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Abstract

Etruscan is an ancient language spoken in Italy
from the 7thcentury BC to the 1stcentury AD.
There are no native speakers of the language at
the present day, and its resources are scarce, as
there exist only around 12,000 known inscrip-
tions. To the best of our knowledge, there are
no publicly available Etruscan corpora for natu-
ral language processing. Therefore, we propose
a dataset for machine translation from Etruscan
to English, which contains 2891 translated ex-
amples from existing academic sources. Some
examples are extracted manually, while others
are acquired in an automatic way. Along with
the dataset, we benchmark different machine
translation models observing that it is possi-
ble to achieve a BLEU score of 10.1 with a
small transformer model. Releasing the dataset
1 can help enable future research on this lan-
guage, similar languages or other languages
with scarce resources.

1 Introduction

Etruscan (ISO 639-3 code: ett) is a language
spoken in the Etruria region (modern-day centre
Italy) from the 7thcentury BC to the 1stcentury AD
(Wallace, 2008). It is written right to left using the
Etruscan alphabet, derived from the Greek alphabet
(Wallace, 2008). The predominant word order in
this language is mostly subject-object-verb (Wal-
lace, 2008). This pattern is similar to Latin, but
distinguishing it from other languages like English,
where the words follows the subject-verb-object
order. It has 5 cases (accusative, nominative, gen-
itive, dative and locative), two numbers (singular
and plural) and takes into consideration animacy
and gender (Wallace, 2008).

Only a small number of inscriptions in this lan-
guage survived up to the present day: an estimated
12,000 inscriptions have been recovered (Wallace,

1The data and code are available here:
https://github.com/GianlucaVico/
Larth-Etruscan-NLP.git

2008). However, only a few of them have a sig-
nificant length to be considered complete. Other
ancient languages used in similar areas and periods
in history, such as Latin and Ancient Greek, have
more resources, thus, making natural language pro-
cessing techniques and tools easier to develop for
these languages.

The contribution of this paper is threefold: First,
we build a corpus of Etruscan inscriptions usable
for natural language processing. We use as a start-
ing point existing academic resources for this lan-
guage exist, and we try to create our corpus both
by manual and automatic work. Second, we focus
on the machine translation task from Etruscan to
English. We evaluate whether neural models can
be trained with this data and if they can outperform
less data-hungry models. Finally, we investigate
if it is possible to exploit any similarity between
Etruscan and Latin or Ancient Greek to improve
the aforementioned model.

In Section 2, we introduce state-of-the-art tech-
niques relevant to this paper. Then, in Sections 3
and 4 we explain the methods used to work on the
data and the model used. Section 5 and Section 6
illustrate the experiments and compare the different
techniques. Finally, Section 7 concludes the paper.

2 Literature review

The Etruscan Texts Project (ETP) (Wallace et al.,
2004) is a digital Etruscan corpus which con-
tains 369 inscriptions. The project is based on
Etruskische Texte (Rix and Meiser, 1991) and
is used in the book Zihk Rasna (Wallace, 2008).
Another digital Etruscan work is the Corpus In-
scripionum Etruscarum Plenissimum (CIEP) (Hill,
2018), based on the Corpus Inscriptionum Etr-
uscarum (CIE) (Pauli, 1893).

Similar works exist for Latin and Ancient Greek,
like I.PHI (Sommerschield et al., 2021) and Perseus
(Crane, 1985). In addition, toolkits like CLTK
(Johnson et al., 2021) offer natural language pro-
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cessing for these languages. Projects that aim to in-
crease the resources available for low-resource lan-
guages may also include ancient languages, like the
Tatoeba Translation Challenge (Tiedemann, 2020).
It has Latin and Ancient Greek datasets, however,
it does not include Etruscan.

The machine translation task can be solved via
neural machine translation (Sutskever et al., 2014a),
which involves training neural networks that take
texts from the source language and generate the
translation in the target language. Popular architec-
tures include Long short-term memory (LSTM)
(Hochreiter and Schmidhuber, 1997) and trans-
formers (Vaswani et al., 2017). These models
are sequence-to-sequence (Sutskever et al., 2014b),
meaning they take a sequence as input and generate
a sequence of possibly different lengths as output.
One approach is to feed word or word pieces to the
model like in T5 (Raffel et al., 2020) or Bahdanau
et al. (2014). Yang et al. (2016) and Ling et al.
(2015) show that it is possible to work directly on
characters, while other models (Shahih and Pur-
warianti, 2019 and Bansal and Lobiyal, 2020) use a
hybrid approach by working on both the character
and word sequences.

Besides neural networks, other approaches in-
clude rule-based models, such as dictionary mod-
els, which translate the text based on explicit rules,
and statistical models (Koehn, 2010).

By using the transformer architecture, Ithaca
(Assael et al., 2022) is able to perform textual
restoration and geographical and chronological at-
tribution of ancient Greek inscriptions. The model
consists of a sparse self-attention encoder (Zaheer
et al., 2021) that takes as input the characters and
the words of the input text, and then three feed-
forward blocks generate the output for each task.
Other examples of transformer models working on
ancient languages are the multi-language transla-
tion model Opus-MT (Tiedemann and Thottingal,
2020), tested on the Latin ! English split of the
Tatoeba dataset, or the language model Latin-BERT
(Bamman and Burns, 2020).

Translation models can be evaluated by using
various metrics. Papineni et al. (2002) proposes
BLEU: this metric considers the average matching
precision of n-grams between the reference text and
the machine-translated text. Another metric is TER
(Snover et al., 2006), which measures the quality of
the translation based on the number of edits needed
to change the system text to the reference one. TER

and BLEU are based on word n-grams, while chr-
F (Popović, 2015) uses the F-score of matching
character n-grams.

3 Data

3.1 Etruscan
First, we collect a dataset containing Etruscan texts.
The main sources used are CIEP (Hill, 2018), ETP
(Wallace et al., 2004), and the book "Zikh Rasna: A
Manual of the Etruscan Language and Inscriptions"
(Wallace, 2008), which cites "Etruskische Texte"
(Rix and Meiser, 1991). It is possible to extract
Etruscan inscriptions and their translations where
available from ETP and Zikh Rasna. In addition,
we extract the date and location of the inscriptions.
Also, Zikh Rasna contains a list of Etruscan words
and proper names used to make a dictionary. From
CIEP, we extract only the inscriptions and the trans-
lations. However, the inscriptions are often incom-
plete or noisy due to the structure of CIEP itself
and the limitation of the PDF extracting software
(PyMuPDF, McKie and Liu, 2016). We make two
datasets. The first, ETP, uses data from ETP and
ZIkh Rasna, while the second ETP+CIEP, adds
the data from CIEP.

After removing strings that are in the wrong lan-
guage, the text is normalised. CIEP and ETP use
two different transcription conventions. Also, Etr-
uscan uses several symbols as word separators ("

", "·", ":", "
..."), which are converted to white space

(" "). Table 1 illustrates how the Etruscan alphabet
is transcribed by ETP and by us (Larth). Note that
the transcription is not reversible.

In the end, we obtain 7139 Etruscan texts (561
from ETP and 6578 from CIEP). Among these, a
translation is available for only 2891 inscriptions
(239 from ETP and 2652 from CIEP). Also, the
vocabulary built from ETP contains 1122 words,
of which 956 with a translation. Each word is
also described by 54 binary grammatical features
(e.g., plural, active, passive, ...). The type of text is
not included in the dataset, however, ETP lists on
their website mostly proprietary and funerary texts
(Wallace et al., 2004) (137 and 104 out of 369).

Since the data is limited, we perform data aug-
mentation. Many inscriptions contain proper nouns,
so we use the dictionary we built to replace them
with other proper nouns with the same grammatical
features. The substitution is done simultaneously
on the Etruscan and English texts in order to keep
the translations correct, as shown in Figure 1. Also,
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Etruscan ETP Larth
a a a
b b b
C c c
d d d
e e e
F v v
z z z
h h h
T T th
i i i
k k k
l l l
m m m
n n n
� +

s s
o o o
S s, ś s, sh
p p p
q q q
r r r
s s, ś, c, ć s, sh, s, sh
t t t
V u u
X ‰s sh
f F ph
P X kh
v f f

Table 1: Texts from ETP are already transliterated, but
CIEP transliteration is sometimes ambiguous. We fur-
ther reduce the number of symbols by using a subset of
the Latin alphabet.

inscriptions can be damaged, so parts of the words
cannot be read and the translation models have to
either discard those words or rely only on the re-
maining characters. So, we generate more training
samples by damaging more words. We assume
that the damage occurs at the beginning or end of
the words with a set probability. Also, we assume
the number of damaged characters follows a geo-
metric distribution. In this way, for instance, the
word "clan" can stay unchanged or it might become
"–an", "cla-", "-l–".

3.2 Latin and Ancient Greek
Models introduced later in the paper use Latin or
Ancient Greek documents. Tatoeba eng-lat (Tiede-
mann, 2020) is used to train the Latin model. The
text is normalised and non-Latin characters are re-
moved. For Ancient Greek, we use Perseus (Crane,

ETT: larthal • clan

ENG: son of lartth

ETT: arnthal • clan

ENG: son of arnth

ETT: larisal • clan

ENG: son of laris

...

Figure 1: Example of data augmentation by replacing
proper names. The name is replaced both in the Etruscan
text and the English translation.

1985). In this case, we also remove all diacritical
marks and transliterate the text to Latin. In this way,
all the languages used share the same alphabet.

4 Machine Translation

We compare different models for machine transla-
tion on the BLEU metric but chr-F and TER met-
rics are also reported. The metrics are computed by
SacreBLEU (Post, 2018). Higher BLEU and chr-F
and lower TER indicate a better-performing model.
Moreover, we evaluate the case where we use only
ETP and ETP+CIEP for training and testing the
models.

4.1 Random Model

The output of this model does not depend on the
Etruscan inputs, but only on the training transla-
tions. It assumes that the length of the translations
follows a normal distribution whose parameters are
estimated from the training data. Then, it samples
English tokens from the training distribution. The
experiment is repeated 10 times with random splits
of the dataset in training and testing data. The
resulting metrics are then averaged.

4.2 Dictionary-based Model

The second model is a dictionary-based model
based on the vocabulary provided in Zihk Rasna
(Wallace, 2008). The model assumes that each
word has one meaning and one translation. More-
over, it does not rearrange the word order and it
does not consider the grammar of the source lan-
guage or the target language. This model splits the
input text into word tokens. Then, for each token, it
searches for the exact match in the dictionary. If a
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<pad> <pad> <eng1> <eng2>

<pad> <pad> <ett1> <ett2>

Eng.:

Ett.:

Figure 2: The first approach for the n-gram model.
<eng n> indicates English tokens, while <et n>
are Etruscan tokens; <pad> is the padding token.
The example shows P (<eng1>|<pad><pad><et1>) and
P (<eng2>|<pad><et1><et2>). The context is made up
of Etruscan trigrams.

match is found, it adds the translation to the output;
otherwise, the token is ignored.

4.3 N-gram and Naïve Bayes Models
Then, we try to translate Etruscan taking into
consideration the previous n tokens. The
model estimates the probability distribution
P(engi|etti, etti�1, ...etti�n), where engi and etti

are tokens at position i. This is done either directly
from the training data or as a Naïve Bayes model
with the following expression:

P(engi|etti, etti�1, ...etti�n) /

/ P(engi)
nY

j=0

P(etti�j |engi) (1)

The model assumes that one nthEtruscan token is
translated into the single n

thEnglish token. Figure
2 shows how the sequences are aligned and which
Etruscan context is used for each English token.

A second N-gram model also includes the
previous English tokens in the context by comput-
ing P(engi|etti, ...etti�n, engi�1, ..., engi�n�1)
as shown in Figure 3. When the probability
distribution is estimated directly, we consider the
case when the word order is taken into account and
when it is not. We use beam search to generate the
output.

4.4 IBM Models
Next, we compare our models to existing ones. To
do so, we consider the IBM models (Koehn, 2010)
from the NLTK package (Bird and Loper, 2004).
They are a series of 5 models with increasing com-
plexity. These models consider the alignment be-
tween the source strings and the target strings, how-
ever, the Etruscan-English pairs we are using do

<pad> <pad> <eng1> <eng2>

<pad> <pad> <ett1> <ett2>

Eng.:

Ett.:

Figure 3: the second approach for the n-gram model.
<eng n> indicates English tokens, while <ett n> are
Etruscan tokens; <pad> is the padding token. The
example shows P (<eng1>|<pad><ett1>,<pad><pad>)
and P (<eng2>|<ett1><ett2>,<pad><eng1>). The con-
text is made up of Etruscan and English bigrams.

not contain this information. Therefore, we test the
models as if the sequences were aligned.

IBM1 does not consider the word order. IBM2
introduces the word order, while IBM3 takes also
into consideration that a word can be translated
into zero or more words. IBM4 and IBM5 can also
reorder the output words. Moreover, IBM4 and
IBM5 also need the part-of-speech (POS) tags of
both the source and target sequences. POS tags are
inferred from the grammatical features listed in the
dictionary. For Etruscan, these are obtained by a
manually annotated list of words, while the English
sequences are tagged by NLTK perceptron tagger.

4.5 Transformer Models - Larth

Finally, we propose a transformer model, Larth.
The encoder is based on Ithaca (Assael et al., 2022).
It takes both the characters and the words as input
and concatenates their embeddings. Then, the se-
quence is encoded with a BigBird attention block
(Zaheer et al., 2021). The character and word se-
quences are aligned so that they have the same
length. To do so, we test two approaches: we either
extend the word sequence by repeating the word to-
kens or by adding space tokens as shown in Figure
4.

The decoder uses the encoded and the trans-
lated word sequences as input. First, it applies
self-attention to the translated sequence, and then
it computes the cross-attention between the transla-
tion and the encoded inputs. A feed-forward layer
generates the output. Figure 5 illustrates this archi-
tecture.

First, we train the model from scratch on Etr-
uscan ! English. Then, the model is initially
trained for Latin ! English or Ancient Greek !
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<vinum>

<v> <i> <n> <u><m><_> <t> <h> <i> <c>

<vinum><vinum><vinum><vinum> <_> <thic> <thic> <thic> <thic>

Char:

Word:

Repeated word tokens

<vinum>

<v> <i> <n> <u><m><_> <t> <h> <i> <c>

<_> <_> <_> <_> <_> <thic> <_> <_> <_>

Char:

Word:

Space tokens

Figure 4: Example of how the character and word se-
quence are aligned. The string vinum thic means wine
and water.

Dataset BLEU chr-F TER
ETP+ 0.059 9.263 194.977
CIEP (0.0174) (0.295) (10.676)

ETP 0.324 13.970 133.878
(0.064) (1.150) (11.877)

Table 2: Performance of the random model on the differ-
ent Etruscan datasets. The table reports the mean value
and the standard deviation of the metrics.

English and later fine-tuned on the original task
Etruscan ! English.

Moreover, we investigate the effect of using both
the character and the word sequence by training
with only one of the sequences and the effect of
data augmentation The model uses beam search
when generating the output sequences, but we use
one beam when evaluating during the training for
efficiency. Sequences are truncated at 256 tokens
due to memory and computational resources.

5 Experiments

In this section, we compare different machine trans-
lation models trained on Etruscan data. The models
are compared on the BLEU score.

5.1 Random Model
First, we run the random model on the Etruscan-
Englih data. The dataset is split into 80 % for
training and 20 % for testing. Only English labels
are used for the training. Each experiment is re-
peated 10 times with random dataset splits. Table 2
reports the mean scores and the standard deviation
of the models with different combinations of the
datasets.

5.2 Dictionary-based Models
From the book Zikh Rasna is possible to build a
dictionary containing 821 vocables and their trans-

Output Words

Self Attention

Cross
Attention

Layer
Normalisation

Layer
Normalisation

Output Word
Embedding

+

Feed Forward

x N

Layer
Normalisation

Linear

Logits

V       K       Q

Decoder

Positional
Embedding

Concatenate

BigBird
Self Attentionx N

Layer
Normalisation

Char
Embedding

Char
Sequence

+

Word
Embedding

Word
Sequence

+

Encoder

Figure 5: Transformer architecture used to translate
Etruscan to English. The encoder imitates Ithaca’s torso.
For both the encoder and the decoder, one attention
block is used.

Dataset BLEU chr-F TER
ETP+CIEP 0.167 9.120 89.799

ETP 4.505 40.771 68.135
CIEP 0.000 1.896 98.672

ETP (Suffix) 1.605 37.669 82.666

Table 3: Results of the dictionary-based model when
tested on the different sets. ETP (Suffix) is the model
tested on ETP with the suffix tokenizer.

lations.
We compare two tokenizers for Etruscan: the

first uses white spaces to split the tokens, and the
second also separates the suffixes from the root.
The list of suffixes is also obtained from Zikh Rasna
and the tokenizer recognises 178 suffixes. Table
3 shows the results of this model when translating
Etruscan.

If we consider the example "itun turuce venel
atelinas tinas dlniiaras" with the reference transla-
tion "venel atelinas dedicated this vase to the sons
of tinia", this model predicts "this dedicated venel
atelina tinia". If we use the suffix tokenizer the pre-
diction is "this for him dedicated three this venel
laris atelina shows".
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Context: ETT - Word order: No
N-gram BLEU chr-F TER

1 0.406 7.727 92.605
(0.163) (0.867) (0.960)

2 0.006 3.249 98.035
(0.001) (0.752) (0.821)

3 0.001 2.523 98.553
(0.001) (0.753) (0.821)

Context: ETT - Word order: Yes
N-gram BLEU chr-F TER

1 0.405 7.727 92.605
(0.163) (0.867) (0.960)

2 0.005 3.211 98.013
(0.005) (1.004) (1.089)

3 0.001 2.523 98.531
(0.001) (0.748) (0.870)

Table 4: Mean scores and their standard deviation (in
parenthesis) of the n-gram models that use only the
Etruscan texts.

5.3 N-gram and Naive Bayes models

Similarly to the random models, 80% of the data
is used for training, while the remaining 20% is
for testing. The dataset is ETP. Each experiment is
repeated 10 times with different random splits.

With the N-gram models, we compare models
with a context size of 1, 2 and 3 that use only
Etruscan or both Etruscan and English as context
and whether they consider the word order. Out-of-
vocabulary (OOV) tokens are handled with addi-
tive smoothing. We use 8 beams when generating
the output sequence, however, this is equivalent to
greedy search when the context uses only Etruscan.
Table 4 shows the results of the models that use
only the Etruscan sequence, while Table 5 shows
the models that also use the English translations.

For the Naive Bayes models, we only use a con-
text size of 2 and 3, and the models always consider
the word order. Table 6 reports the results.

5.4 IBM models

We split 80 % of the data for training and 20 %
for testing. Moreover, we use the previously built
dictionary as training data. No alignment informa-
tion is given to the model, but IBM4 and IBM5
receive a dictionary that maps words to POS tags.
We assume that words can only have one tag.

IBM3, IBM4, and IBM5 are trained only with
the dictionary data. Models trained on ETP+CIEP
are tested on ETP+CIEP, while models trained on

Context: ETT-ENG - Word order: No
N-gram BLEU chr-F TER

1 0.218 3.059 92.902
(0.018) (0.301) (1.160)

2 0 0 100
(0) (0) (0)

3 0 0 100
(0) (0) (0)

Context: ETT-ENG - Word order: Yes
N-gram BLEU chr-F TER

1 0.447 5.360 92.105
(0.211) (0.856) (1.117)

2 0.000 0.370 99.705
(0.000) (0.167) (0.346)

3 0.000 0.357 99.690
(0.000) (0.097) (0.297)

Table 5: Mean scores and their standard deviation (in
parenthesis) of the n-gram models that use the Etruscan
texts and the English translations. When the scores are
zero is because the models immediately predict the end-
of-sequence (EOS) token.

N Context BLEU chr-F TER

2 Ett. 0.160 12.609 101.482
(0.023) (1.009) (1.251)

3 Ett. 0.146 12.708 103.867
(0.030) (0.921) (1.220)

2 Ett.-Eng. 0.055 9.547 101.522
(0.048) (1.821) (0.851)

3 Ett.-Eng. 0.055 9.954 103.038
(0.048) (2.103) (1.005)

Table 6: Mean scores and their standard deviation (in
parenthesis) of the Naïve Bayes models.

ETP are tested on ETP as shown in Tables 7 and 8.
As an example, IBM3 translates "eca shuthic

velus ezpus clensi cerine" as "this funerary vel et-
spus son constructed", while the reference trans-
lation is "this funerary monument belongs to vel
etspu it is constructed by his son".

5.5 Transformer Models - Larth

The model is trained for Etruscan ! English trans-
lation with ETP+CIEP and with ETP only. The
models are tested on the same split of the dataset.
Due to the small size of the dataset, 95 % of the
data is used for training.

The optimizer is RAdam (Liu et al., 2019), with
an initial learning rate of 0.002 and 250 warmup
steps. We use a reverse square root learning sched-
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ETP+CIEP
Model BLEU chr-F TER

IBM1 0.402 19.744 89.213
(0.183) (1.178) (0.693)

IBM2 0.392 19.450 89.551
(0.183) (1.383) (0.487)

IBM3(*) 0.105 8.629 91.052
(0.046) (1.148) (1.507)

IBM4(*) 0.105 8.627 91.052
(0.046) (1.148) (1.507)

IBM5(*) 0.105 8.631 91.063
(0.046) (1.147) (1.516)

Table 7: Performance of the IBM models on the
ETP+CIEP dataset. (*): IBM3, IBM4 and IBM5 are
trained only with the dictionary.

ETP
Model BLEU chr-F TER

IBM1 2.187 37.363 73.917
(0.596) (2.011) (2.163)

IBM2 2.104 36.721 74.334
(0.449) (2.098) (2.090)

IBM3(*) 2.482 39.393 71.270
(0.513) (2.229) (2.456)

IBM4(*) 2.482 39.391 71.270
(0.514) (2.228) (2.456)

IBM5(*) 2.481 39.416 71.331
(0.513) (2.235) (2.415)

Table 8: Performance of the IBM models on the ETP
dataset. (*): IBM3, IBM4 and IBM5 are trained only
with the dictionary.

ule. The loss function is cross-entropy, and the
batch size is 32. We set the label smoothing to 0.1.

We first try to train from scratch and with differ-
ent alignment techniques. The BLEU, chr-F and
TER scores are shown in Table 9. We use data
augmentation with ETP+CIEP with the sequences
aligned by repeating the word tokens, however, we
do not use it on ETP due to the decrease in perfor-
mance.

Next, we train the same architecture with only
the word sequence or only the character sequence.
The results are shown in Table 10.

When training the same model with the Latin and
Greek data, it achieved, respectively, BLEU/chr-
F/TER of 0.4968/5.01/151.4 and 0.12/6.186/107.3.
Then, we fine-tune those models with Etruscan as
shown in Table 11.

Larth trained on ETP translates "mi aveles me-

ETP+CIEP
Model BLEU chr-F TER
repeat 10.1 15.11 144.5
space 5.201 16.9 274.8

repeat+unk 2.8 14.8 189.1
repeat+name 1.004 12.2 615.9

ETP
Model BLEU chr-F TER
repeat 9.053 17.24 137
space 5.784 15.88 124.7

Table 9: Larth trained from scratch for Etruscan !
English. Repeat and space indicate how the character
and the word sequence are aligned. +name is trained
with data augmented by changing names, while +unk is
augmented by deleting characters.

ETP+CIEP
Inputs BLEU chr-F TER

char 0.9694 14.42 254.8
word 2.776 13.49 99.88

char+word 10.1 15.11 144.5
ETP

Inputs BLEU chr-F TER
char 0.1431 11.22 528.1
word 7.679 18.48 131.6

char+word 9.053 17.24 137

Table 10: Larth trained from scratch for Etruscan !
English with only the character or the word sequence or
both as input.

tienas" as "i am the tomb" while the reference trans-
lation is "i am the tomb of avele metienas". Note
that in this example "the tomb" is implied and not
mentioned explicitly.

When trained on ETP+CIEP, we have "e ca
shuthi anes cuclnies" translated as "this tomb" but
the reference is "this is the tomb of ane cuclnies".
In this case "the tomb" is mentioned, but the model
misses the name of the owner, which is also men-
tioned.

6 Results & Discussion

Figure 6 and Figure 7 compare the scores of the
models presented in the previous Section. Com-
pared to the random model, the dictionary-based
model shows higher BLEU and chr-F scores and
lower TER scores except when tested only on CIEP.
This suggests that CIEP is noisier than ETP and
that the dictionary is not suited for CIEP.

The N-gram models perform better than random
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Data BLEU chr-F TER
Lat+ETP+CIEP 0.1965 2.195 351.6
Grc+ETP+CIEP 1.011 8.148 215.3

Lat+ETP 0.293 3.784 654.4
Grc+ETP 2.037 6.04 164

Table 11: Larth trained with Latin (Lat) or Ancient
Greek (Grc) and then fine-tuned on Etruscan.

only when using unigrams as context. With longer
n-grams, the performance decrease until the model
only predicts the EOS token. We can make similar
observations for Naïve Bayes models.

IBM models are able to perform better than ran-
dom. When trained on ETP+CIEP, simpler models
work better. This, again, might depend on the noise
in CIEP. IBM3 works better on ETP despite be-
ing trained only with the dictionary. Adding POS
information (IBM4 and IBM5) does not improve
the results. However, on ETP the dictionary-based
model still performs better than the IBM models.

Larth is able to achieve a better BLEU score than
the previous models on both ETP and ETP+CIEP.
However, it needs to use both the character and
word sequences and the word tokens are repeated to
align the two sequences, whereas the other models
only use the word tokens. Using the space token to
align the sequences decrease the performance, but
the BLEU score is still higher than the dictionary-
based model. A similar observation can be made
for the model using only the word sequence. Using
data augmentation or only the character sequences
reduces the performance that is still higher than
random.

Fine-tuning from Latin and Ancient Greek al-
ways performs worse than the dictionary-based
model. This may depend on the small size of the
model that is not able to adapt.

As for chr-F and TER, the dictionary model and
IBM models perform better than Larth. These two
models can only output tokens from the training set
and ignore unknown tokens. Thus, they can gen-
erate longer sequences of correct characters (high
chr-F) and the errors are mainly for unknown to-
kens or from English tokens that are not directly
present in the Etruscan texts like articles (low TER).
Whereas, Larth uses tokens that can be word pieces
and it still generates a translation for unknown to-
kens.

Figure 6: Comparison of the models with the best BLEU
scores on ETP+CIEP. One model from each type is
selected.

Figure 7: Comparison of the models with the best BLEU
scores on ETP. One model from each type is selected.

7 Discussion

In this paper, we present a dataset for Etruscan !
English machine translation. Although the dataset
is not very big, we show that it is possible to train
statistical and transformer models. Given the un-
explored nature of Etruscan language, the fact that
trained models perform better than random is an
important first step for this language. Moreoever,
we demonstrated that Larth performs better than
the IBM models when trained on the available data.

However, our model does not provide any ex-
planation about the generated translation neither it
guarantees whether it is correct. Our model’s per-
formance also depends on the dataset itself, which
does not contain any bibliographic information or
the reasoning that the original authors used to trans-
late the inscriptions. Future work includes deliv-
ering a cleaner and more complete version of the
dataset and the inclusion of additional metadata,
such as bibliographic information, more accurate
location, or interesting graphical information (e.g.
the direction of the inscription).

46



References
Yannis Assael, Thea Sommerschield, Brendan Shilling-

ford, Mahyar Bordbar, John Pavlopoulos, Marita
Chatzipanagiotou, Ion Androutsopoulos, Jonathan
Prag, and Nando de Freitas. 2022. Restoring and
attributing ancient texts using deep neural networks.
Nature.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. CoRR, abs/1409.0473.

David Bamman and Patrick J. Burns. 2020. Latin BERT:
A contextual language model for classical philology.
CoRR, abs/2009.10053.

Mani Bansal and D.K. Lobiyal. 2020. Word-character
hybrid machine translation model. In 2020 8th In-
ternational Conference on Reliability, Infocom Tech-
nologies and Optimization (Trends and Future Direc-
tions) (ICRITO), pages 270–274.

Steven Bird and Edward Loper. 2004. NLTK: The natu-
ral language toolkit. In Proceedings of the ACL In-
teractive Poster and Demonstration Sessions, pages
214–217, Barcelona, Spain. Association for Compu-
tational Linguistics.

Gregory R. Crane. 1985. Perseus digital library.

Jeff Hill. 2018. Corpus inscriptionum etruscarum plenis-
simum.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735–1780.

Kyle P. Johnson, Patrick J. Burns, John Stewart, Todd
Cook, Clément Besnier, and William J. B. Mattingly.
2021. The Classical Language Toolkit: An NLP
framework for pre-modern languages. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing:
System Demonstrations, pages 20–29, Online. Asso-
ciation for Computational Linguistics.

Philipp Koehn. 2010. Statistical Machine Translation,
1st edition. Cambridge University Press, United
States.

Wang Ling, Isabel Trancoso, Chris Dyer, and Alan W.
Black. 2015. Character-based neural machine trans-
lation. CoRR, abs/1511.04586.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu
Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han.
2019. On the variance of the adaptive learning rate
and beyond. CoRR, abs/1908.03265.

Jorj X. McKie and Ruikai Liu. 2016. PyMuPDF.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic evalu-
ation of machine translation. In Proceedings of the

40th Annual Meeting on Association for Computa-
tional Linguistics, ACL ’02, page 311–318, USA.
Association for Computational Linguistics.

Carl Pauli. 1893. Corpus Inscriptionum Etruscarum. J.
A. Barth.
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