much smaller (in most SOM applications)
than the input space, so in many cases minor adjustments (rather than major
repositioning of the neurons) are necessary in order to guarantee satisfactory
training but also representation. Also notice that the parameter γ which controls
neighborhood shrinking for position can also control how fast the map will be
updated and how neurons are going to affect each other.

Adding and Removing Neurons. During the weight updating process, for
each input (pattern) the best matching neuron is determined (Na) and also the
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second best matching (Nb). At this step the age of all edges between Na and
its neighbors is increased. Afterwards, Na is connected to Nb. If both of the
neurons were already connected then their age is reset to zero. This is another
step that implements the competitive learning rule, since for each new pattern, a
new edge connecting the two closest neurons is drawn. This process is repeated
for all patterns as they are presented to the AMSOM. Finally, at the end of
the epoch for each incident edge between neurons (i, j), if A(i, j) ≥ agemax,
then this edge is removed. agemax can be set to a value not small enough (so as
to avoid many disconnections) but also not big enough (so as to avoid having
a fully connected grid). In our experiments this value was 30. If either of the
implicated neurons becomes isolated from the remainder of the structure, then
it is removed from the grid. The aim here is to remove edges that are no longer
useful because they are replaced by younger edges that are created during the
AMSOM training. That is the reason that each time two neurons are connected
by an edge, then its age is reset to zero. By this process, neurons that were
connected incidentally -especially at the beginning of the training when the
map is still under forming- are disconnected after some epochs. This process
has two distinct advantages: (a) self-organization and competitive learning will
allow (after some epochs) the removal of redundant number of neurons and
(b) adjustment of connections between neurons so as to enhance topological
properties of the dataset. An example of a removal of a neuron is shown in Fig. 6
along with the necessary adjustments to matrices A and E.

Fig. 6. The process of removing neurons in a part of AMSOM: With agemax set to
30, neuron 4 is disconnected from neuron 3 and neuron 1 is disconnected from neuron
2 (notice that matrices A and E are updated accordingly). Neuron 4 is left with no
connections so it is removed.

Also, there is the possibility that after some epochs (tadd), new neurons are
added. The criterion is based on the training progress and when an addition
happens, then new neurons can be added only after a number of epochs (tadd) in
order to allow weight adaptation of the map, before evaluating current structure.
First step is to spot the neuron Nu with the largest quantization error. A new
neuron will be added, if its quantization error is higher than GT , where GT is
the growing threshold of the map: A high value for GT will result in less spread
out map and a low GT will produce a more spread map. If the quantization
error satisfies the above condition then its Voronoi region is considered to be
under-represented and therefore a new neuron has to be added to share the load
of the high-error-valued neuron.
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Regarding the new neuron that will be added, we follow the the biological
process of “cell division” [36]. By this way the neuron with the highest quan-
tization error is “splitted” to two new neurons (instead of just adding one new
neuron somewhere at random with no connections at all). Both new neurons
preserve the same connectivity (and also they are connected to each other) with
the original neuron, thus we achieve a preservation of behavioral link between
the parent and the offspring. Regarding the exact position of the two neurons the
following process is followed: Neuron with the largest error among Nu’s neigh-
bors is spotted (let it be Nv). One neuron will preserve Nu’s position and the
other one will be placed in the middle between Nu and Nv. In detail, weights and
positions of the two new neurons (u1 and u2) are calculated using the following
equations:

wu1 = (1 + β) × wu (16)

wu2 = −β × wu (17)

ru1 = ru (18)

ru2 =
ru + rv

2
(19)

where wu refers to the weight vector of neuron u (neuron that is splitted) and β
is a mutation parameter which can take either a fixed or random value according
to a certain distribution rule (following [36]). In any case, value of β has to be
chosen small in order to avoid a large change both in network topology but
also in the weight vectors. In this paper, β takes a random value according to
a Gaussian distribution with a mean of zero and variance of one. New neurons
retain the same connectivity to other neurons as the parent neuron but age
weights are zeroed. The process of adding a new neuron (along with any changes
in matrices E and A) is described in Fig. 7.

Fig. 7. The process of adding new neurons in a part of AMSOM: Nu is highlighted
as the neuron with the highest error and Nv is the neuron among its neighbors with
the largest error. Neurons N1 and N2 are added instead of Nu, matrices E and A are
updated accordingly and weight/position vectors are determined by Eqs. 16–19.

It has to be pointed out that there is the possibility that a neuron would be
removed from a region of the map and to be added in another region (removing
and adding neurons are consecutive processes). This comes to agreement with
several theories in neural organization, suggesting that cortical regions can adapt
to their input sources and are somewhat interchangeable or “reusable” by other
modalities, especially in vision- or hearing-impaired subjects [44].
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Architecture Adaptation and Termination Criterion. As it is described
before, initial structure of AMSOM is adapted through learning and training in
order to find what is optimal for the number of neurons, their weights and their
connections. The adaptation process starts by training the initial structure of
AMSOM. When the criteria of adding or removing neurons are satisfied, then
the network is adapted. In order to maintain (as possible) the initial structure
(i.e., rectangular or hexagonal or any other lattice selected), after this adaptation
process we re-evaluate all connections of all neurons and make sure that each
neuron has at most Q neighbors (where Q is decided in the beginning, i.e., in the
case of rectangular lattice, Q = 4): This can be ensured by checking edge matrix
E after each epoch and if a neuron is found to have more than Q connections
then only the Q-“recent” are kept (utilizing age of edges in matrix A). This
process is presented in Fig. 8.

Fig. 8. Maintaining the structure of AMSOM: With Q = 4 (i.e., a rectangular grid)
neuron 4 is connected to five neurons, so it’s connection with neuron 6 (oldest connec-
tion) is removed.

By this training scheme, AMSOM simultaneously adapts the structure of the
map (number of neurons and connections) and the weight vectors. Removing and
adding neurons occur when different criteria are met, so they can be applied in
any sequence, depending on when the criteria are satisfied. By applying these
operations repeatedly, AMSOM is expected to find a near-optimal structure and
representation of a given dataset.

Finally, like every SOM algorithm, AMSOM has an upper limit of epochs that
training takes place. This number is set to 1000 but there is also a premature
termination criterion depending on the mean quantization error change between
two consecutive epochs. Thus, if mqe(t) − mqe(t − 1) < ε1 where ε1 is a small
value (like 1E − 06) then the map has reached the desired size (according to the
GT provided) and training is terminated.

3.3 Phase III: AMSOM Finalization and Clustering of the Map

Final phase of AMSOM begins when learning is complete and structure of the
network is not any more changing. No neurons are added or removed at this
phase and no connections between neurons are added or removed but weight
and position vector adaptation is continued with a lower rate. Purpose of this
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process is to smooth out any quantization error and fine tune weights and posi-
tions of the neurons, especially for neurons added at the latter epochs. For this
purpose, neighborhood function (both for Eqs. 12 and 14) is constrained only to
the immediate neighborhood and learning rate α(t) in Eq. (14) is set to 0.001
(even smaller than in phase II). Phase III is concluded when there is no signif-
icant change in mean quantization error (i.e., when mqe(t) − mqe(t − 1) < ε2),
where ε2 is set to a smaller value than ε1 (like 1E − 10).

In order to effectively compute the number of clusters that are discovered by
the AMSOM algorithm, we take into account the graph structure that is created
during training and is represented by matrix E. The result is a segmented map
that represents the clusters. Literature methods for SOM clustering involve the
use of a clustering algorithm like K-means or Hierarhical Agglomerative Cluster-
ing (HAC) [42] or Spectral Clustering [41] but disadvantage of these approaches
is that they require additional (sometimes time consuming) steps after the SOM
training and additional parameters to be determined (e.g. number of clusters K
or a distance measure to be used [7,20,45]). These approaches accurately extract
the clusters when they are well separated but that is not the case when clus-
ter structure is not that direct. Finally, other approaches utilize graph theoretic
methods for partitioning the map but these approaches also rely on extra steps
after the end of SOM training [38]. On the other hand, our proposed approach
has two distinct advantages over traditional SOM clustering algorithms: (a) The
graph construction is inherent to the algorithm, since matrices E and A are
computed during the training process and (b) involves a simple heuristic process
with only one parameter which is automatically determined.

The map to be clustered is represented by an undirected adjacency graph
G(V,E); where V represents the set of neurons after the end of training and E is
the edge adjacency matrix as formed during training. In our proposed approach
we also take into account the similarity between adjacent neurons in terms of the
input space (weight vectors). The exact steps of the algorithm are the following:

– Given a trained AMSOM map and matrix E, we compute the distance between
any adjacent neurons i and j (E(i, j) = 1 for adjacent neurons and dist(i, j) =
||wi − wj ||2 as used in Eq. 15),

– For each adjacent neuron the edge is considered adjacent when dist(i, j) ≤ v,
where v is a threshold,

– For each edge inconsistency (dist(i, j) > v), a null connection is considered in
position (i, j) of the graph (E(i, j) is set to 0), otherwise we retain 1,

– A different class code is assigned to each connected neuron set.

The threshold v is automatically set to the mean value of distance between
all neurons (i, j) ∈ V , so it is not mandatory to be determined, unless there
are specific user requirements: a larger value of v will to less clusters whereas a
smaller value will lead to more clusters. The result is a partitioned map, which
indicates the number of clusters. Obviously, after this process the input patterns
can be projected on the map (by finding the best matching neuron) and the
label of the neuron can be assigned to each input.
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4 Experiments

AMSOM performance has been tested with several literature datasets in order
to evaluate both map quality (in terms of topology preservation) and the num-
ber of epochs needed to converge. Quantization Error (QE) and Topographic
Error (TE) were used as intrinsic measures of evaluation (for more details read-
ers are encouraged to read [4]). All (non-textual) datasets were provided by the
UCI repository1, except the CLUSTER dataset which is a simple and random
but large two-dimensional dataset with four groups. In order to test the scal-
ability of the approach for larger datasets, we also tested AMSOM to a large
textual dataset2. This dataset involves 4 classes from the RCV1 dataset and
counts 9625 documents with 29992 discrete features (which correspond to differ-
ent words, since we are using the bag-of-words model). All datasets used with
their characteristics are presented in Table 1.

Table 1. Quality of AMSOM compared to classic SOM and number of neurons for
different datasets.

Characteristics QE TE # of neurons

Dataset name Instances Features Classes AMSOM SOM AMSOM SOM AMSOM SOM

CLUSTER 1000 3 4 0.108 0.1090 0.028 0.063 121 154

IRIS 150 4 3 0.1047 0.3930 0.009 0.013 40 66

WINE 178 13 3 1.7394 1.8830 0.008 0.017 42 66

IONOSPHERE 351 35 2 2.5697 2.9418 0.0026 0.0057 78 91

CANCER 699 9 2 0.7941 0.9456 0.0145 0.0286 103 132

GLASS 214 10 7 0.9797 1.1178 0.0041 0.0093 43 72

RCV1-4 9625 29992 4 1.6937 2.3251 0.0864 0.1232 431 500

(a) Neuron grid (b) Neuron classes

Fig. 9. Visualization results for CLUSTER dataset (4 classes).

1 http://archive.ics.uci.edu/ml/.
2 http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html.

http://archive.ics.uci.edu/ml/
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
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(a) Neuron grid (b) Neuron classes

Fig. 10. Visualization results for IRIS dataset (3 classes).

(a) Neuron grid (b) Neuron classes

Fig. 11. Visualization results for WINE dataset (3 classes).

Each dataset is shuffled and split to training, testing and validation set (60%,
20% and 20% respectively). Each experiment was performed 20 times and the
results presented here are average over these runs (deviations were small and are
not presented here). Results for AMSOM QE and TE (compared to classic SOM)
along with the number of neurons used by each model are presented in Table 1.
From this table it is obvious that AMSOM’s performance is much better than
classic SOM. AMSOM starts from the same number of neurons as classic SOM
but by removing and adding neurons when necessary reaches a number which is
suitable to represent the dataset. Both QE and TE are improved using AMSOM
algorithm and this improvement is more significant in TE because of the neuron
position changing which allows the map to better adjust to the dataset.

Visualization results for the six small-scale datasets are presented in Figs. 9,
10, 11, 12, 13, 14. In these Figures final positions of the neurons and their
connections are represented. For each neuron the process described in Sect. 3.3
was followed in order to determine the optimal number of clusters but also the
class that each neuron belongs to. For the simple CLUSTER dataset it is obvious
that the four classes are identified and the grid structure can effectively represent
their relations. For the IRIS dataset one class is completely identified whereas the
other two (which are more similar) are also highlighted. Also notice that neurons
which belong to the same class are mostly connected with each other on the grid
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(a) Neuron grid (b) Neuron classes

Fig. 12. Visualization results for IONOSPHERE dataset (2 classes).

(a) Neuron grid (b) Neuron classes

Fig. 13. Visualization results for CANCER dataset (2 classes).

(a) Neuron grid (b) Neuron classes

Fig. 14. Visualization results for GLASS dataset (7 classes).

and only some spontaneous connections between different classes exist. Same
observations can be drawn for the WINE dataset where also the role of “dead”
neurons (neurons that do not represent any input pattern) can be highlighted:
They act as intermediate neurons between classes (see Fig. 11a). Dead neurons
is a well known problem for SOMs [11,30] but as it can be seen in all Figures,
the percentage of dead units is significantly small, which is an improvement
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(a) Original RCV1-4 (balanced classes) (b) RCV1-4 unbalanced example

Fig. 15. Visualization results for RCV1-4 dataset (4 classes).

to the classic SOM algorithm and (like in the WINE dataset) these neurons
act as a border between the different classes. For the more demanding dataset of
IONOSPHERE (see the relatively higher QE), AMSOM manages to differentiate
in a great degree the two classes. Ability of AMSOM when it comes to multiple
class can be seen in GLASS dataset where it successfully manages to highlight
all seven classes and separate the corresponding neurons accordingly. Finally,
visualization of the results on the RCV1-4 dataset is presented in Fig. 15(a).
Due to the high complexity of the dataset (high dimensionality) it was expected
that there would be not many significant changes in the neuron positions or a
great reduction in the neurons’ number. Graph structure is not presented due
to the many connections which make the graph not viewable in such a format,
but the clustering process reveals that the four classes are clearly identifiable
and separable. Moreover, we also conducted a series of experiments in order
to determine how AMSOM can handle unbalanced classes. We used uneven
number of patterns per class and experimental results for different combinations
(very dense and very sparse classes) were also promising. An example of these
experiments where one class is under-represented and one is over-represented
can be seen in Fig. 15(b).

Parameters to be set for AMSOM are the following:

– Spread Factor (SF ) controls the growing threshold (GT ) of the map. For the
experiments presented here a value 0.5 was chosen since it always leads to
satisfactory results and visualizations. In general, provided there is no prior
knowledge on the data examined, a low value of SF (up to 0.3) will allow high-
lighting of the most significant clusters. The formula for computing GT (see
Eq. 11) also involves the dimensionality D of the dataset so that an increasing
dimensionality will allow a more spread map.

– γ parameter is present in Eq. 14 for the neuron position updating. It was found
to effectively control the spreading or shrinking of neuron neighborhood and
by this way can create either more isolated or more connected clusters. Several
experiments were conducted and showed that small values of gamma (1 till
10) produce the best results for all datasets. The higher the γ, the better
topographic preservation (reduced TE) but the quantization error (QE) rises.
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Also, high values of γ tend to increase the number of neurons that remain
unused (dead units) whereas values close to 100 tend to approach the classic
SOM algorithm (position updating is minimal).

– tadd, agemax: Two more parameters that need to be adjusted are agemax and
tadd. For both parameters, 30 epochs were found to be optimal, which is sound
given the fact that 30 epochs is enough time to check whether current structure
performs well (reduced QE) or if adjustments are needed (adding/removing
neurons). Increasing these values will lead to less flexible structures (since
not many opportunities will be given to the AMSOM to adjust itself) while
decreasing their values to fewer epochs will increase instability in terms of
both structure and performance.

Complexity of the developed algorithm is slightly increased due to the need
for updating matrices A and E and also due to the more flexible structure.
The use of batch algorithm (compared to the on-line algorithm) and the use of
compressed representations for all similarity/distance matrices facilitates train-
ing but still introduces an overhead (CPU usage increase of around 10%) is
counterbalanced by the faster training process (in all experiments there was a
decrease in epochs number around 20%) since updating neuron positions clearly
improves training time (requires less epochs) and for memory intensive tasks
like the processing of textual datasets algorithm performed fast enough. Boost-
ing with optimization techniques [32] can however assist handling scalability
issues.

5 Conclusion

In this paper we presented AMSOM, a novel algorithm to perform visual clus-
tering which extends SOM competitive learning in the output space. Neuron
positions may change during this “double” training process and the number
of neurons can be adjusted (addition of new neurons or removal of existing
ones). These innovations allow a more flexible structure grid which has the abil-
ity to represent the dataset more efficiently. Experimental results on different
datasets (with different characteristics in regard to dimensionality, number of
latent classes and origin of the data) show improvement in the performance
of AMSOM against classic SOM algorithm. AMSOM produces better reference
vectors by reducing the Quantization Error, topology is preserved through the
neuron moving by significantly reducing the Topographic Error and the visual-
ization result matches as much as possible the original dataset partitions. Also,
AMSOM produces fewer nodes with no significant effect while at the same time
it reduces the required number of training epochs. Finally, AMSOM provides
a framework to directly estimate the optimal number of clusters in the dataset
with accurate quantitative and qualitative results.

AMSOM provides new insights on how to handle large volumes of otherwise
incomprehensible data covering a wide range of human endeavor (science, busi-
ness, medicine, healthcare, etc.). Obtained results highlight the effective use of
competitive learning and self-organization in neural networks and demonstrate
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that AMSOM can be used with a big variety of datasets. Further work involves
work in the following directions: firstly, evaluate the visualization result and its
ability to facilitate discovery process, secondly, evaluate the algorithm in even
larger datasets and more specifically explore whether statistical properties of the
original data are preserved and finally, explore ways to improve performance in
terms of time and space requirements.
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