
A hybrid Web-based measure for computing semantic relatedness between words

Gerasimos Spanakis Georgios Siolas Andreas Stafylopatis
gspana@ece.ntua.gr gsiolas@image.ntua.gr andreas@cs.ntua.gr

Intelligent Systems Laboratory
National Technical University of Athens
Iroon Polytechneiou 9, 15780, Zografou

Athens, Greece

Abstract

In this paper, we build a hybrid Web-based metric
for computing semantic relatedness between words. The
method exploits page counts, titles, snippets and URLs re-
turned by a Web search engine. Our technique uses tra-
ditional information retrieval methods and is enhanced by
page-count-based similarity scores which are integrated
with automatically extracted lexico-synantic patterns from
titles, snippets and URLs for all kinds of semantically re-
lated words provided by WordNet (synonyms, hypernyms,
meronyms, antonyms). A support vector machine is used
to solve the arising regression problem of word relatedness
and the proposed method is evaluated on standard bench-
mark datasets. The method achieves an overall correlation
of 0.88, which is the highest among other metrics up to date.

1 Introduction

Semantic relatedness between words has always been
a challenging problem in data mining. Nowadays, World
Wide Web (WWW) has become a huge warehouse of data
and documents, with available information for every single
user query. Web search engines retrieve the most relevant
documents, according to the word(s) we provide them, and
the content of the retrieved documents is more or less re-
lated to the common senses of the word(s) given.

We propose a method to compute semantic relatedness
between words based on Web search engines, using the
kinds of semantic relationship provided by the structured
lexical database WordNet [6] (this means: synonyms, hy-
per/hyponyms, antonyms and meronyms) along with tra-
ditional information retrieval techniques. We consider the
three main components of a usual search result structure

(title, snippet, URL), based on the idea that similar words
would appear in the same pages in any of the above compo-
nents.

The remainder of the paper is organized as follows. In
Section 2 we discuss related work dealing with semantic
similarity computation between words (both hand-crafted
and statistical methods). The proposed method is fully
described in Section 3. The conducted experiments and
the benchmark datasets with the evaluation results are pre-
sented in Section 4. In Section 5 we conclude the paper and
give directions for further improvement of our method.

2 Related Work

Semantic relatedness measures are used in many applica-
tions such as word-sense disambiguation [18], query expan-
sion [25], Web-page annotation [4], hence many measures
have been proposed.

Hand-crafted lexical databases such as WordNet [6] en-
code relations between words. Until now, many met-
rics have been defined computing relatedness using various
properties of its database structure ([17], [14], [12], [11],
[9], [2]). The fact that these methods are based on hand-
crafted language resources such as ontologies or thesauri,
brings up several drawbacks such as: time and effort to
build and maintain a repository, absence of proper names,
neologisms, technical terms e.t.c.

On the other hand, Web pages have become a great
source of information for various similarity tasks. Tur-
ney [24] used point-wise mutual information and informa-
tion retrieval from Web search to recognize synonyms. Sa-
hami et al. [19], computed semantic similarity between
two queries using snippets returned for those queries by a
Web search engine. For each query, they collect snippets
from a Web search engine and represent each snippet as a
TF − IDF -weighted term vector [20]. Semantic similar-

1

ity between two queries is then defined as the inner product
between the corresponding centroid vectors.

Chen et al. [3], proposed a double-checking model using
text snippets returned by a Web search engine to compute
semantic similarity between words. For two words P and
Q, they collect snippets for each word from a Web search
engine. They proceed by counting the occurrences of word
P in the snippets for wordQ and the occurrences of wordQ
in the snippets for word P . These values are then combined
nonlinearly to compute the similarity between P and Q.

Iosif et al. [10] came up with an unsupervised model
which, in order to compute the similarity between two
words P and Q, downloads a number of the top ranked
documents for the query P AND Q and applies “wide-
context”and “narrow-context”metrics.

Bollegala et al. [1] proposed a method which exploits
page counts and text snippets returned by a Web search en-
gine. They define various similarity scores for two given
words P and Q using the page count for queries P , Q and
by extracting lexico-syntactic patterns from the text snip-
pets returned by the Web search engine.

3 Method

We propose a statistical method which uses traditional
information retrieval techniques and also takes into account
all kinds of relationship between two words and decides
upon their relatedness. First of all, we apply the ”Bag of
Words” representation [21] to the Web search results text
for each word and compute an early metric (RelBOW) for
word relatedness. Then, we enhance our method by us-
ing four popular co-occurrence measures to calculate page-
count-based similarity metrics for the pairs of the words and
by automatically extracting lexico-syntactic patterns about
the pairs of the words based on the title, snippet and URL
of the Web search results. We then train regression sup-
port vector machines (SVMs) to fetch the relatedness of
word pairs leading to another metric(RelSV M), which is
integrated with the (RelBOW). For evaluation purposes we
applied our approach on standard datasets used in the litera-
ture. More specifically, we use the Similarity-353 dataset
[7] for training the SVM excluding the 28 pairs of the
Miller-Charles dataset [16] which are used for testing and
for the ”Bag of Words” model.

A linear combination of the measure computed with the
”Bag of Words” model (RelBOW) and the measure pro-
vided by the regression support vector machine (RelSV M),
allows to quantify the overall relatedness Reltotal between
two words:

Reltotal = λRelSV M + (1− λ)RelBOW (1)

where λ ∈ (0, 1) is a parameter to weight the contribution
of each method to the hybrid measure.

3.1 The "Bag of Words" model for computing the
RelBOW measure

The traditional document representation is a word-based
vector (Bag Of Words, or BOW), where each dimension is
associated with a term of the dictionary which contains all
the words appearing in the corpus [21]. The value associ-
ated with a given term reflects its frequency of occurrence
within the corresponding document (Term Frequency, or
tf), and within the entire corpus (Inverse Document Fre-
quency, or idf). tf can be computed using the following
equation:

tfi,j =
ni,j∑
k nk,j

(2)

where ni,j is the number of occurences of the considered
term ti in document dj and the denominator is the sum of
number of occurences of all terms in document dj .

Similarly, idf is computed using the following equation:

idfi = log
N

dfi
(3)

where N is the total number of documents and dfi repre-
sents the number of documents which contain the term ti.
Then, the weight of a term i in a document j is computed
using the following equation:

(tf − idf)i,j = tfi,j · idfi (4)

where a high value is reached by a high term frequency (in
the given document) and a low frequency of the term in the
whole collection of documents. The weights hence tend to
filter out common terms.

In our approach, we consider a dataset (S) consisting
of words (w). We notice that Web search results are or-
ganized in fragments containing three parts : the title of
the Web page, the text snippet and the URL of the indexed
page. These three parts contain valuable information about
the context of a word. We aim at representing each word
w with a document d, which is substantiated by the Web
search results for the query for this word w.

Specifically, we retrieve the first 1000 Web search re-
sults for the query of word w and we join all titles and
snippets into one document (d). So now, every word of
the dataset is represented by such a document, to which we
can apply traditional preprocessing techniques (eliminating
stop words, stemming, normalization). A set of documents
is thus obtained, where each document d corresponds to a
word w. After this procedure, if we pick all the different
terms (ti) appearing in all documents (d), we build the dic-
tionary (dict) of our dataset. We choose to omit those terms
with the quantity

∑N
j=0(tf− idf)i,j lower than a threshold.

Equation (4) is used, where i denotes the terms ti, j denotes
the documents d and N is the total number of documents.
We can alternatively choose to include all terms ti.

2

For every document d (thus every wordw) we now create
a vector v(w), where each component i of this vector is set
to the tf − idf value (as computed by equation 4) of the
term ti for the specific document. Consequently, we end up
with |S| vectors (where |S| is the number of words of our
dataset).

The association between two words w1, w2 is then mea-
sured by computing the Dice coefficient between the corre-
sponding vectors using the following equation:

RelBOW (w1, w2) =
2 · v(w1) · v(w2)

||v(w1)||2 + ||v(w2)||2
(5)

where : v(w1) · v(w2) stands for the dot product of the two
vectors and ||v|| stands for the euclidian norm of vector v.
The algorithm is described in Fig. 1.

”Bag of Words” model for computing RelBOW

1: ListOfTermstot ← NULL
2: for all words w from dataset S do
3: - join Titles and Snippets from the first 1000 results

of query(w) into a document d
4: - apply stop-words elimination, stemming, normal-

ization
5: - get the list of terms ListOfTermsw which repre-

sent the document d (thus the wordw) and compute
the tf using equation (2)

6: end for
7:
8: for all different terms ti appearing in all
ListOfTermsw do

9: - compute idf using equation (3)
10: - compute tf − idfi using equation (4)
11: if

∑N
j=0 tf − idfi,j ≥ threshold then

12: - Append ti to ListOfTermstot

13: end if
14: end for
15:
16: - ListOfTermstot will be used to form vector v
17: for all words w from dataset S do
18: - form and fill the v(w) which represents the word

w
19: end for
20:
21: for words w1 and w2 do
22: - compute RelBOW metric according to equation

(5)
23: end for

Figure 1. Description of RelBOW measure

This method has three major drawbacks: (1) it breaks
multi-word expressions into completely independent terms,
(2) it considers polysemous words as one single compo-
nent and (3) it maps synonymous words into different com-
pounds, thus, when applied by its own, has limited effec-
tiveness. It is therefore essential to further embed semantic
information and conceptual patterns so as to be able to en-
hance the prediction capabilities of word relatedness.

3.2 Feature Extraction from Web search results

3.2.1 Page-count-based similarity metrics

The basic idea supporting these metrics is that word co-
occurrence in Web results is likely to indicate semantic sim-
ilarity. Word co-occurrence is expressed through the page
counts of query P AND Q (let P and Q be a pair of words).
However, it is reasonable to take into account not only the
page counts of query P AND Q, but also the number of
documents that include each word (P or Q) individually.

We consider four popular co-occurrence measures,
which express semantic similarity using page counts. The
following notation for the page counts of a Web search en-
gine will be adopted: H(P) denotes the page counts for
query P, H(Q) denotes the page counts for query Q, and
H(P

⋂
Q) denotes the page counts for query P AND Q.

The Jaccard coefficient for a pair of words (P and Q) is
defined as:

Jaccard(P,Q) =
H(P

⋂
Q)

H(P) +H(Q)−H(P
⋂
Q)

(6)

The Overlap coefficient is defined as:

Overlap(P,Q) =
H(P

⋂
Q)

min(H(P), H(Q))
(7)

The Dice coefficient is defined as:

Dice(P,Q) =
2 ·H(P

⋂
Q)

H(P) +H(Q)
(8)

Finally, the PMI (point-wise mutual information) is defined
as:

PMI(P,Q) = log
H(P

⋂
Q)

N
H(P)

N · H(Q)
N

(9)

where N is the number of documents indexed by the Web
search engine. In our experiments we set N = 1010, ac-
cording to the number of indexed pages reported by Google.

3.2.2 Lexico-syntactic pattern extraction using title,
snippet and URL

Consider the following Web search results example for the
query “cats AND dogs”:

Title: Friends of Cats & Dogs - Home
Snippet: The Friends of Cats and Dogs Foundation (Los Amigos
de Gatos y Perros Foundacion) seeks to help stray animals, pets,
and their owners through various ...
URL: www.fcdf.org/cats-and-dogs.html

We notice that both words of the query (cats, dogs)
appear in the title, snippet and the URL with the following

3

patterns: “Cats & Dogs” for the title, “Cats and Dogs” for
the snippet and “cats-and-dogs” for the URL. If we replace
the query words with the wildcards X and Y respectively,
we extract a pattern “X & Y” for the title, a pattern “X and
Y” for the snippet and a pattern “X-and-Y” for the URL.

At this point, we should mention that, by considering all
kinds of semantic relationships present in WordNet (syn-
onyms, hypernyms, meronyms, antonyms), we have the
ability to extract numerous such patterns for pairs of words
depending on the kind of word relationship. However, as
far as this method is concerned, we implemented the algo-
rithm shown in (Fig.2) to extract lexico-syntactic patterns,
extending the algorithm of [1], by taking into account not
only the snippets, but also the titles and the URLs.

Pattern Extraction from Web search results

1: for all wordpairs (A,B) from all classes (synonyms, hy-
pernyms, meronyms, antonyms, non-related words) do

2: T ← GetAllTitles(query(A,B))
3: S ← GetAllSnippets(query(A,B))
4: U ← GetAllURLS(query(A,B))
5: NT ← 0
6: NS ← 0
7: NU ← 0
8: end for
9:

10: for all titles t from T do
11: NT ← NT + GetPatterns(t, A,B)
12: TitlePatterns← CountFrequency NT
13: end for
14: return TitlePatterns
15:
16: for all snippets s from S do
17: NS ← NS + GetPatterns(s,A,B)
18: SnippetPatterns← CountFrequency NS
19: end for
20: return SnippetPatterns
21:
22: for all urls u from U do
23: NU ← NU + GetPatterns(u,A,B)
24: URLPatterns← CountFrequency NU
25: end for
26: return URLPatterns

Figure 2. Pattern extraction algorithm

Given a set T of word-pairs, we get the Google results
for this word pair and then process separately the title, the
snippet and the URL. For each one of these parts and for
all the Web search results, we keep those parts that con-
tain both words. We then examine the “context ”occur-
ring between these two words and omit those examples with
“context”containing more than 4 words and/or words other
than an extended list of common stop-words (procedure
GetPatterns in Fig. 2). (The rest of the words are too
specific for the word-pair). We compute the frequency of
each pattern and build a list of the most common patterns in
the title, snippet and URL for Web search results.

It is obvious that, in order to get the most important pat-
terns, a big enough dataset has to be used. In order to ex-
tract patterns for every WordNet relation we use five differ-
ent classes each one containing around 1800 pairs of syn-
onyms, 1800 pairs of hypernyms, 1800 pairs of meronyms,
1800 pairs of antonyms and 1800 pairs of non-related words
respectively, all derived from WordNet. By processing the
Web search results for the totality of word pairs, we end up
with numerous different patterns describing the four rela-
tions mentioned above.

3.3 Feature selection for selecting the most valu-
able patterns

Apparently, it is not feasible to use a very large number
of patterns to train a regression SVM (or any other model) in
order to decide upon the word relatedness. We have to use
a feature selection algorithm in order to choose the patterns
having the highest discriminative power.

We use the idea of multi-class feature selection [8] in or-
der to determine which features are most important for each
class of the four semantic categories. The pattern selection
algorithm is described in Fig. 3.

Pattern Selection for choosing the most valuable patterns

1: for all classes c of synonyms, hypernyms, antonyms,
meronyms do

2: - rank all features according to criterion M for the sub-
task of discriminating class c vs. all other classes com-
bined

3: - store this feature ranking for class c
4: end for
5:
6: while list of features (list) not complete do
7: - call Round-Robin scheduler to select next class c
8: - select the next feature f from M -ranking for class c
9: - append f to the list if not already present

10: end while

Figure 3. Pattern selection algorithm

Our goal is to rank the patterns by their ability to discrim-
inate each initial class (synonyms, hypernyms, antonyms,
meronyms), which from now on will be called positive
class, against another class (which will be called negative),
consisting of all the other classes combined (i.e. if the
synonyms are the positive class, then the negative class
will contain equal number of hypernyms, antonyms and
meronyms). To achieve this we define a criterion called M .
For each extracted pattern we create a contingency table, as
shown in Table 1. In this table, A denotes pattern frequency
in the positive class examined, B denotes the pattern fre-
quency in the negative class containing pairs of all other
classes, U denotes the total frequency of all patterns for the
positive class examined and V denotes the total frequency
of all patterns for the negative class.

4

Table 1. Contingency table for pattern x
Pattern x Other than x

Freq. for the positive class examined A C=U-A
Freq. for the negative class examined B D=V-B

We define the (Pointwise) Mutual Information (MI) and
Information Gain (IG) [15] measures for our method as fol-
lows:

MI = log
A
N

(A+B)
N · (A+C)

N

(10)

IG = e(A+C,B+D)−[
A

N
·e(A,B)+

C

N
·e(C,D)] (11)

where

e(x, y) = − x

x+ y
· log

x

x+ y
− y

x+ y
· log

y

x+ y
(12)

and we define a novel pattern importance measure (PI):

PI =

{ IG, if MI > 0

0, if MI ≤ 0
(13)

The pattern importance measure omits patterns whose
MI is negative, because negative MI implies (through
Equation 10) logarithm argument value less than 1, which in
turn means that the denominator is greater than the numer-
ator. Through our experiments we noticed that the meaning
of this is that either B and/or C is a large number, an indi-
cation that the pattern is more frequent in classes other than
the one examined.

Using Equation (13) we create feature rankings for every
class and then –through a round-robin process– we choose
the most discriminative (distinct) features that discriminate
each class (omitting the class of non-related words) from
the others. A threshold is used, which is set by the user,
depending on how big we want the feature vector to be. In
Table 2 we present the most discriminative patterns for title,
snippet and URL. The top-3 patterns are different for titles,
snippets and URLs, which implies that there is information
lying under the Web search results structure.

Table 2. Top-3 highly discriminative patterns
Top-3 patterns

Titles Snippets URLs
X or Y X, Y X-or-Y
X in Y X for Y X+Y
X (Y X in Y X/Y

3.4 Creating the feature vector

We construct the feature vector for each pair of words (P
and Q) according to the following procedure. We collect
the Google results for the query “P AND Q” and separate
the titles, snippets and URLs. According to the procedure
described in Section 3.2.1 we get the page-count similar-
ity metrics and then integrate those metrics with the fea-
tures generated through the process described in Section
3.3. By this procedure we form a feature vector of max-
imum dimension 811 (807 lexico-synantic patterns and 4
similarity metrics). By selecting a different threshold of
pattern importance in the round-robin procedure, we can
control the vector dimension. Using these feature vectors
for each word pair we train a regression support vector ma-
chine with the labeled feature vectors of the Similarity-353
dataset (excluding the 28 pairs of Miller-Charles used for
testing). Once we have trained the regression-SVM, we are
in a position to use the system for computing semantic re-
latedness between any two given words. We only need to
create a feature vector for the word pair and the SVM will
compute the relatedness measure.

3.5 Regression SVM for computing the RSV M

measure

In a regression support vector machine (rSVM)[5], the
objective is to estimate the functional dependence of vari-
able y on a set of indepedent variables x (which constitute
the input space, denoted as X). Like in other regression
problems, the starting hypothesis is that the relationship be-
tween the independent and dependent variables is given by
a deterministic function plus some noise ε:

y = f(x) + ε (14)

The task is then to find a functional form for f that can
correctly predict new cases not previously presented to the
SVM. This can be achieved by training the SVM model on
a sample set (training set), a process that involves the se-
quential optimization of an error function:

error =
1
2

wT w + C

N∑
i=0

ξi + C

N∑
i=0

ξ′
i (15)

where C is the capacity constraint (trade-off between train-
ing error and margin), w is the vector of coefficients (w ∈
X), i is an index labeling the N training cases and ξi, ξ′

i are
parameters for handling non-separable data.

Our goal is to minimize the error, subject to :

wT · φ(xi) + b− yi ≤ ε+ ξ′
i (16)

yi − wT · φ(xi)− b ≤ ε+ ξi (17)

5

ξ′
i, ξi ≥ 0 (18)

where b is a constant (b ∈ <) and φ(xi) is a kernel function
(linear, polynomial, RBF, sigmoid) used to transform data
from the input data (indepedent) to the feature space.

We trained an rSVM [13] with an RBF function kernel.
The model was optimized with respect to parameters C and
γ (the γ coefficient of the radial basis function). We ex-
perimented with other kernel types (linear, polynomial) as
well, but best performance was achieved using radial basis
functions. All the results reported in the next section were
achieved by an RBF kernel.

4 Experiments

We evaluated the proposed method by comparing our
results against the Miller-Charles benchmark dataset. The
Miller-Charles dataset consists of 28 word-pairs [16] rated
by a group of 38 human subjects. The word pairs are rated
on a scale from 0 (no similarity) to 4 (perfect synonymy).
As a training set for the rSVM we used the Similarity-353
dataset [7], excluding the 28 pairs of the Miller-Charles
dataset. At this point we must highlight the problem of not
having a large and reliable dataset of semantically related
(and unrelated) words. WordNet provides us with many
word pairs and using a measure from those described in
Section 2, one can produce many word pairs along with
their similarity metric. Two problems arise here. First, the
measures described in Section 2 do not constitute an ab-
solutely correct metric for computing similarity due to the
fact that they are based on an ontology, thus we expect devi-
ations from human results. Second, WordNet contains lots
of words which are not good examples for getting Web re-
sults or are just too farfetched.

For the RelBOW measure, we obtained the first 1000
Web search results for the different words of Miller-Charles
dataset and then by the procedure described in Fig. 1, we
computed the relatedness between the word pairs of the
dataset. Each word was represented by a document con-
sisting of the titles and snippets from all the first 1000 Web
search results returned by Google. Obviously, the vocab-
ulary (each word of the vocabulary is a term of the vector
representing the documents) contains all the words from all
documents. The drawback of this measure, is that, if a word
we want to use in order to compute semantic relatedness
does not exist in our vocabulary, we will have to reform the
features of the vector, reflecting the changes caused by the
new document.

For the RelSV M measure, we trained the Support Vec-
tor Machine for the regression problem, experimenting with
its parameters. The optimized parameters for the SVM are
presented in Table 3.

We analyzed the behavior of the RelSV M measure with
respect to the number of patterns used as features and the

Table 3. Optimal parameters for the SVM
SVM optimal parameters

Parameter Value
Kernel RBF
gamma 0.004
C 7

Figure 4. RelSV M correlation vs. number of
Web results and features

number of Web search results. Fig. 4 shows the impact
that Web results and number of features have on correlation.
We observe that using a small number of Web results and a
small number of features yields low correlation values. As
we increase the number of features and (or) the number of
Web results, we manage to leverage the correlation. More-
over, it seems that, as more Web results and more features
are used, the correlation begins to decay, probably beacuse
the feature vectors become very sparse. Better correlation
is achieved when using a low number of Web results and a
high number of features (patterns). This might be due to the
fact that, in general, only the the first results of Google con-
tain high quality information about the word pair, but atten-
tion is needed so as not to use very few web results because
the correlation begins to decay again. Our experiments in-
dicated the use of 50 Web search results, with a feature-rich
vector (dimension was 811) by choosing a low threshold in
the procedure described in section 3.3 for selecting patterns.

After computing the two individual measures, we exper-
imented on the training set with various values of the λ pa-
rameter in equation (1), in order to weigh the two measures.
The results presented here, were obtained using λ = 0.7
and are normalized in the interval [0, 1] for ease of compar-
ison. Table 4 shows the results of our method in comparison
to other methods and Table 5 displays a comparison of the
characteristics of various methods.

All of the methods were evaluated with respect to the
28 pairs of the Miller-Charles dataset. The Jiang mea-
sure [12] exploits the semantically hierarchical structure of

6

Table 4. Word similarity methods results comparison
Measures miller-

charles
jaccard dice overlap PMI Sahami CODC SemSim Jiang Binary

CS
Proposed

cord-smile 0.13 0.06 0.07 0.08 0.03 0.09 0 0 0.35 0.4 0.23
rooster-voyage 0.08 0.02 0.02 0.03 0.04 0.20 0 0.02 0.08 0 0.29

noon-string 0.08 0.13 0.14 0.11 0.30 0.08 0 0.02 0.18 0.16 0.32
glass-magician 0.11 0.08 0.08 0.27 0.37 0.14 0 0.18 0.68 0.18 0

monk-slave 0.55 0.22 0.23 0.12 0.71 0.10 0 0.38 0.39 0.19 0.32
coast-forest 0.42 0.92 0.92 0.32 0.55 0.25 0 0.41 0.29 0.76 0.45

monk-oracle 1.1 0.07 0.08 0.07 0.32 0.05 0 0.33 0.34 0.47 0.31
lad-wizard 0.42 0.07 0.08 0.05 0.33 0.15 0 0.22 0.32 0.37 0.31

forest-graveyard 0.84 0.10 0.11 0.35 0.59 0 0 0.55 0.19 0.11 0.19
food-rooster 0.89 0.04 0.05 0.39 0.28 0.08 0 0.06 0.4 0.35 0.45

coast-hill 0.87 1 1 0.40 0.53 0.29 0 0.87 0.71 0.18 0.42
car-journey 1.16 0.37 0.39 0.43 0.22 0.19 0.29 0.29 0.33 0.52 0.44

crane-implement 1.68 0.22 0.24 0.13 0.61 0.15 0 0.13 0.59 0.1 0.25
brother-lad 1.66 0.16 0.17 0.33 0.52 0.24 0.38 0.34 0.28 0.58 0.41
bird-crane 2.97 0.24 0.26 0.27 0.57 0.22 0 0.88 0.73 0.59 0.60
bird-cock 3.05 0.33 0.35 0.23 0.53 0.06 0.50 0.59 0.73 0.44 0.53
food-fruit 3.08 0.91 0.91 1 0.57 0.18 0.34 1 0.63 0.79 0.79

brother-monk 2.82 0.18 0.19 0.37 0.55 0.27 0.55 0.38 0.91 0.63 0.47
asylum-madhouse 3.61 0.07 0.08 0.13 1 0.21 0 0.77 0.97 0.51 0.76

furnace-stove 3.11 0.33 0.35 0.14 0.96 0.31 0.93 0.89 0.39 1 0.91
magician-wizard 3.5 0.25 0.27 0.23 0.78 0.23 0.67 1 1 0.59 0.94
journey-voyage 3.84 0.50 0.52 0.21 0.52 0.52 0.42 1 0.88 0.75 0.89

coast-shore 3.7 0.88 0.89 0.53 0.71 0.38 0.52 0.95 0.99 0.5 0.61
implement-tool 2.95 0.50 0.52 0.55 0.53 0.42 0.42 0.68 0.97 0.8 0.72

boy-lad 3.76 0.18 0.19 0.52 0.54 0.47 0 0.97 0.88 0.67 0.75
automobile-car 3.92 0.55 0.57 0.69 0.37 1 0.69 0.98 1 0.76 1

midday-noon 3.42 0.18 0.20 0.25 0.94 0.29 0.86 0.82 1 0.74 0.92
gem-jewel 3.84 0.37 0.39 0.15 0.68 0.21 1 0.69 1 0.53 0.95

Correlation 1 0.27 0.28 0.38 0.62 0.58 0.69 0.83 0.83 0.71 0.88

WordNet and achieves the best correlation among ontology-
based methods, with the drawbacks of these techniques (as
they were described in Section 2). Among Web search re-
sults based methods, the page-count based metrics achieve
the lowest correlations, with PMI being the most accurate.
The Sahami [19] and Iosif [10] measures (unsupervised)
achieve a moderate correlation and the Bollegala [1] met-
ric appears to have the second best performance using only
synonyms. The method proposed here achieves a correla-
tion 0.88, which is the highest among all other metrics up
to date.

5 Conclusion and future work

In this paper we use Web search results to build a Web-
based relatedness measure between pairs of words. The pro-
posed measure exploits all the information of Web search
results (title, snippet, URL) combining traditional infor-
mation retrieval techniques (”Bag of words” model) with
page-count-based similarity metrics along with the extrac-
tion of lexico-syntactic patterns from the results. We took
into account all kinds of relationship provided by WordNet
(synonyms, hypernyms, meronyms, antonyms) and the Web
search results structure information for extracting a measure
of relatedness. We introduced a new measure for feature se-
lection combining mutual information and information gain

and trained a regression classifier model (SVM). The SVM-
based measure(RelSV M) and the ”Bag of words” model
(RelBOW) are combined together to a robust measure. The
proposed method achieves the highest correlation value on
the Miller-Charles dataset compared to the other state-of-
the-art metrics.

We are currently investigating ways to improve the pro-
posed measure. We look into a method of creating a reliable
dataset of related words in order to achieve better training.
In addition, further research is needed to explore ways of
overcoming the drawbacks of RelBOW , thus creating an
even more robust metric. Moreover, we will try to exploit
the information lying in the structure of web search results
using more complex techniques like in [23].

References

[1] D. Bollegala, Y. Matsuo, and M. Ishizuka. Measuring se-
mantic similarity between words using web search engines.
In WWW ’07: Proceedings of the 16th international confer-
ence on World Wide Web, pages 757–766, New York, NY,
USA, 2007. ACM.

[2] A. Budanitsky and G. Hirst. Evaluating wordnet-based mea-
sures of lexical semantic relatedness. Comput. Linguist.,
32(1):13–47, 2006.

[3] H.-H. Chen, M.-S. Lin, and Y.-C. Wei. Novel association
measures using web search with double checking. In ACL-

7

Table 5. Characteristics of different semantic similarity calculation methods
Web
results

page
counts

snippets Web
results
struc-
ture

patterns wordnet document
download

traditional
IR tech-
niques

correlation

Jaccard X X 0.24
Dice X X 0.25
PMI X X 0.63

Overlap X X 0.30
Sahami X X X 0.58
CODC X X 0.69

SemSim X X X X X 0.83
Jiang X 0.83

CS(W/WS) X X X 0.71
Proposed X X X X X X X 0.88

44: Proceedings of the 21st International Conference on
Computational Linguistics and the 44th annual meeting of
the Association for Computational Linguistics, pages 1009–
1016, Morristown, NJ, USA, 2006. Association for Compu-
tational Linguistics.

[4] P. Cimiano, S. Handschuh, and S. Staab. Towards the self-
annotating web. In WWW ’04: Proceedings of the 13th in-
ternational conference on World Wide Web, pages 462–471,
New York, NY, USA, 2004. ACM.

[5] R. Collobert, S. Bengio, and C. Williamson. Svmtorch: Sup-
port vector machines for large-scale regression problems.
Journal of Machine Learning Research, 1:143–160, 2001.

[6] C. Fellbaum, editor. WordNet: An Electronic Lexical
Database (Language, Speech, and Communication). The
MIT Press, May 1998.

[7] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin,
Z. Solan, G. Wolfman, and E. Ruppin. Placing search in con-
text: the concept revisited. ACM Trans. Inf. Syst., 20(1):116–
131, 2002.

[8] G. Forman. A pitfall and solution in multi-class feature se-
lection for text classification. In ICML ’04: Proceedings of
the twenty-first international conference on Machine learn-
ing, page 38, New York, NY, USA, 2004. ACM.

[9] G. Grefenstette. Sextant: Exploring unexplored contexts for
semantic extraction from syntactic analysis. In Proceedings
of the 30st annual meeting of the Association for Computa-
tional Linguistics, ACL, pages 324–329, 1992.

[10] E. Iosif and A. Potamianos. Unsupervised semantic sim-
ilarity computation usingweb search engines. In WI ’07:
Proceedings of the IEEE/WIC/ACM International Confer-
ence on Web Intelligence, pages 381–387, Washington, DC,
USA, 2007. IEEE Computer Society.

[11] M. Jarmasz. Roget”s thesaurus as a lexical resource for nat-
ural language processing. Technical report, University of
Ottawa, 2003.

[12] J. J. Jiang and D. W. Conrath. Semantic similarity based on
corpus statistics and lexical taxonomy. In International Con-
ference Research on Computational Linguistics (ROCLING
X), pages 9008+, September 1997.

[13] T. Joachims. Making large-scale support vector machine
learning practical. Advances in kernel methods: support vec-
tor learning, pages 169–184, 1999.

[14] D. Lin. Automatic retrieval and clustering of similar words.
In Proceedings of the 17th international conference on
Computational linguistics, pages 768–774, Morristown, NJ,
USA, 1998. Association for Computational Linguistics.

[15] C. D. Manning and H. Schútze. Foundations of Statistical
Natural Language Processing. The MIT Press, June 1999.

[16] G. A. Miller and W. G. Charles. Contextual correlates of
semantic similarity. Language and Cognitive Processes,
6(1):1–28, 1991.

[17] P. Resnik. Using information content to evaluate semantic
similarity in a taxonomy. In Proceedings of the 14th Inter-
national Joint Conference on Artificial Intelligence, pages
448–45, 1995.

[18] P. Resnik. Semantic similarity in a taxonomy: An
information-based measure and its application to problems
of ambiguity in natural language. Journal of Artificial Intel-
ligence Research, 11:95–130, 1999.

[19] M. Sahami and T. D. Heilman. A web-based kernel func-
tion for measuring the similarity of short text snippets. In
WWW ’06: Proceedings of the 15th international confer-
ence on World Wide Web, pages 377–386, New York, NY,
USA, 2006. ACM.

[20] G. Salton and M. J. Mcgill. Introduction to Modern Infor-
mation Retrieval. McGraw-Hill, Inc., New York, NY, USA,
1986.

[21] G. Salton, A. Wong, and C. S. Yang. A vector space model
for automatic indexing. Commun. ACM, 18(11):613–620,
1975.

[22] F. Sebastiani and C. N. D. Ricerche. Machine learning in
automated text categorization. ACM Computing Surveys,
34:1–47, 2002.

[23] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Al-
tun. Support vector machine learning for interdependent and
structured output spaces. In ICML ’04: Proceedings of the
twenty-first international conference on Machine learning,
page 104, New York, NY, USA, 2004. ACM.

[24] P. D. Turney. Mining the web for synonyms: PMI–IR ver-
sus LSA on TOEFL. Lecture Notes in Computer Science,
2167:491–502, 2001.

[25] B. Vélez, R. Weiss, M. A. Sheldon, and D. K. Gifford. Fast
and effective query refinement. SIGIR Forum, 31(SI):6–15,
1997.

8

