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Preface

We are pleased to present the proceedings of the Computer Games Workshop
2007, Amsterdam, June 15-17, 2007. This workshop will be held in conjunc-
tion with the 12" Computer Olympiad and the 15*® World Computer-Chess
Championship. Although the announcement was quite late, we were pleased to
receive no less than 24 contributions. After a “light” refereeing process 22 papers
were accepted. We believe that they present a nice overview of state-of-the-art
research in the field of computer games.

The 22 accepted papers can be categorized into five groups, according to the
type of games used.

Chess and Chess-like Games
In this group we have included two papers on Chess, one on Kriegspiel, and three
on Shogi (Japanese Chess).

Matej Guid and Ivan Bratko investigate in Factors Affecting Diminishing
Returns for Searching Deeper the phenomenon of diminishing returns for addi-
tional search effort. Using the chess programs CRAFTY and RYBKA on a large
set of grandmaster games, they show that diminishing returns depend on (a) the
value of positions, (b) the quality of the evaluation function, and (c¢) the phase
of the game and the amount of material on the board.

Matej Guid, Aritz Pérez, and Ivan Bratko in How Trustworthy is CRAFTY ’s
Analysis of Chess Champions? again used CRAFTY in an attempt at an objective
assessment of the strength of chess grandmasters of different times. They show
that their analysis is trustworthy, and hardly depends on the strength of the
chess program used, the search depth applied, or the size of the sets of positions
used.

In the paper Mowing in the Dark: Progress through Uncertainty in Kriegspiel
Andrea Bolognesi and Paolo Ciancarini show their latest results on Kriegspiel.
This is an incomplete-information chess-variant were the player does not see the
opponent’s pieces. They tested simple Kriegspiel endings and reveal how their
program is able to deal with the inherent uncertainty.

Kosuke Tosaka, Asuka Takeuchi, Shunsuke Soeda, and Hitoshi Matsubara
propose in Extracting Important Features by Analyzing Game Records in Shogi
a method for feature extraction for different groups of Shogi players, using a
statistical analysis of game records. They explain how they were able to achieve
high discriminant rates in their analysis.

Takeshi Ito introduces the idea of Selfish Search in Shogi. This search process
mimics human-like play, based on intuition and linear search. He discusses the
main characteristics of such a system, and demonstrates its application on some
sample Shogi positions.

In Context Killer Heuristic and its Application to Computer Shogi Junichi
Hashimoto, Tsuyoshi Hashimoto, and Hiroyuki Iida propose a new killer heuris-



tic. Unlike the standard killer heuristic, context killer moves are based on what
they call the context-based similarity of positions. Self-play experiments per-
formed in the domain of Shogi demonstrate the effectiveness of the proposed
idea.

Go

It is clear that the complex game of Go attracts more and more attention from
researchers in Artificial Intelligence. Being one of the hardest traditional games
for computers, many research groups undertake the challenge of building strong
Go programs and Go tools. Especially intriguing is the success of Monte-Carlo
simulations as incorporated in most of the current top programs.

In the paper Checking Life-and-Death Problems in Go. I: The Program SCAN-
LD, Thomas Wolf and Lei Shen present their program, which checks solutions
of life-and-death problems for correctness. After discussing the different types of
checks performed by their program, they give statistics resulting from checking a
500-problem Tsume-Go book. They illustrate the mistakes that have been found
by examples. A complete list is available on-line.

In Introducing Playing Style to Computer Go, Esa A. Seuranen discusses the
weaknesses in the current approaches in computer Go and proposes a design,
aimed at overcoming some of the shortcomings. In order to achieve this, a posi-
tion is subdivided into subgames, having local purposes. According to a playing
style the best move is chosen from the best moves for the subgames.

Tristan Cazenave and Nicolas Jouandeau present in their paper On the Par-
allelization of UCT three parallel algorithms for UCT. They all three improve
the results for programs in the field of 9 x 9 Go.

In Monte-Carlo Go with Knowledge-Guided Simulations, Keh-Hsun Chen and
Peigang Zhang identify important Go domain knowledge, suited to be used in
Monte-Carlo Go. They designed knowledge-guided simulations to be combined
with the UCT algorithm, for the 9 x 9 Go domain. Extensive tests against three
top programs demonstrate the merit of this approach.

Rémi Coulom in Computing Elo Ratings of Move Patterns in the Game of
Go demonstrates another method to incorporate domain knowledge into Go-
playing programs. He presents a new Bayesian technique for supervised learning
of move patterns from game records, based on a generalization of Elo ratings.
Experiments with a Monte-Carlo program show that this algorithm outperforms
most previous pattern-learning algorithms.

Jahn-Takeshi Saito, Mark H.M. Winands, Jos W.H.M. Uiterwijk, and H.
Jaap van den Herik propose in their paper Grouping Nodes for Monte-Carlo
Tree Search another idea to enhance Monte-Carlo search in Go programs. They
propose to distinguish two types of nodes in a game tree, move nodes and group
nodes. A technique, called Alternating-Layer UCT, is designed for managing
both types of nodes in a tree consisting of alternating layers of move nodes
and group nodes. Self-play experiments show that group nodes can improve the
playing strength of a Monte-Carlo program.



Other Abstract Games
Next to the above-mentioned papers dealing with the domains of Chess and Go,
six more papers investigate other abstract games.

In An Efficient Approach to Solve Mastermind Optimally, the authors Li-
Te Huang, Shan-Tai Chen, Shih-Chieh Huang, and Shun-Shii Lin deal with the
well-known Mastermind game. They propose a new backtracking algorithm with
branch-and-bound pruning (BABBP). This algorithm is more efficient than pre-
vious algorithms and can presumably be applied to other games as well.

James Glenn, Haw-ren Fang, and Clyde P. Kruskal in A Retrograde Approz-
imation Algorithm for Two-Player Can’t Stop investigate the two-player version
of Can’t Stop, a game designed by Sid Sackson. They present a retrograde ap-
proximation algorithm to solve this game. Results of small versions of the game
are presented.

Aleksander Sadikov and Ivan Bratko demonstrate Solving 20 x 20 Puzzles.
They use real-time A* (RTA*) to solve instances of this large version of the
well-known sliding-tile puzzles in a reasonable amount of time. Their discovery is
based on a recent finding that RTA* works much better with strictly pessimistic
heuristics.

In Reflexive Monte-Carlo Search, Tristan Cazenave shows that the success of
Monte-Carlo methods is not limited to Go, but also can be applied to Morpion
Solitaire. Reflexive Monte-Carlo search for the non-touching version breaks the
current record and establishes a new record of 78 moves.

Another application of Monte Carlo outside the Go domain is described by
Frangois Van Lishout, Guillaume Chaslot, and Jos W.H.M. Uiterwijk in their
paper Monte-Carlo Tree Search in Backgammon. To their knowledge this is the
first application of Monte-Carlo Tree Search to a 2-player game with chance.
Preliminary experiments for Backgammon show that their method is suited for
on-line learning for evaluating positions, contrary to the top-level Backgammon
programs, that are based on off-line learning.

A third application of using Monte Carlo in other games is presented in
The Monte-Carlo Approach in Amazons, by Julien Kloetzer, Hiroyuki lida, and
Bruno Bouzy. Since Amazons is a game that has the huge branching factor in
common with Go, it seemed worthwhile to test Monte Carlo in this domain also.
According to experiments the best way is to combine Monte Carlo with a good
evaluation function to obtain a high-level program.

Gaming Tools
Besides research on specific abstract computer games presented above, two groups
of authors present work on games in a more general framework.

Whereas there has been some work devoted to general gaming engines, these
are mainly restricted to complete-information board games. In Fxtended General
Gaming Model, Michel Quenault and Tristan Cazenave present an open func-
tional model and its tested implementation. This model extends general gaming



to more general games, both card games and board games, both complete- and
incomplete-information games, both deterministic and chance games.

Furthermore, Yngvi Bjérnsson and Jénheidur Isleifsdéttir introduce in GTQL:
A Query Language for Game Trees a language specifically designed to query
game trees. A software tool based on GTQL helps program developers to gain
added insight into the search process, and makes regression testing easier. Ex-
periments show that GTQL is both expressive and efficient in processing large
game trees.

Video Games

Whereas abstract games have been in the main stream of Al research already for
many years, recently video games started to attract attention in an increasing
rate. In the last part of this proceedings we present two papers presenting Al
research in the domain of video games.

In Predicting Success in an Imperfect-Information Game, Sander Bakkes,
Pieter Spronck, Jaap van den Herik, and Philip Kerbusch present their ap-
proach for creating an adaption mechanism for automatically transforming do-
main knowledge into an evaluation function. Experiments are performed in the
RTS game SPRING using TD-learning. A term that evaluates tactical positions
is added. The results obtained with an evaluation function based on the combi-
nation of the defined terms show that the system is able to predict the outcome
of a SPRING game reasonably well.

In the final paper, Inducing and Measuring Emotion through a Multiplayer
First-Person Shooter Computer Game, Paul P.A.B. Merkx, Khiet P. Truong and
Mark A. Neerincx developed a database of spontaneous, multi-modal, and emo-
tional expressions. These were based on facial and vocal expressions of emotions
uttered by players of a multi-player first-person shooter computer game. The
players were then asked to annotate the recordings of their own game-playing.
The annotation results revealed interesting insights in current models of emotion,
which can be of importance in the development of future video games.

We feel that the papers reproduced in this proceedings give a good representation
of current trends in Al research in the domain of computer games. We thank all
authors for the generous way to produce and enhance their papers in the very
short time available. Finally, we wish all attendants a fruitful Workshop!
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Factors Affecting Diminishing Returns
for Searching Deeper

Matej Guid' and Ivan Bratko'

Ljubljana, Slovenia

Abstract. The phenomenon of diminishing returns for additional search effort
has been observed by several researchers. We study experimentally additional
factors that influence the behaviour of diminishing returns that manifest them-
selves in go-deep experiments. The results obtained on a large set of more than
40,000 positions from chess grandmaster games using programs CRAFTY and
RYBKA show that diminishing returns depend on (a) the values of positions, (b)
the quality of evaluation function of the program used, and to some extent also
on (c) the phase of the game, and the amount of material on the board.

1 Introduction

Deep-search behaviour and diminishing returns for additional search in chess have
been burning issues in the game-playing scientific community. Two different ap-
proaches took place in the rich history of research on this topic: self-play and go-deep.
While in self-play experiments, two otherwise identical programs are matched with
one having a handicap (usually in search depth), go-deep experiments deal with best
move changes resulting from different search depths of a set of positions.

The go-deep experiments were introduced for determining the expectation of a new
best move being discovered by searching only one ply deeper. The approach is based
on Newborn's discovery that the results of self-play experiments are closely correlated
with the rate at which the best move changes from one iteration to the next. Newborn
[4] formulated the following hypothesis. Let RI(d + 1) denote the rating improvement
when increasing search depth from level d to level d + 1, and BC(d) the expectation of
finding a best move at level d different from the best move found at level d - 1, then:

BC(d+1) @D

RI(d+1)= BC(d)

-RI(d)

There were some objections about the above equation, e.g. the one by Heinz [1]:
»Please imagine a chess program that simply switches back and forth between a few
good moves all the time. Such behaviour does surely not increase the playing strength
of the program at any search depth.« He suggested that the discovery of »fresh ideas«

! Artificial Intelligence Laboratory, Faculty of Computer and Information Science, University
of Ljubljana, Slovenia. Email: {matej.guid,bratko } @fri.uni-lj.si.



looks like a much better and meaningful indicator of increases in playing strength than
best move change at next iteration of search, and proposes »fresh best« moves instead,
defined as new best moves which the program never deemed best before. However,
determining BC(d) for higher values of d were consistently used in several
experiments. In 1997, Phoenix (Schaeffer [6]) and The Turk (Junghanns et al. [3])
were used to record best-move changes at iteration depths up to 9 plies. In the same
year, Hyatt and Newborn [2] let CRAFTY search to an iteration depth of 14 plies. In
1998, Heinz [1] repeated their go-deep experiment with DarkThought. All these ex-
periments were performed on somehow limited datasets of test positions and did not
provide any conclusive empirical evidence that the best move changes taper off
continuously with increasing search depth.

An interesting go-deep experiment was performed by Sadikov and Bratko [5] in
2006. They made very deep searches (unlimited for all practical purposes) possible by
concentrating on chess endgames with limited number of pieces. Their results
confirmed that diminishing returns in chess exist, and showed that the amount of
knowledge a program has influences when diminishing returns will start to manifest
themselves.

Remarkable follow-up on previous work done on deep-search behaviour using
chess programs was published in 2005 by Steenhuisen [7] who used CRAFTY to repeat
the go-deep experiment on positions taken from previous experiments to push the
search horizon to 20 plies. He used the same experimental setup to search, among
others, a set of 4,500 positions, from the opening phase, to a depth of 18 plies. His
results show that the chance of new best moves being discovered decreases
exponentially when searching to higher depths, and decreases faster for positions
closer to the end of the game. He also reported that the speed with which the best-
change rate decreases depends on the test set used.

The latter seems to be an important issue regarding the trustworthiness of the
various results obtained by go-deep experiments. How can one rely on statistical
evidence from different go-deep experiments, if they obviously depend on the dataset
used? In this paper we address this issue, and investigate the hypotheses that the rate
at which returns diminish depends on the value of the position. Using a large dataset
of more than 40,000 positions taken from real games we conduct go-deep experiments
with programs CRAFTY and RYBKA to provide evidence that the chance of new best
moves being discovered at higher depths depend on:

1. the values of positions in the dataset,
2. the quality of evaluation function of the program used,

and to some extent also on

3. the phase of the game, and the amount of material on the board.



2 Go-deep Design

Chess programs CRAFTY and RYBKA? were used to analyse more than 40.000 posi-
tions from real games played in World Championship matches. Each position occur-
ring in these games after move 12 was searched to fixed depth ranging from 2 to 12
plies.

For the measurements done in the go-deep experiments we use the same definitions
as provided by Heinz and Steenhuisen. Let B(d) denote the best move after search to
depth d, then the following best-move properties were defined:

Best Change B(d) #B(d-1)

Fresh Best B(d)#B(j) Vj<d

(d-2) Best B(d)=B(d -2) and B(d) #B(d - 1)

(d-3) Best B(d) = B(d - 3) and B(d) # B(d - 2) and B(d) # B(d - 1)

We give the estimated probabilities (in %) and their estimated standard errors SE
(Equation 2, N(d) stands for the number of observations at search depth d) for each
measurement of Best Change. The rates for fresh best, (d - 2) best, and (d - 3) best are
given as conditional to the occurrence of a best change. We also provide mean
evaluations of positions at each level of search.

SE= [BC(d)1-BC(d) 2)
N(d)-1

For confidence bounds on the values for best-change rates we use 95%-level of
confidence (A = 1.96). We use the equation given by Steenhuisen (Equation 3, m
represents successes in a sample size of n observations).

2 2 3
m+ii,/m(l—ﬁ)+i
2 n 4

n+ A

Our hypothesis was the following: best-move changes depend on the value of a
given position. It was based on an observation that move changes tend to occur more
frequently in balanced positions. To determine the best available approximation of
“the true value” of each analysed position, the evaluation at depth 12 served as an
oracle. We devised different groups of positions based on their estimated true values.

The rest of the paper is organised as follows: Sections 3 and 4 present the results of
go-deep experiments performed by CRAFTY and RYBKA on different groups of posi-
tions, based on their estimated true values. In Sections 5 and 6 we observe best-move
changes in balanced positions of different groups, based on the phase of the game and
the number of pieces on the board. Properties of the groups of positions are described
at the beginning of each of these sections. We summarise our results in Section 7.

2 CRAFTY 19.2 and RYBKA 2.2n2 were used in the experiments.



3 CRrAFTY Goes Deep

Several researchers have used CRAFTY for their go-deep experiments. However none
had such a large set of test positions at disposal. Steenhuisen observed deep-search
beahaviour of CRAFTY on different test sets and reported different best-change rates
and best-change rate decreases for different test sets. This and the following section
will show that best-change rates strongly depend on the values of positions included in
a test set.

We divided the original test set into six subsets, based on the evaluations of posi-
tions obtained at depth 12 as presented in Table 1. In usual terms of chess players, the
positions of Groups 1 and 6 could be labeled as positions with a “decisive advantage”,
those of Groups 2 and 5 with a “large advantage”, while Groups 3 and 4 consist of
positions regarded as approximately equal or with a “small advantage” at most.

Table 1. Subsets with positions of different range of evaluations obtained at level 12 (CRAFTY).

Group 1 2 3 4 5 6
Evaluation(x) x<-2  -2<x<-1 -1<x<0 0<x<l1 1<x<2 x>2
Positions 4,011 3,571 10,169 18,038 6,008 6,203

Best Change - Crafty

40% T — =~ -

35% 7

30% -

%change

25% 7

20% -

15%

2-3 34 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12
depth
—@ —group 6:x>=2 —A— group 5:1<=x<2 —%—group4:0<=x<1
—+ =group 1:x<-2 —X¥~ group 2: -2 <=x<-1 —l—group 3:-1 <=x<0

Fig. 1. Go-deep results of CRAFTY on the six different groups of positions.

The results for each of the six groups are presented in Fig. 1. The curves clearly
show different deep-search behaviour of the program for the different groups, depend-
ing on the estimated value of positions they consist of. The chance of new best moves



being discovered at higher depths is significantly higher for balanced positions than
for positions with decisive advantage. It is interesting to observe that this phenomenon
does not yet occur at the shallowest search depths, while in the results of RYBKA it
manifests itself at each level of search.

The following two tables show the best-move properties for Groups 4 and 6. While
the results resemble the ones obtained by Steenhuisen on the 4,500 positions of the
ECO test set in a sense that both best change and fresh best rates decrease consistently
with increasing search depth, the rates nevertheless significantly differ for each of the
two groups of positions.

Table 2. Results of CRAFTY for the 18,038 positions of Group 4.

Search Best change Fresh Best (d-2) Best (d-3) Best mean
depth in % (SE) in % in % in % evaluation
2-3 35.96 (0.36) 100.00 - - 0.36
3-4 34.47 (0.35) 74.88 25.12 - 0.37
4-5 33.18 (0.35) 64.16 27.34 8.50 0.37
5-6 32.34 (0.35) 54.38 28.44 11.38 0.37
6-7 30.48 (0.34) 49.53 31.14 9.51 0.37
7-8 29.86 (0.34) 42.81 31.45 11.27 0.38
8-9 27.75 (0.33) 40.02 33.87 10.81 0.38
9-10 26.48 (0.33) 37.77 33.31 10.57 0.38
10-11 24.53 (0.32) 34.79 33.48 11.14 0.38
11-12 23.17 (0.31) 32.26 33.07 12.04 0.39

Table 3. Results of CRAFTY for the 6,203 positions of Group 6.

Search Best change Fresh Best (d-2) Best (d-3) Best mean
depth in % (SE) in % in % in % evaluation
2-3 37.42 (0.61) 100.00 - - 2.64
3-4 32.27 (0.59) 73.93 26.07 - 2.76
4-5 30.13 (0.58) 64.85 24.83 10.33 2.84
5-6 26.60 (0.56) 55.70 28.06 9.70 2.95
6-7 26.21 (0.56) 49.88 27.37 10.52 3.04
7-8 23.99 (0.54) 39.92 31.18 11.02 3.17
8-9 22.44 (0.53) 37.21 32.18 12.72 3.29
9-10 20.47 (0.51) 36.30 30.79 11.50 3.42
10-11 18.30 (0.49) 31.37 32.42 12.07 3.54
11-12 17.85 (0.49) 29.27 29.99 13.91 3.68

The 95%-confidence bounds for Best change (calculated using the Equation 2 given in
Section 2) at the highest level of search performed for the samples of 18,038 and
6,203 positions of Groups 4 and 6 are [22.56;23.97] and [16.91;18.82], respectively.



4 RYBKA Goes Deep

RYBKA is currently the strongest chess program according to the SSDF rating list [8].
To the best of our knowledge there were no previous go-deep experiments performed
with this program. The results in this section will not only confirm that best-change
rates depend on the values of positions, but also demonstrate that the chance of new
best moves being discovered at higher depths is lower at all depths compared to
CRAFTY, which is rated more than 250 rating points lower on the aforementioned
rating list.

Table 4. Subsets with positions of different range of evaluations obtained at level 12 (RYBKA).

Group 1 2 3 4 5 6
Evaluation(x) x<-2  -2<x<-1 -1<x<0 0<x<l1 1<x<2 x>2
Positions 1,263 1,469 9,808 22,644 3,152 2,133

Best Change - Rybka

30% T

25%

20% A

%change

15% -

10% -

5%

2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12
depth
—@ —group 6: x>=2 —A— group 5:1<=x<2 ——group4:0<=x<1
—+ —group 1:x<-2 —¥— group 2:-2 <=x<-1 —l—group 3: -1 <=x<0

Fig. 2. Go-deep results of RYBKA on the six different groups of positions.

The results of RYBKA presented in Fig. 2 resemble the results of CRAFTY in Fig.1,
except that all the curves appear significantly lower on the vertical scale. This result
seems to be in line with the observation, based on the results by Sadikov and Bratko,
that the amount of knowledge a program has (or the quality of evaluation function)
influences deep-search behaviour of a program. The big difference in strength of the



two programs is likely to be the consequence of RYBKA having a stronger evaluation
function; it is as well commonly known that chess players prefer evaluations of this
program to CRAFTY’s evaluations. In their study, Sadikov and Bratko claim that di-
minishing returns will start to manifest themselves earlier using a program with a
stronger evaluation function, based on experiments performed on chess endgames, at
the same time suspecting that similar results would be obtained with more pieces on
the board. The results presented here seem to be in accordance with that conjecture.

Table 5. Results of RYBKA for the 22,644 positions of Group 4.

Search Best change Fresh Best (d-2) Best (d-3) Best mean
depth in % (SE) in % in % in % evaluation
2-3 28.59 (0.30) 100.00 - - 0.31
3-4 27.36 (0.30) 71.42 28.58 - 0.31
4-5 27.00 (0.30) 62.95 27.12 9.93 0.31
5-6 25.44 (0.29) 53.32 28.13 10.45 0.31
6-7 24.00 (0.28) 49.91 26.63 11.21 0.30
7-8 22.88 (0.28) 45.78 26.85 11.37 0.30
8-9 22.50 (0.28) 42.97 25.63 11.46 0.30
9-10 20.73 (0.27) 37.17 28.46 11.31 0.30
10-11 20.03 (0.27) 36.16 27.76 11.78 0.30
11-12 19.01 (0.26) 34.08 27.87 11.85 0.30

Table 6. Results of RYBKA for the 2,133 positions of Group 6.

Search Best change Fresh Best (d-2) Best (d-3) Best mean
depth in % (SE) in % in % in % evaluation
2-3 22.36 (0.90) 100.00 - - 2.49
3-4 20.39 (0.87) 77.24 22.76 - 2.60
4-5 17.63 (0.83) 66.76 24.20 9.04 2.77
5-6 16.41 (0.80) 54.86 25.43 10.57 2.89
6-7 16.32 (0.80) 49.71 26.44 10.06 3.01
7-8 15.24 (0.78) 44.00 23.69 13.23 3.14
8-9 14.49 (0.76) 45.63 24.60 10.36 3.27
9-10 13.31 (0.74) 42.61 23.94 12.68 342
10-11 12.61 (0.72) 37.92 24.16 8.55 3.59
11-12 12.19 (0.71) 36.54 30.00 7.31 3.75

The 95%-confidence bounds for Best change at the highest level of search performed
for the samples of 22,644 and 2,133 positions of Groups 4 and 6 are [18.51;19.53]
and [10.87;13.65], respectively.



5 Diminishing Returns and Phase of the Game

Steenhuisen was the first to point out that the chance of new best moves being
discovered at higher depth decreases faster for positions closer to the end of the game.
However, having in mind that deep-search behaviour depends on the values of
positions in a test set, it seems worthwhile to check whether his results were just the
consequence of dealing with positions with a decisive advantage (at least on average)
in a later phase of the game. For the purpose of this experiment we took only a subset
with more or less balanced positions with depth 12 evaluation in range between -0.50
and 0.50. Our results show that in the positions that occurred in the games later than
move 50, the chance of new best moves being discovered indeed decreases faster,
which agrees with Steenhuisen's observations. The experiments in this and the
following section were performed by CRAFTY.

Table 7. Six subsets of positions of different phases of the game, with evaluations in range
between -0.50 and 0.50, obtained at search depth 12.

Group 1 2 3 4 5
Move no.(x) x<20  20<x<30 30<x<40 40<x<50 x>50
Positions 7,580 5,316 2,918 1,124 891

L

2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12

—*%—<20 —©—20-30 —%—30-40 -&-40-50 —e—>50

Fig. 3. Go-deep results with positions of different phases of the game.

The results presented in Fig. 3 show that while there is no obvious correlation be-
tween move number and the chance of new best moves being discovered at higher
depth, in the positions of Group 5 that occurred closer to the end of the game it
nevertheless decreases faster than in the positions of other groups.
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Table 8. Results for the 7,580 positions of Group 1.

Search Best change Fresh Best (d-2) Best (d-3) Best mean
depth in % (SE) in % in % in % evaluation
2-3 36.41 (0.55) 100.00 - - 0.08
34 33.63 (0.54) 75.56 24.44 - 0.08
4-5 33.35 (0.54) 63.57 27.73 8.70 0.08
5-6 32.39 (0.54) 54.01 29.74 10.55 0.08
6-7 30.83 (0.53) 49.64 31.79 9.33 0.07
7-8 30.08 (0.53) 44.65 31.49 10.22 0.07
8-9 28.10 (0.52) 41.60 31.64 10.47 0.07
9-10 27.40 (0.51) 37.31 34.28 10.01 0.07
10-11 25.66 (0.50) 35.73 3491 10.03 0.07
11-12 25.32 (0.50) 31.16 34.55 11.52 0.07

Table 9. Results for the 891 positions of Group 5.

Search Best change Fresh Best (d-2) Best (d-3) Best mean
depth in % (SE) in % in % in % evaluation
2-3 36.48 (1.61) 100.00 - - 0.07
3-4 33.56 (1.58) 74.58 25.42 - 0.05
4-5 28.96 (1.52) 60.08 29.07 10.85 0.05
5-6 26.26 (1.48) 50.00 28.21 14.96 0.02
6-7 24.13 (1.43) 46.51 29.77 11.16 0.02
7-8 22.22 (1.39) 46.46 27.78 8.08 0.02
8-9 22.33 (1.40) 35.68 33.17 12.06 0.02
9-10 21.44 (1.38) 38.22 27.75 9.95 0.02
10-11 20.31 (1.35) 33.70 32.60 11.05 0.02
11-12 19.30 (1.32) 26.16 36.63 8.14 0.00

The 95%-confidence bounds for Best change at the highest level of search performed
for the samples of 7,580 and 891 positions of Groups 1 and 5 are [24.35;26.31] and
[16.85;22.03], respectively.

6 Diminishing Returns and Material

Phase of the game is closely correlated with the amount of material on the board.
Therefore, in accordance with previous observations, it could be expected that the rate
of best-change properties will be lower in positions with less pieces on the board. The
results of this section confirm that with a total value of pieces less than 15 for each of
the players, the chance of new best moves being discovered at higher depth decreases
faster, albeit only from depth 5 on (also the differences are not so obvious as in the
previous section). In the total value of the pieces, the pawns are counted in and for the
values of pieces the commonly accepted values are taken (queen = 9, rook = 5, bishop
=3, knight = 3, pawn = 1).
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Table 10. Six subsets of positions with different amount of material on the board (each player
starts with the amount of 39 points), with evaluations in range between -0.50 and 0.50,
obtained at search depth 12.

Group 1 2 3 4 5 6
Material(x) x<15 15<x<20 20<x<25 25<x<30 30<x<35 x>35
Positions 3,236 1,737 2,322 2,612 5,882 4,112

20

2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12

- >35 --X--30-35 ——25-29 —%—20-24 - & - 15-19 —&—<15

Fig. 4. Go-deep results with positions with different amount of material on the board.

Fig. 4 shows that material and best move changes are not clearly correlated. It is
only the curve for positions with the total piece value of less than 15 points of material
(for each of the players) that slightly deviate from the others. Surprisingly, we did not
spot any significant deviations in positions with even less material (e.g. < 10) either.

Table 11. Results for the 4,112 positions of Group 6.

Search Best change Fresh Best (d-2) Best (d-3) Best mean
depth in % (SE) in % in % in % evaluation
2-3 37.33 (0.75) 100.00 - - 0.07
3-4 34.53 (0.74) 74.93 25.07 - 0.07
4-5 34.39 (0.74) 64.85 27.02 8.13 0.07
5-6 34.53 (0.74) 56.06 27.96 10.77 0.07
6-7 33.29 (0.74) 50.55 31.48 8.11 0.07
7-8 32.78 (0.73) 44.96 31.90 9.42 0.07
8-9 29.13 (0.71) 43.32 30.05 10.02 0.07
9-10 29.13 (0.71) 40.65 31.72 9.85 0.07
10-11 26.80 (0.69) 35.84 32.76 11.34 0.07
11-12 26.53 (0.69) 31.71 35.20 11.27 0.07
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Table 12. Results for the 3,236 positions of Group 1.

Search Best change Fresh Best (d-2) Best (d-3) Best mean
depth in % (SE) in % in % in % evaluation
2-3 40.17 (0.86) 100.00 - - 0.07
34 36.80 (0.85) 70.19 29.81 - 0.07
4-5 34.92 (0.84) 60.18 30.88 8.94 0.06
5-6 31.40 (0.82) 4941 33.17 11.52 0.05
6-7 29.88 (0.80) 46.74 31.33 10.44 0.05
7-8 28.40 (0.79) 42.87 30.36 9.47 0.04
8-9 26.58 (0.78) 35.93 34.53 11.05 0.04
9-10 25.68 (0.77) 34.18 32.13 12.76 0.04
10-11 24.32 (0.75) 32.15 34.18 10.93 0.03
11-12 24.23 (0.75) 30.74 33.80 9.57 0.03

The 95%-confidence bounds for Best change at the highest level of search performed
for the samples of 4,112 and 3,236 positions of Groups 6 and 1 are [25.20;27.90] and
[22.78;25.73], respectively.

7 Conclusions

Deep-search behaviour and the phenomenon of diminishing returns for additional
search effort have been studied by several researchers, whereby different results were
obtained on the different datasets used in go-deep experiments. In this paper we stud-
ied some factors that affect diminishing returns for searching deeper. The results ob-
tained on a large set of more than 40,000 positions from real chess games using pro-
grams CRAFTY and RYBKA suggest that diminishing returns depend on:

1. the values of positions in the dataset,
2. the quality of evaluation function of the program used, and also on
3. the phase of the game, and the amount of material on the board.

Among other findings, the results also demonstrated with a high level of statistical
confidence that both »best change« and »fresh best« rates (as defined by Newborn [4]
and Heinz [1], respectively) decrease with increasing search depth in each of the sub-
sets of the large dataset used in this study.
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Abstract. Guid and Bratko carried out a computer analysis of games played by
World Chess Champions as an attempt at an objective assessment of chess play-
ing strength of chess players of different times. Chess program CRAFTY was
used in the analysis. Given that CRAFTY’s official chess rating is lower than the
rating of many of the players analysed, the question arises to what degree that
analysis could be trusted. In this paper we investigate this question and other
aspects of the trustworthiness of those results. Our study shows that it is not
very likely that the ranking of at least the two highest-ranked players would
change if (1) a stronger chess program was used, or (2) if the program would
search deeper, or (3) larger sets of positions were available for the analysis.

1 Introduction

The emergence of high-quality chess programs provided an opportunity of a more
objective comparison between chess players of different eras who never had a chance
to meet across the board. Recently Guid and Bratko [4] published an extensive
computer analysis of World Chess Champions, aiming at such a comparison. It was
based on the evaluation of the games played by the World Chess Champions in their
championship matches. The idea was to determine the chess players' quality of play
(regardless of the game score), which was evaluated with the help of computer
analyses of individual moves made by each player. The winner according to the main
criterion, where average deviations between evaluations of played moves and best-
evaluated moves according to the computer were measured, was Jose Raul Capab-
lanca, the 3rd World Champion, which to many came as a surprise (although Capab-
lanca is widely accepted as an extremely talented and a very accurate player).

A version of that article was republished by a popular chess website,
ChessBase.com [3], and various discussions took place at different blogs and forums
across the internet, while the same website soon published some interesting responses
by various readers from all over the world, including some by scientists [2]. A
frequent comment by the readers could be summarised as: “A very interesting study,
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of Ljubljana, Slovenia. Email: {matej.guid,bratko } @fri.uni-lj.si.

2 Intelligent Systems Group, Department of Computer Science and Artificial Intelligence, Uni-
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but it has a flaw in that program CRAFTY, whose rating is only about 2620, was used
to analyse the performance of players stronger than this. For this reason the results
cannot be useful”. Some readers speculated further that the program will give better
ranking to players that have a similar strength to the program itself. In more detail, the
reservations by the readers included three main objections to the used methodology:

- the program used for analysis was too weak,

- the depth of the search performed by the program was too shallow?,

- the number of analysed positions was too low (at least for some players).

In this paper we address these objections in order to determine how reliable
CRAFTY (or any other fallible chess program) is as a tool for comparison of chess
players, using the suggested methodology. In particular, we were interested in
observing to what extent is the ranking of the players preserved at different depths of
search. Our results show, possibly surprisingly (see Fig. 1), that at least for the players
whose score differentiate enough from the others (as is the case for Capablanca and
Kramnik on one side of the list, and Euwe and Steinitz on the other) the ranking
remains preserved, even at very shallow search depths.

depth | best move | evaluation |
2 Bxd5 -1.46
3 Bxd5 -1.44
4 Bxd5 -0.75
5 Bxd5 -1.00
6 Bxd5 -0.60
7 Bxd5 -0.76
8 Rad8 -0.26
9 Bxd5 -0.48
10 Rfe8 -0.14
11 Bxd5 -0.35
12 Nc7 -0.07

Fig. 1. Botvinnik-Tal, World Chess Championship match (game 17, position after white’s 23
move), Moscow 1961. In the diagram position, Tal played 23...Nc7 and later won the game.
The table on the right shows CRAFTY’s evaluations as results of different depths of search. As it
is usual for chess programs, the evaluations vary considerably with depth. Based on this obser-
vation, a straightforward intuition suggests us that by searching to different depths, different
rankings of the players would have been obtained. However, as we demonstrate in this paper,
the intuition may be misguided in this case, and statistical smoothing prevails.

It is well known for a long time that strength of computer chess programs increases
with search depth. Already in 1982, Ken Thompson [8] compared programs that
searched to different search depths. His results show that searching to only one ply

3 Search depth in the original study was limited to 12 plies (13 plies in the endgame) plus
quiescence search.
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deeper results in more than 200 rating points stronger performance of the program.
Although later it was found that the gains in the strength diminish with additional
search, they are nevertheless significant at search depths up to 20 plies [6]. The pres-
ervation of the rankings at different search depths would therefore suggest not only
that the same rankings would have been obtained by searching deeper, but also that
using a stronger chess program would not affect the results significantly, since the
expected strength of CRAFTY at higher depths (e.g. at about 20 plies) are already com-
parable with the strength of the strongest chess programs, under ordinary tournament
conditions at which their ratings are measured (see [7] for details).

We also studied how the scores and the rankings of the players would deviate if
smaller subsets of positions were used for the analysis, and whether the number of
positions available from world championship matches suffices for successful ranking
of the World Champions.

2  Method

We used the same methodology as Guid and Bratko [4] did in their study. Games for
the title of “World Chess Champion”, where the fourteen classic World Champions
contended for or were defending the title, were selected for analysis. Each position
occurring in these games after move 12 was iteratively searched to depths 2 to 12 ply.
Search to depth d here means d ply search extended with quiescence search to ensure
stable static evaluations. The program recorded best-evaluated moves and their
backed-up evaluations for each search depth from 2 to 12 plies (Fig. 2). As in the
original study, moves where both the move made and the move suggested by the
computer had an evaluation outside the interval [-2, 2], were discarded and not taken
into account in the calculations. In such clearly won positions players are tempted to
play a simple safe move instead of a stronger, but risky one. The only difference
between this and the original study regarding the methodology, is in that the search
was not extended to 13 plies in the endgame. Obviously the extended search was not
necessary for the aim of our analysis: to obtain rankings of the players at the different
depths of search.

The average differences between evaluations of moves that were played by the
players and evaluations of best moves suggested by the computer were calculated for
each player at each depth of the search. The results are presented in Fig. 3.
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Fig. 2. In each position, we performed searches to depths from 2 to 12 plies extended with
quiescence search to ensure stable static evaluations. Backed-up evaluations of each of these
searches were used for analysis.
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Fig. 3. Average scores (deviations between the evaluations of played moves and best-evaluated
moves according to the computer) of each player at different depths of search. The players
whose scores clearly deviate from the rest are Capablanca, Kramnik (in positive sense) and
Euwe, Steinitz (in negative sense).*

The results clearly demonstrate that although the deviations tend to decrease with
increasing search depth, the rankings of the players are nevertheless preserved, at least
for the players whose scores differ enough from the others (see Fig. 4). It is particu-
larly impressive that even trivial search to depth of two or three ply does rather good
job in terms of the ranking of the players.

4 The lines of the players whose results clearly deviate from the rest are highlighted. The same
holds for figures 4, 6, and 8.
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Fig. 4. Ranking of the players at different search depths.

In order to check the reliability of the program as a tool for ranking chess players, it
was our goal to determine:
— the stability of the obtained rankings in different subsets of analysed positions,
— the stability of the rankings with increasing search depth.
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Fig. 5. Average scores of each player were computed for 1000 subsets of different sizes. The
graph represents the results for players Fischer and Botvinnik, for subsets consisting of evalua-
tions resulting from search to depth 12.
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For each player, 100 subsets from the original dataset were generated by randomly
choosing 500 positions (without replacement) from their games. The number of avail-
able positions varies for different players, since they were involved in a different
number of matches. About 600 positions only were available for Fischer, while both
for Botvinnik and Karpov this number is higher than 5100 at each depth. The exact
number for each player slightly varies from depth to depth, due to the constraints of
the methodology: positions where both the move made and the move suggested by the
computer had an evaluation outside the interval [-2, 2] had to be discarded at each
depth. Experiments with subsets of different sizes suggest that the size of 500 already
seems to be sufficient for reliable results (Fig. 5).

We observed variability of scores and rankings, obtained from each subset, for each
player and at each search depth. The results are presented in the next section.

3  Results

The results presented in this section were obtained on 100 subsets of the original data-
set, as described in the previous section.

Average scores
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Fig. 6. Average scores of each player at different search depths.

Fig. 6 represents average scores of the players across all the subsets, at each search
depth from 2 to 12. The obvious similarity to the graph in Fig. 3 confirms that the
results obtained on the whole dataset were not coincidental. This conclusion was con-
firmed by observing average scores of the players across all depths for each subset
separately: Capablanca had the best such score in 96% of all the subsets.
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Average standard deviations of the scores
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Fig. 7. Average standard deviations of the scores of the players. The scale is adjusted for easier
comparison with the graph in Fig. 6.

The average standard deviations of the players’ scores show that they are slightly
less variable at higher depths. Anyway, they could be considered practically constant
at depths higher than 7 (Fig. 7). All the standard deviations are quite low, considering
the average difference between players whose score differ significantly.
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Fig. 8. Average rank of the players.

Fig. 8 (similar to Fig. 4) shows that the rankings preserve for Capablanca, Kramnik,
Euwe and Steinitz, whose scores differ significantly from the rest of the players.
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Average standard deviations of the ranks

Fig. 9. Average standard deviations of the players’ ranks (obtained in 100 subsets).

The average standard deviations of the players’ ranks (obtained in 100 subsets)
only slightly increase with increasing search depth and are practically equal for most
of the depths (Fig. 9).

Standard deviations of average rank

rank

Fig. 10. Standard deviations of the average ranks for each player across all depths.
The graph of standard deviations of the average ranks from different depths for

each player separately (Fig. 10) confirms that the rankings of most of the players on
average preserve well across different depths of search.
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4 A Simple Probabilistic Model of Ranking by Imperfect Referee

Here we present a simple mathematical explanation of why an imperfect evaluator
may be quite sufficient to correctly rank the candidates. The following simple model
was designed to show the following:

— To obtain a sensible ranking of players, it is not necessary to use a computer that is
stronger than the players themselves. There are good chances to obtain a sensible
ranking even using a computer that is weaker than the players.

— The (fallible) computer will not exhibit preference for players of similar strength to
the computer.

Let there be three players and let us assume that it is agreed what is the best move
in every position. Player A plays the best move in 90% of positions, player B in 80%,
and player C in 70%. Assume that we do not know these percentages, so we use a
computer program to estimate the players’ performance. Say the program available for
the analysis only plays the best move in 70% of the positions. In addition to the best
move in each position, let there be 10 other moves that are inferior to the best move,
but the players occasionally make mistakes and play one of these moves instead of the
best move. For simplicity we take that each of these moves is equally likely to be
chosen by mistake by a player. Therefore player A, who plays the best move 90% of
the time, will distribute the remaining 10% equally among these 10 moves, giving 1%
chance to each of them. Similarly, player B will choose any of the inferior moves in
2% of the cases, etc. We also assume that mistakes by all the players, including the
computer, are probabilistically independent.

In what situations will the computer, in its imperfect judgement, credit a player for
the “best” move? There are two possibilities:

1. The player plays the best move, and the computer also believes that this is the best
move.

2. The player makes an inferior move, and the computer also confuses this same infe-
rior move for the best.

By simple probabilistic reasoning we can now work out the computer’s
approximations of the players’ performance based on the computer’s analysis of a
large number of positions. By using (1) we could determine that the computer will
report the estimated percentages of correct moves as follows: player A: 63.3%, player
B: 56.6%, and player C: 49.9%. These values are quite a bit off the true percentages,
but they nevertheless preserve the correct ranking of the players. The example also
illustrates that the computer did not particularly favour player C, although that player
is of similar strength as the computer.

P =P-Pc+(1-P)-(1-Pg)/N @
P = probability of the player making the best move

P¢ = probability of the computer making the best move
P’ = computer’s estimate of player’s accuracy P
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N = number of inferior moves in a position

The simple example above does not exactly correspond to our method which also
takes into account the cost of mistakes. But it helps to bring home the point that for
sensible analysis we do not necessarily need computers stronger than human players.

5 A More Sophisticated Mathematical Explanation

How come the rankings of the players, as the results demonstrate, preserve rather
well, despite the big differences in evaluations across different search depths? In the
sequel we attempt to provide an explanation for this phenomenon.

Suppose we have an estimator A that measures the goodness of an individual M in a
concrete task, by assigning this individual a score (S), based on some examples. The
estimator assigns different scores to the respective individuals and therefore has a
variance associated:

Var! = E(s? - E(s2)f @

The estimator gives an approximation (S,*) of the real score (S,,) of the individual,
which results in a bias:

Bias), =E(s} - 5,,) 3)

The probability of an error in comparison of two individuals, M and N, using the
estimator A, only depends on the bias and the variance. Given two different estima-
tors, A and B, if their scores are equally biased towards each individual (Bias) =
Biasy” and Bias,® = Biasy®) and variances of the scores of both estimators are equal
for each respective individual (Vary/* = Vary® and Vary® = Vary®), then both estima-
tors have the same probability of committing an error (Fig. 11).

This phenomenon is commonly known in the machine-learning community and has
been frequently used, e.g., in studies of performances of estimators for comparing
supervised classification algorithms [1, 5]. In the sequel we analyse what happens in
comparisons in the domain of chess when estimators based on CRAFTY at different
search depths are used, as has been done in the present paper.

In our study the subscript of Sy refers to a player and the superscript to a depth of
search. The real score S, could not be determined, but since it is commonly known
that in chess the deeper search results in better heuristic evaluations (on average), for
each player the average score at depth 12, obtained from all available positions of
each respective player, served as the best possible approximation of that score. The
biases and the variances of each player were observed at each depth up to 11, once
again using the 100 subsets, described in Section 2.
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Fig. 12. Average biases, standard deviations of them, and standard deviations of the scores.

The results are presented in Fig. 12. The standard deviation of the bias over all
players is very low at each search depth, which suggests that Bias,," is approximately
equal for all the players M. The program did not show any particular bias at any depth
towards Capablanca nor towards any other player. Moreover, the standard deviation is
practically the same at all levels of search with only a slight tendency to decrease with
increasing search depth. Standard deviations of the scores are also very low at all
depths, from which we could assume that Vary" = Vary,® also holds. For better visu-

25



alisation we only present the mean variance, which as well shows only a slight ten-
dency to decrease with depth. To summarise, taking into account both of these facts,
we can conclude that the probability of an error of comparisons performed by CRAFTY
at different levels of search is practically the same, and only slightly diminishes with
increasing search depth.

6 Conclusion

In this paper we analysed how trustworthy are the rankings of chess champions, pro-
duced by computer analysis using the program CRAFTY [4]. In particular, our study
was focused around frequently raised reservations expressed in readers’ feedback: (1)
the chess program used for the analysis was too weak, (2) the depth of the search
performed by the program was too shallow, and (3) the number of analysed positions
was too low (at least for some players).

The results show that, at least for the two highest ranked and the two lowest
ranked players, the rankings are surprisingly stable over a large interval of search
depths, and over a large variation of sample positions. It is particularly surprising that
even extremely shallow search of just two or three ply enable reasonable rankings.
Indirectly, these results also suggest that using other, stronger chess programs would
be likely to result in similar rankings of the players.
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Abstract. Kriegspiel is a wargame based on the rules of Chess. A player
only knows the position of his own pieces, while his opponent’s pieces
are “in the dark”, ie. they are invisible. A Kriegspiel player has to guess
the state of the game and progress to checkmate being in the dark about
the history of moves (but he can exploit the messages of a referee).
Thus, computer playing of Kriegspiel is difficult, because a program has
to progress in the game even with scarce or no information on its op-
ponent’s position. It is especially interesting to study the progress of
computer play of simple Kriegspiel endings. We show how we tested a
program able to play simple Kriegspiel endings to see how it progresses
through uncertainty.

1 Introduction

Kriegspiel is a Chess variant similar to wargames. Each player uses a normal
chessboard with normal pieces and normal rules, except that he cannot see his
opponent’s pieces. Both players are not informed of their opponent’s moves. Each
move is tried “in the dark”, ie. knowing nothing about the position and strategy
of the opponent.

Since Kriegspiel is based on Chess, a normal Chess program can be easily
adapted to play Kriegspiel, for instance trying random moves until the referee
accepts one. If we want to have a playing quality better than random, however, a
special problem has to be addressed. Most computer chess evaluation functions
compute a score evaluating both armies, whose position is well known, and then
the search procedure progresses maximizing or minimizing the difference of score
assigned to each army. In Kriegspiel this optimization is not possible, so progress
(namely improving the program’s army position with respect to the position of
the adversary) becomes a problem. A player has to choose a ”good” move being
in the dark about the position of the enemy army.

In order to build a complete program able to play a good Kriegspiel game, the
study of simple endings is useful because these endings are quite common in the
practice of the game between humans. There is also a game-theoretic interest:
in fact, a number of papers discuss abstract, rule based procedures suitable to
solve the simplest endings from any initial position. A first study on the the
& Z ¥ ending was published by Boyce, who proposed a complete procedure to
solve it [1]. Also two Italian researchers studied this ending, more or less at the
same time than Boyce’s [2] Then Ferguson analysed the endings & & %)% [3]
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and & & & o [4]. A rule-based program to play the & /¥ onding according to
the principle of Bound Rationality was discussed in [5].

In this article we study and evaluate instead a search-based algorithm first
exposed in [6] and generalized in [7] . It explores a game tree made of nodes which
are metapositions [8], and uses an evaluation function in order to implement a
progress heuristic.

We will deal with the basic endgames, i.e. those where Black has left the
King only. This paper completes the work described in our papers [6,7]: there we
discussed some partial results on the most common Kriegspiel endings, that we
here consolidate and generalize. More precisely, in [6] we developed a basic pro-
gram for the classic ending 7 = % in [7] we extended our approach, developing
a more general evaluation function useful also for other endings.

The goal of this paper is to study how our approach is effective, namely we
ailm at showing that our algorithm progresses even if it "moves in the dark”.
We initially compare our algorithm with an abstract algorithm proposed by
Boyce [1]. The Boyce algorithm is rule-based and in our knowledge has been
never implemented before. Our algorithm instead is search-based: our goal is to
compare the two different algorithms from a practical, agonistic viewpoint. In
fact, we have recently developed a complete playing program named Darkboard
[9]: when we let it to play on the Internet Chess Club (ICC), human Kriegspiel
players are very clever in exploiting its weaknesses in dealing with simple endings.

This paper has the following structure. In section 2 we evaluate our approach
comparing it with the algorithm proposed by Boyce. In Section 3 we discuss the
completeness of our algorithm. In Section 4 we draw our conclusions.

2 Tests and comparisons

In order to evaluate the quality of the algorithm described in[7], we have im-
plemented another, different, rule based program which plays the procedure
proposed in [1] to win the Rook ending.

2.1 The Boyce algorithm

Boyce showed a way to force checkmate by considering positions where both
Kings are in the same quadrant of the board as seen from the rook, or where
the Black King is restricted to one or two quadrants of the board.

The procedure applies when

1. both kings are in the same quadrant as designed by the rook; see Fig. 1;
2. the black king cannot exit from the quadrant;
3. the white rook is safe.

Basically, the algorithm first ensures that the rook is safe from capture. Next
White plays to a position where all the possible squares for the Black king are
in a rectangle where one corner is at the rook. White will put its king in that
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Fig. 1. Initial position of the Boyce’s procedure

rectangle to keep the Black king away from its rook. White then forces the Black
king back until it can occupy only those squares on a single edge. The final phase
to checkmate is then fairly simple.

We have implemented a program which uses a search algorithm and a special
evaluation function with the aim to obtain an initial position similar to that
shown in Fig. 1. Then we apply the Boyce rules, and count how many moves are
necessary in order to give mate.

2.2  Our algorithm

Our search-based algorithm has been presented in [7]. Here we summarize only
the main ideas in its evaluation function. The function includes six different
euristics.

. it avoids jeopardizing the Rook;

. it brings the two Kings closer;

. it reduces the size of the quadrant where the Black king should be found;
. it avoids the Black king to go between White rook and White king;

. it keeps the White pieces close to each other;

. it pushes the Black King toward the corner of the board.

D O W N~

These features are evaluated numerically and added to obtain the value for
a given metaposition: a search program then exploits the evaluation function to
visit and minimax a tree of metapositions [7].

2.3 Comparing the two programs

Figure 2 shows a graph which depicts the result of all the 28000 matches which
can occur considering all the possible initial metapositions for the rook ending
from the White’s point of view, starting with greatest uncertainty, that is starting
from metapositions where each square not controlled by White may contain a
Black king. The number of matches won is on the ordinate and the number
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Fig. 2. Comparison of the rule-based program with the search-based program

of moves needed to win each match is on the abscissa. The graphic shows the
distribution of the matches won normalized to 1000.

The rule based program spends the first 25 moves looking for one of the
initial positions; when it reaches one of these positions the checkmate procedure
is used and the program wins very quickly. However, the average of moves needed
is around 35. Our program based entirely on the search of game tree wins with
a better average, around 25 moves.

This is due to the fact that the program analyzes from the beginning each
position trying to progress to checkmate. On the other hand, the rule-based pro-
gram is faster in deciding the move to choose, with respect to the tree-searching
program. In fact, the rule-based program has a constant running time, whereas
the second one has a running time exponential on the game tree depth.

We remark, however, that from a practical viewpoint the Boyce approach is
useless because on the ICC Kriegspiel is played with the normal 50-moves draw
rules derived from chess.

2.4 Evaluating the search algorithm with other endings

Figure 3 shows the results obtained with our search-based algorithm when ana-
lyzing some different basic endings. We performed a test choosing random meta-
positions with greatest uncertainty for & Wi &0 O angd L d O e endings;
then we normalized the results to 1000 and we merged them to produce the
& figure.

In figure 3 we see that the program wins the %% ending quicker than the
& Ll ¥ onding. This result was expected, because the queen is more powerful
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Fig. 3. Comparing the behavior of the search-based algorithm on different endings

than the rook: the queen controls more space so metapositions have a lesser
degree of uncertainty.

The case ¥ £ £ ¥ is instead more difficult with respect to & = ¥ In fact, the
former is won on average in a larger number of moves: sometimes our program
needs more than 100 moves.

Finally, we see that the behavior of our program in the & £ %' ¥ ending is
not good at all. The program often spends more than 100 moves to win and the
distribution of victories does not converge to zero, meaning that sometimes it
takes an unbound number of moves to win. We conclude that in this ending our
program is not really able to progress.

2.5 Progress through Uncertainty

An effective way to analyze the progress toward victory consists in considering
how the value of White’s reference board changes after playing each pseudomove.
The reference board is the metaposition which describes all positions were the
opponent King can be, compatibly with the past history of the game.

Figure 4 shows the trend of evaluations assigned to each reference board
reached during a whole match for the ¥ ending. The number of attempts
needed during the game is shown on the abscissa, while the grades assigned by
the evaluation function are on the ordinate.

We see that, at each step, the value of metapositions increases. From White’s
point of view, this means that the state of the game is progressing and this is
actually a good approximation for the real situation.

We have performed the same test for the case of & & 7% ending, whose
result is depicted in Figure 5. Here the progress is not satisfactory for White, in
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Fig. 4. Trend of evaluations assigned to metapositions crossed during G ending

fact he does not improve the state of the game at each step. The graph shows
how the evaluations of the reference board change during a match which ends
with the win of White: the value of metapositions does not increase at each
pseudomove, but at some lucky situation for White. Thus the program basically
wins this game by chance, that is by exploiting either some lucky metapositions
or its opponent’s errors.

We conclude that our program is able to progress to victory when we deal
with pieces able to divide the board in separate areas, which can then be reduced
to trap the Black King; whereas when we have a piece which does not offer this
feature, like the Knight, the behavior of the program is not fully satisfactory.

3 Optimality

In this section we deal with the issue of the optimality of our approach. We will
show that our program is not able to win against an opponent using an oracle. If
it won against an omniscient opponent it would be able to give optimal solutions,
due to the search algorithm properties. We will point out that problems arise
when the possibility of an illegal answer is considered into the tree of moves.

We remark that, according to its author, the algorithm given in [1] (or the
(different) one given in [2]) can win against an omniscient opponent. However,
these abstract algorithms do not always chose the optimal ! move for each posi-
tion the player may be in. Alas, these solutions follow a strategy fixed in advance
that let the player to win even against an opponent using an oracle.

We showed in [7] that with a search on the tree of moves our program can
guarantee the optimality if a checkmate position is among the visited nodes. In

!i.e. the move which leads to victory with the minimum number of moves
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all the other cases what we can say is that the move chosen by the program
depends on the evaluation function which judges the positions. In these cases we
cannot claim optimality.

= N W R OO N 0

a b cde f g h

b) c

Fig. 6. Difficult positions against an omniscient opponent

We will see in this section that the program with the evaluation function
proposed in [7] does not always win against an omniscient opponent.

If the program ends up in the position a) depicted in figure 6 no checkmate
state is found during the search on the tree of moves, so the program entrusts
the evaluation function with the task to judge for sub-optimal positions. Since
the evaluation function for the ¥ “ ¥ ending tries to reduce the uncertainty
about the black King by decreasing the number of black kings on his reference
board, it tries to push the white King inside the quadrant controlled by the rook.
#d5 and “7d4 are illegal moves, so the program plays ““¢3: the program plays
subsequently ¥7d2, then ““e3, trying to pass through the row controlled by the
rook.
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If “e3 is a legal move, then the referee remains silent and White can proceed,
but if the referee says ’illegal’, then the game reaches the position ¢) depicted in
Figure 6. In such a case the program acts as if it would play for time: it chooses
©e2 or ¥ c3. This behavior depends on a random choice among the moves with
same value. So if it plays “c3 then the game comes up again as in the initial
position where we started, otherwise if it plays “7e2, then at the subsequent turn
it will try “e3 again.

We note that the program’s behavior is not optimal: it entrusts its choices to
the chance of having a silent referee after its move. In other words, if White plays
©“e3 and the referee is silent then the program progresses; actually it decreases
the uncertainty about the black king’s position. If it plays ““e3 and the referee’s
answer is ”illegal”, then it does not progress.

If Black has no hint about White’s moves, then a good strategy consists in
centralizing his king to the middle of the chessboard. For instance, the black
king could move from eb onto e4 and viceversa, as highlighted in miniature d) in
figure 7 on the left. In this case, the program with the evaluation function given
in [7] progresses and its choices lead him to win the game.

On the contrary, if Black gets an oracle to help him, it can halt White’s
progress. In this case, White faces an omniscient opponent and the program
fails by going forwards and backwards from position b) in Figure 6 to position
¢) in Figure 6.

= N W s 0N
= N W R OO N 0

a b c d e f g h a b cde f gh

d) €)

Fig. 7. Difficult positions against an omniscient opponent

From [1] we know that a good move for White consists in playing = d1, when
the king is in e2 square (position e) in Figure 7). In fact this move allows White
having his king inside the quadrant controlled by his rook. With this move White
reaches a positions from which he can progresses.

Writing an evaluation function which considers the position f) of figure 7
better then the position b) in figure 6 is quite a complex matter.

This problem can be expressed observing that from position a) in Figure 6,
moving ““c3 White reaches the position g) in Figure 8, then the move “d4 may
receive two different answers from the referee: silent which leads to position h)
in Figure 8, or illegal which leads to position ¢) in Figure 8. The worst answer

34



is the silent one?, so the value for ¥d4 will be considered as the value of the

position reached with a ’silent’ answer.

= N WA 01N
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Fig. 8. Difficult positions against an omniscient opponent

Again, starting from position h) in Figure 8 if White plays ©ed he may
receive two kind of answer: silent or illegal. Also in this case the illegal answer
is better because offers more information.

As a result, during the search each time the program analyzes moves of the
king in situations similar to the position g) or the position h) of Figure 8, the
illegal answer is not taken into account.

In Figure 9 is proposed an example of game tree. Starting from the position
depicted on the root of the tree we have only represented three moves that White
can choose.

We want to focus on the reasons that lead the program to prefer % c3 rather
than “%e2. Each time that a move can be illegal, this kind of answer leads to a
node in the tree that is better valued with respect to the node resulting from a
silent referee. Since the program considers the value of a move equal to the value
of the worst position reached considering all the possible referee’s answers, if a
move may be illegal or silent then the worst one is the silent one.

Figure 9 shows that the leaf of the leftmost branch represents a better po-
sition than the leaf of the rightmost branch. In the middle there is a branch

2 In order to progress, the number of black kings in the reference board computed
after each try should decrease: the best answer from the referee is ’illegal’, because
we can infer that the opponent king must be close to our king.
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concerning the ¥e2;%e3 moves which lead to bad positions. The problem is due
to a program blindness: it acts as if it was not distinguishing a potentially illegal
branch from a certainly legal one.

An attempt to solve this problem consists in decreasing the value of illegal
moves. If we do it too heavily we run the risk of letting the program to play only
moves that are legal. In order to overcome this problem, we can try to discard
from the search on the tree of moves the positions previously reached during the
game. This is a trick that can avoid infinite loops, but it does not lead us to
formulate an optimal solution to the problem.

4 Conclusions

The work done so far on a program which plays Kriegspiel endings exploiting the
search on a tree of moves lets us to obtain optimal result for endings in which
the checkmate is technically achievable in few moves. In all the other cases we
delegate the judgement on moves to an evaluation function, that we proposed in
[6] and we have generalized in [7].

The approximation due to this kind of evaluation lets the program to play
reasonably against a fair opponent, which does not use an oracle. However the
program plays not optimally in positions with larger uncertainty or against an
omniscient opponent.
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Abstract. In this paper, we propose a method to extract differences
of two groups of players, by statistically analyzing their game records.
We conducted a discriminant analysis on the game records, choosing the
group of players as the explanatory variable, and the combination of
simple factors based on the rules of the game as the features. Combining
all factors is unrealistic, as they would create an enormous number of
the features, most of them unnecessary for the analysis. Thus, we have
used a stepwise method to select meaningful variables, and then made
an analysis based on the combination of the selected variables. By re-
ducing number of the variables this way, we were able to achieve high
discriminant rates.

1 Introduction

There has been a steady progress in programs playing Shogi, reaching the level of
top-level human amateur players [7]. This has been due to several improvements,
including faster hardware, sophisticated search algorithms, and better evaluation
functions. The design of the evaluation functions is especially important, as
it influences not only the strength, but also the playing style of the program.
Currently, most evaluation functions use by the top-level programs are hand
tuned, based on the knowledge of the programmer.

The evaluation functions are made by combinations of features, each repre-
senting some aspects of the state of a game position. Numerous features have
been proposed to be used in the game playing programs, for example the number
of the pieces each player owns and the relative positions of two pieces on the
board. The playing style of a program largely depends on the features chosen
to be used in the evaluation function. However, it is not well known how each
feature influences the strength and the playing style of the programs.

In this paper, we propose a method to find out how each feature influences the
strength and the playing style, by statistically analyzing game records. The game
records are divided into two groups, and a discriminant analysis is performed on
the two groups with the features as the explanatory variable; which differentiate
the two groups are the features of the different playing style and the strength.
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We conducted two experiments, comparing different types of the players. In the
first experiment, we compared the game records of Shogi Grandmaster Habu and
the other top-level Shogi professionals. In the second experiment, we compared
the game records of the games between human players and the games between
Shogi playing programs. In the first experiment, we were able to select features
that represent the differences between the two groups. In the second experiment,
more fundamental features such as the piece frequently used and the number of
check moves, were enough to discriminate the two groups.

2 Related Work

Game records are used in the research of games in several ways. The realization
probability search algorithm uses the game records to train the parameters to
control the search [13]. Game records are also used to train the parameters for
evaluation functions [10, 5, 2]. Some opening book databases are generated from
game records [2].

Realization probability search algorithm (RP search) uses a value called re-
alization probability (RP) to control how deep each sequence of moves should
be searched in the game tree [13]. RP is a value associated to a move, based on
the characteristic of the move (e.g. capturing move, check move, and the type
of piece moved). Instead of using depth as the threshold, in RP-search the sum
of RP is used as the threshold of the depth of each search path. The Shogi pro-
gram “Gekisashi” uses the RP-search algorithm, learning the RP from the game
records played by the Shogi Grandmaster Habu. Gekisashi became the first com-
puter Shogi program to attend the human amateur Ryuo league, winning two
games and ending up in the top 16 players in the tournament [6].

Game records have also been used to train evaluation functions in various
games, including Shogi. The evaluation function of the Shogi program “Bonanza”
is learned from game records [2]. The evaluation function of Bonanza uses the
relative position of two pieces as feature. The number of its combinations is
more than ten thousand. Bonanza uses game records to select the features to
be used, and to adjust the weight of each feature. With this simple evaluation
function and a fast search engine, Bonanza was able to win the 16th World
Computer Shogi Championship. In Backgammon, the creation of an evaluation
function which uses neural networks trained on game records was successful [10].
An automatic generation of an evaluation function in Othello has also been tried
[5].

The method proposed in this paper uses game records quite differently from
previous work, both in the approach and in the aim. Our methods statistically
compare the different of game records of two groups. Either previous work treated
game records as a single group, or the analysis was more focused on the meaning
of moves played in the game, using the help of human interpretation. The goal
of previous work using game records was purely to make the programs stronger,
while our methods focuses on the difference between how the players from two
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player groups play the game. The difference could be anything, including the
strength of the player and the playing style.

3 Discriminant Analysis

In this paper, we calculated a discriminant analysis [9] of significant features from
game records. Three points should be considered when using statistical methods
on game records: How to find the significant items? Is the result reliable? And
what is its meaning?

In discriminant analysis, an explaining variable was defined as “1” for the dis-
criminant target player, and “0” for the other players. The discriminant analysis
was done twice, once for having to move, once for the opponent to move.

The Mahalanobis’ generalized distance [9] was used as the discriminant func-
tion for the analysis. When there are two groups in a super space, the function
divides two groups: by giving positive values for one group and negative values
for the other. The function could be represented as a linear sum of weight w;
and the explaining variable z;, as follows;

D wiri(i=0,1,2,...,n) (1)
=0

The purpose of this discriminant analysis is to calculate w;. The generalized
distance is a distance between groups. Unlike Euclidean distance, the variance
and the covariance are also considered. It could be used as the distance of two
groups on a super space of variables. the generalized distance is the following D,
where variable groups x, y follows the normal distribution, and the coefficient of

the correlation is 7. ) )
25+ 25— 2rzpz
D=2 ¥ z 2
L (2)
Zz, 2y are calculated from the standard variation s,, s, and the mean values, Z, ¥y
of the variable quantities x,y from the following formula;

rT—x y—y
2z 5 Zy 5 (3)

The correlation r is expressed in the following formula. Each variable of z,y is
represented by x;,y;(1 = 1,2,3,...,n);

S w-DE-p)
VE @ - 225 (5 - 9)°

(4)

3.1 The Variables used in the Analysis

In this research, variables could be extracted directly from the game records.
How, where and when were used. Simple items did not become variables, for
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example the progress value, and were multiplied with the other items. We guessed
whether the item was important and how much. We used the features, because
the arbitrary factors of the programmer were minimized. We found how the
simple data of the game records was used to discriminate two groups.

The discriminant analysis was used with variable quantities to categorize
from the features, for example the moves and the position. We found how the
variables discriminate the two groups.

3.2 Selection of Variable by the Stepwise Method

No variables were equally effective for the discrimination. So, we selected the
important variables by the stepwise method [9]. The variables were selected by
removal or substitution of candidates. After the step, the variable vector was
significantly changed or not. The variable P is based on the partial F' value of
the removal candidate variable Pin or the substitutive candidate variable Pout.
We removed variables that either had no effect in discriminating the two groups
or gave effect to both groups, with a significance level of 5%.

Although selected variable are effected by other independent variables, the
variables selected has the significance proved to be at least 5%, considering the
groups used to select the variables.

4 Comparison between Top-Level Human Players

To see if our method is able to find interesting features, we first conducted
experiments comparing Shogi Grandmaster Habu and other professional Shogi
players.

The game records we took were from the “Shogi Yearbook CD-ROM version”
by Japan Shogi Association from 1985 to 2005. There were 9342 games in the
records, 1013 in which Habu played.

In our previous work [11], we showed that Habu moved Ryu (promoted
Rook) and Tokin (Promoted pawn) more frequently, and Gyoku (King) and
Kyo (Lance) less frequently than the other players. There were also differences
seen in positions where Habu moved his pieces, and the length of the game.

By using the method proposed in this paper, we were able to show not only
what the difference is, but also how different each difference is.

We made two experiments for each feature. The first is to perform a discrimi-
nant analysis to estimate if the first player is Habu, and the second is to perform
a discriminant analysis to estimate if the second player is Habu.

4.1 The Type of Pieces Used

We used the frequency of the type of pieces used in the games, and performed the
discriminant analysis. We used 28 variables, since there are 14 types of pieces,
and each of them was distinguished if being played by the first player or the
second player. Although there was a possibility of a declining threshold, because
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the games of Habu were short overall. This is not a problem as this would appear
as features. The result is in Table 1.

Table 1. The result of discriminate by the number of moves

Generalized Distance Discriminant Rate Variable
First Player 0.44472 56.67% 28
Second Player 0.46787 58.31% 28
First Player Selected Variables [0.36473 54.96% 3
Second Player Selected Variables|0.41884 56.99% 6

The player to play second had a high recognition rate and a wider distance
between the groups. These values were used in combinations with the latter
experiments.

4.2 The Positions Played

In the next analysis, positions played were used as the feature. There are 81
squares from which pieces can be played. As moves can be played by the first or
the second player, there were 162 variables. The result is in Table 2. Compared
to the previous experiment, there are more variables.

Table 2. The result of discriminate by the number of position

Generalized Distance Discriminant Rate Variable
First Player 0.84649 65.76% 162
Second Player 0.85035 66.07% 162
First Player Selected Variables [0.56405 60.51% 18
Second Player Selected Variables|0.53107 58.27% 12

When the variables were not selected, the discriminant rates were more than
the rates of the number of used pieces. The generalized distance between groups
increased because there were mores dimensions in the super space. As for the
player to play first and the player to play second, the generalized distance and
the discriminant rates were improved to the variables.

Now we compare the results of the analysis performed with the selected vari-
ables in this experiment. The result of using all the variables was in the previous
experiment. These experiments were able to achieve the higher discriminant rate
with fewer variables. This result shows that the positions played are better than
the pieces played as the features distinguishing the two players.

4.3 The Number of Piece Capturing Moves and Check Moves

In this analysis, the frequency of a check move and the frequency of a piece-
capturing move were used as features. The discriminant rate for a piece-capturing
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move was 54.20%, and the generalized distance was 0.31201 for the player to play
first. The discriminant rate was 51.93%, and the generalized distance was 0.21894
for the player to play second. Although we conducted variable selection, as there
were only two variables, no selection was made.

Next we computed the results which discriminated each group by the number
of check moves. The discriminant rate was 47.18%, and the generalized distance
was 0.18723 for the player to play first. The discriminant rate was 45.46%, and
the generalized distance was 0.11839 for the player to play second. The number of
check moves for the player to play second was not transferred to the discriminant
analysis. The results of the discriminant analysis with the number of check moves
were not good enough to discriminate the two groups with respect to the other
items.

5 Difference between Human and Computers

In the following experiment, we compared the difference between human players
and Shogi-playing programs. The game records of human players were taken
from games played online by (mostly) amateur players of various skill levels,
in “Collection of 240,000 games from Shogi-club”. The game records of Shogi-
playing programs were generated by games between commercial Shogi software.

5.1 The Length of the Game

We paid attention to the length of the games between the humans and the
computers. Most programs play useless check moves when they are losing the
game, as novice human players might make a mistake in defending the check
move. Also, most programs do not declare draws. This tends to make computers
to play longer games than human.

This is an important difference between human and computers, making games
played by computers look unnatural.

5.2 The Type of Pieces Used

We used the frequency of the type of pieces used in the games, and performed
the discriminant analysis. The results are shown in Table 3.

Table 3. Discriminant Analysis Using Pieces

Generalized Distance Discriminant Rate Variable
Before Variable Selection|2.24850 87.13% 28
After Variable Selection |2.24575 87.19% 22

The generalized distance was 2.24575 and the discriminant rate was 87.19%.
It is interesting to see that the generalized distance and the discriminant rate
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did not largely change by using more variables. This showed that the 22 selected
variables were important in discriminating humans and computers. The moves
extracted as features include King moves and moving promoted pieces.

5.3 The Positions Played

In the next analysis, positions played were used as the feature. The results are
shown in Table 4.

The generalized distance was 1.36321. This is smaller than the previous ex-
periment using piece types, showing that there is a small difference between
computers and humans in the positions played.

Table 4. Discriminant Analysis of Position Frequency Used

Generalized Distance Discriminant Rate Variable
Before Variable Selection|1.36321 77.03% 162
After Variable Selection |1.30474 76.37% 53

The results before and after variable selection were not so different. For the
results after variable selection, 53 variables were selected. While this is more
than the previous experiment using piece types, the discriminant rate is less.
This result is the opposite of the results in the experiment comparing human
players.

5.4 The Number of Piece Capturing Moves and Check Moves

In this analysis, the frequency of check moves and the frequency of piece-capturing
moves were used as the features. The result are shown in Tables 5 and 6.

Table 5. Discriminant Analysis of Capturing Moves

Generalized Distance Discriminant Rate Variable
Before Variable Selection|2.50986 92.06% 2
After Variable Selection |2.50986 92.06% 2

Table 6. Distinction of Check Moves

Generalized Distance Discriminant Rate Variable
Before Variable Selection|2.23229 86.45% 2
After Variable Selection |2.23229 86.45% 2
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For both capturing moves and check moves, a high distance and discriminant
rate was achieved, only with two variables. This shows that these two features
represent very well the difference in playing style of computers and humans.

6 Discussion

In this section we discuss two major observations from our experiments. In Sec-
tion 6.1 we discuss the influence of the number of variables used. Next, in Section
6.2, we discuss the key features discriminating between humans and computers.

6.1 Reducing the Number of Variables

Reducing the number of variables did not reduce the discriminant rate of the
analysis largely. In the experiments, we have selected variables by the stepwise
method, and performed the discriminant analysis with both all the variables and
the selected variables. The ratio of the variable reduction and the change in the
discriminant rate varied from experiment to experiment, but in the whole, we
were able to reduce the variables without sacrificing the discriminant rate. This
means that those variables represent the key features that show the difference
between the two groups of players.

6.2 Key Features in Discriminating Computers and Humans

The key features in discriminating computers and human were quiet different
from the features that showed the difference between Habu and the other players.
The number of features was much less, including the length of the game, the
frequency of capture moves, and the frequency of check moves. This shows that
there is still a large difference in how computers play and how humans play Shogi.
Also, some features directly represent well-known computer “quirks”, such as
making useless check moves instead of resigning, when the computer knows it
loses the game (which is, of course, not a good manner in human games).

7 Conclusion

In this paper, we have proposed a method to compare game records from the
two different groups of players, in order to find the difference in how the players
in each group play. The game records are compared using discriminant analysis,
and as result, the features that discriminate most the two groups are selected
as the key features that show the difference in the playing style of the two
groups. We have made two experiments, one comparing the Shogi Grandmaster
Habu and the other top-level professional Shogi players. The other compared
human Shogi players and Shogi playing programs. Our analysis showed that the
difference could be seen in when (according to the progress of the game) and how
(the pieces type and the position) the game was played. This information can
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be used, for example, to select the features to be used in evaluation functions,
both for making strong Shogi-playing programs and also to give natural playing
styles to Shogi-playing programs.
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Abstract. When playing intellectually demanding games, such as
Shogi (Japanese Chess), human players do not perform exhaustive
and monotonous search as computers do. Instead, a human player
selects a move from a set of candidate moves based on intuition,
and linear search. It turns out that a search process of an expert
player does not necessarily coincide with the search process of a
computer although both may arrive at the same move to be played.
It shows that a human player is thinking within the limits of a
search tree which he believes is the right tree. This implies that
each human player may search a different game tree. I call such
search process “selfish search” and discuss the main
characteristics of this search process.

1 Introduction

If a human faces a complex problem with a large number of potential solutions and
calculations, he will not always act logically. In gamble, public lottery, etc., we see a
mechanism by which a bookmaker makes a profit probable. There the chances of winning
are always overestimated by the human player. For example, in public lottery, some people
are allured by ungrounded rumours (such as “it is the turn of the sales store to win”’). Other
people take superstitious actions grounded on fortune-telling. A fully different example of
irrational human decision making in games can be found in the domain of the
imperfect-information and the chance gambling game Mahjong. A recent study [1]
evaluating game records of internet Mahjong concluded that some amateur players treat a
professional’s remark like a proverb and believe it blindly in spite of a lack of evidence to
support the proposition.

Not only in games of chance, but also in combinatorial games like Chess, Shogi
(Japanese Chess) or Go, a human decision is mostly not necessarily founded on rational
thinking. Many players are tending to select a candidate move intuitively based on their
knowledge and experience. The study of Chess by De Groot is a famous example [2]. In
previous work, we conducted mental experiments in the domain of Shogi and replicated De
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Groot’s research on the human intuitive thinking process in the domain of Shogi [3,4,5,6].

Computer programs perform the decision-making tasks in combinatorial games such as
Shogi in a quite different vein from human players. Here we have two opposing systems that
deserve further research.

First, human experience cannot be treated as intuitive knowledge. So, we have to
address the human search process in another way than by heuristics only. Second, the
computer is arriving at a (best) move by the virtue that its search process is based on a rigidly
structured search. In computer Shogi, the technique of finding the best move happens by the
alpha-beta game-tree search. It is based on an evaluation function that is widely used. The
approach is known as “a search-driven system” [7].

Computer Shogi avoided incorporating human heuristics as much as possible (since
intuition is considered to be more important than experience), and has developed the
technology for searching deeply, fast and wide [8]. In the last decade we see that Shogi
programs are becoming stronger with the progress of the hardware technology. The playing
strength of the top class Shogi programs is said to roughly equal the strength of 6-dan
amateur players. It reaches the level of professional players [9].

However, strong Shogi programs play sometimes moves which are perceived as
unnatural by human players. As mentioned above, a significant difference exists between the
decision-making process of humans and computers. A reason is that computer programs, in
spite of playing strongly, suffer from intuition. Their style of play may be uninteresting and
not useful to study for a human player. This might be so because a player does not understand
the meaning of the move played by the computer. Some programs are able to display a part of
their search log to show the ‘meaning’ of a particular move. However, since the
move-decision process is not presented completely, it may remain unintelligible as a whole,
and the human player cannot understand it.

In order to show a decision-making process in a form understandable to a human, it is
necessary to clarify the thought process that human players are performing. In this article, we
show what kind of search process is carried out in the human thought process which
generates a move when playing Shogi.

Based on interviews with human expert players and verbal protocol data of human
players of various levels, we will discuss in particular the “mechanism of prediction” peculiar
to human players.

2 Some Results from Psychological Experiments

So far, we performed psychological experiments on the cognitive processes of human
beings who play Shogi. In the current experiment we investigate the human thought process.
We showed the same next move to beginners as well as to top professional Shogi players.
Then a think-aloud protocol was recorded. As the result, we found that the thought process of
the human who plays Shogi is divided into the following five stages [4].
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(1) The stage of understanding a position
The stage of seeing the arrangement of the pieces on the board, and understanding what kind
of position it is in.

(2) The stage in which candidate moves are generated
The stage which generates candidates for the next move based on intuitive knowledge.

(3) The predicting stage
The stage which predicts the move to be played based on candidate moves.

(4) The stage of comparing and evaluating moves
The stage that synthesizes the evaluation by intuitive judgement and by prediction; it
compares the candidate moves.

(5) The stage of determining a move
The stage of determining a next move as a result of comparison.

The five stages of the human thought process were observed at all player of every Shogi skill
ranging from the 10-kyu of a low level player to eight or more-dan of a top professional
player. Although there is a difference in the contents of the thinking process, it has turned out
that the thought process goes through five stages. This framework of thinking that is peculiar
to a human being is called “Player Script”.

If the contents of the thought processes are investigated in detail, it will turn out that the
following three characteristics of human thought processes are seen in the generation stage of
the candidate moves and the stage of prediction.

(1) Reducing the set of candidate moves to a few moves

Figure 1 expresses the average number of moves mentioned as candidate moves at the time
of determining the next move and making the human being to think freely on the next move
[6]. In the figure we see that the amateur 1-dan (middle-level players) raised many candidate
moves. In average they still arrived at five whereas there are only three candidate moves.
Since the problem given here is the position where a legal move exceeds 100 hands from tens
hands, it turns out that a part of mere lawful hand is examined.

Considering the problem that a hand with pieces easily exceeds the number of 100
moves, it turns out that players are bound to examine only a part of the legal moves.

It is assumed that human players cannot consider many matters in parallel. Moreover, a
human does not count all legal moves and so it differs in this respect from a computer. In
practice it turned out that the human search process is particularly used for candidate moves
when only a few moves exist. The move chosen is then evaluated by intuition.
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Fig. 1. Average number of candidate moves on next-move test.

(2) Predicting linearly
Given is the problem as shown in Figure 2. By the time he had to choose a next move the
Shogi player under consideration was made to utter his decision-making process; the

contents were recorded and analyzed [6].
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Fig. 2. A problem of next-move test experiments.

Figures 3-6 express by search trees the move that players of a certain Shogi strength
predicted as the next move in the position of Figure 2. Although there is a great difference in
the contents of thought, it turned out that the form of the search trees has almost the same
form. Moreover, although there are some branches with candidate moves, the tree predicts

almost linearly.
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Fig. 3. A search tree of a novice. Fig. 4. A search tree of a mid-level player.
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We believe that a move generation system for mimicking the thought processes of a human
Shogi Player who advances and arrives at some point does so linearly. In computer Shogi,
the candidate moves are all the legal moves, and a game tree is constituted from a prediction
by assuming all legal moves by Black and White. The program searches by the minimax
method using a static evaluation function which assesses the advantage or disadvantage of
the position. However, it is clear that a human does not do minimax calculations like a
computer. A human player predicts almost linearly. He starts at the intuitively proper move,
and predicts to confirm whether the future position becomes really good for himself.

(3) AProfessional Shogi player’s prediction is different

Figure 7 compares the thought process in the same search space when four top professional
Shogi players are given the problem of Figure 2. e-nodes are positions which the professional
Shogi player actually mentioned, and o-nodes expresses positions which he did not refer to. A
result is that each professional Shogi player is predicting a node which is different from the
predictions by others. In the figure, a difference is seen by following the search process. It
happens also among top professional Shogi players.

Although it needs a special explanation, I attempt to deepen our understanding. I
supplement therefore some details and a variety of thought processes. It seems that the
professional player 1 searches deeply about “25-rook’ and the candidate move of “95-pawn”,
and thought that “95-pawn” was sufficient at the beginning. Moreover, he has made
reference deeply about “25-rook” which may become better. The professional player 2
assessed the candidate move “77-pawn” to be slow, and thought of “95-pawn” to be the main
prediction. Unlike the professional player 2, the professional player 3 started with a reference
to the bad formation called “wall-silver (88-silver)”, and he opined that it cannot be good
except when “77-pawn” is played. Though the moves which may exist to be a candidate,
“25-rook” and “77-pawn”, were considered, the professional player 4 thought that
“95-pawn” was sufficient, and so he was predicting the move broadly.

Thus, in some difficult positions, it became clear that predicting the candidate move was
a different process for a top professional player and for other (average) players.
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A thought process of professional player-4: 95-pawn
Fig. 7. Search trees for professional players.

These results indicate that each player has predicted the space of each search tree in relation
with each judgment criterion, and has chosen the move accordingly.

3 Selfish Search Based on Psychological Restrictions

As seen in Section 2, a candidate move is extracted and then the search process peculiar to a
human being is made. The process predicts linearly and is called “Selfish Search”. So it is
different from the search by a computer. We believe that this “selfish prediction” is a thought
process that is peculiar to a human. It is bounded by psychological restrictions by the human
being. The range of the target problem is narrow. If a problem is counted in all its possibilities,
it is also possible that all the cases are performing a comprehensive search like a computer.
For example, if it is a game with comparatively narrow search space such as Tic-Tac-Toe
(e.g., by summarizing the symmetrical position or eliminating the moves in which it loses
simply), it will be possible to narrow the search space sharply. Analogously, a human will
also count all the possibilities, and he will try to deduce a conclusion. However, the difficult
games (the games of Go, Shogi, Chess, etc.) which have been played for a long time have a
search space in which a human cannot search easily. In the large game tree of such a search
space, a human gives up all searching, performs a “selfish search” within the limits which
focus on some moves. He then can assume by “intuition”, and is considered to determine a
next move. Figure 8 expresses the number and speed of the prediction in relation to Shogi
skill. The graph is from the result of an above-mentioned psychological experiment.
According to this figure, it turns out that the speed of searching becomes quickly, so that the
Shogi skill becomes high, and the number of searching is increasing according to it. However,
the speed with which a top professional player searches is about ten moves per minute. The
space which can be searched within a limited time is considered to be about at most some
hundred moves. Thus, it can be said that there is a psychological limit in a human’s search
speed.
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Fig. 8. Number and speed of searching as a function of Shogi strength.

Besides, a comparison of the search tree described by (2) in Section 2 shows that a human is
performing as few linear predictions of a branch as possible. Furthermore, a human never
calculates minimax-search for the all search trees with generating parallel branches from a
certain node. The human advances by one reading at a time; many linear prediction results
are compared simply, and a next move is determined so that it may become a straight line by
a certain fixed view. In other words, a human can say that he is poor at performing a parallel
prediction, and that he can perform only sequential predictions.

Such “a limit of searching speed”” and “a limit of parallel search ability”” are limits of
functional calculation abilities of the human. I call this limit “psychological restrictions”. If it
thinks as mentioned above, it can be said that human thought is bound and prescribed by
these psychological restrictions. “Selfish Search” which the human player is performing can
be considered to be the optimized thought method in the “psychological restrictions” of the
human.

4 Functions of Selfish Search

It has become clear for top professional players that they predict the positions differently, or
even have obtained completely different search trees, from the results of (3) of Section 2.

It is considered that a human has a sense of evaluations (called a Taikyokukan) over
Shogi based on his empirical knowledge. The candidate move was generated according to
the Taikyokukan, linear search was performed, and a next move is determined. Thus, a player
hurls a mutual Taikyokukan at each other and is advancing the game. If a Taikyokukan is
different, the world which is in sight by it is also different. The result serves as victory or
defeat. This experience serves as the cause to adjust one’s Taikyokukan again, and serves as
acquisition of a new Taikyokukan. The Taikyokukan which changed is used efficiently in the
next game.

In the field of cognitive psychology, the process of study is caught with the process of a
change of a concept. Here, it can also be put in another word as a “concept” being a
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Taikyokukan which the player to Shogi has. Hatano and his co-workers explained that the
concept (Taikyokukan) felt the necessity for that change, and served as motivation to update
when a discord arises [10].

Thought experiment
Generating the
candidate moves
Selfish Search

I Generating a next moves |

|

| Result of the match |

Fig. 9. The process of Taikyokukan change.

Figure 9 expresses the process in which a Taikyokukan changes, by a diagram. A candidate
move is generated by the Taikyokukan and selfish search is performed in the head (as a
thought experiment). A move is chosen based on selfish search, it is repeated, and it results in
the outcome of the match. Then, an actual result is made to associate with the selfish search
which the player assumed. When a difference is accepted there, the player feels discord and
the change of Taikyokukan is pressed for him.

Thus, it is considered to be an important factor in which a difference with the actual
game is given sensitive that a thought experiment is conducted in the style of selfish search.
As the result of (3) of Section 2 shows, it often happened that the player and the opponent’s
selfish search were not corresponding with each other.

A player is performing “selfish prediction” in the psychological restrictions described in
Section 3, if he feels sharply the difference in thinking between him and the others, and can
say that he has reached a state in which it is easy to change a broad self-perspective. A player
is performing “selfish search” in the psychological restrictions described (in Section 3), if he
feels sensitive to the difference with thinking of him and the others, and has reached a state in
which it is easy to change a self Taikyokukan.

If the above-mentioned is summarized, it can be said that there are the following two
functions in “selfish search”. One is a function called a thought experiment, by carrying out a
simulation in the head; it is the function which tries to choose a better move. Another is a
function to which the change of a self Taikyokukan is urged.

It can be said that selfish search is conducting the thought experiment which carries out
the hypothesis testing of its sense of evaluations by considering a function of the former. In a
certain position, as a result of advancing the position in one’s sense of values, it is possible to
assume previously what kind of position it becomes. It is considered to have appeared as a
phenomenon of linear prediction. As a result of evaluating the assumed position, when it was
judged that it is not desirable, the subject was actually considering another candidate move.
Generally, the space of the search currently performed by selfish search is not comprehensive

57



search like computer Shogi but only thinking of the very narrow space bound by the sense of
values of the player. In amateur matches, there are also many predicting omissions and
oversights. A game is more common as this prediction not to go on. However, the bad move
which can be assumed by reading a few can be avoided, and the probability which chooses a
bad move becomes lower by repeating this. Therefore, although many players know that it is
the restrictive space, they predict. Besides, it is thought that the prediction capability also
improves in proportion to Shogi skill so that the capability to read quickly may be needed and
it may see as a result in Figure 8.

A function of the latter is the effect of study by selfish search. For example, when a
certain result is shown, it is known for touching the result, after fully assuming beforehand
about the result, and touching only a result, without carrying out such assumption that a
mighty difference will arise in the learning effect about the matter. Although such a
psychological phenomenon is called “study should care about”, the deep recognition to the
position arises by repeating the process of the hypothesis testing by this prediction, and it is
thought that it has mighty influence on a learning effect. Mr. Yoshiharu Habu (who is a
famous Shogi top professional player) has described it as “the time he thought that it was
most progressed became the professional Shogi player whose thinking time increased” in
writings [11]. What more “learning set” came to be able to carry out will be considered to
have led to the learning effect, when it has, time increases as one of the reasons of this and the
time of prediction increases.

5 Proposal of Selfish Search System

In this section we first describe our proposed selfish-search system (Subsection 5.1), and then
give an example of the working of our system (Subsection 5.2).

5.1 Composition of System

In advance of this selfish-search system, I have developed the knowledge-driven Shogi
system (HIT: Human Intuitive Thought) imitating human intuitive thought [12]. This system
can generate a move by describing the intuitive knowledge which the expert of Shogi has in
the form of a production rule, without searching. In HIT, a score is first given to all the legal
moves by the production rules prepared beforehand. About 400 production rules are given to
HIT now. By applying these rules, a score is given to all the legal moves. Based on the given
scores, the moves are sorted. The move which has the highest score is generated as a
candidate move. A next move is determined by performing selfish prediction as shown in
Figure 10 using the candidate move generated by HIT.

As shown in Figure 11, if a position is given, a score will be given to all the legal moves
by HIT, and it will be sorted sequentially from high to low. It will become a candidate move if
higher in rank than the candidate move or within a threshold «. If the candidate is only one,
the move is the next move. If there are two or more candidate moves, they will be searched
deeply. This search is repeated until the difference between candidate moves becomes below
the threshold value B. This repetition realizes linear search. This linear search is performed to
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all candidate moves, an evaluation function estimates the position of each termination, and
the move with highest score is chosen as the next move. Selfish search of humans is imitated
by following a series of such procedures.

A position

(Higher lank of candidate mowe)
A (Within threshold )

{
/I Only one? '/

yes

Linear Search

[ ho = Search Deeply

(Higher lank of candidate muve)'
A (within threshold )
T

yes

L]
| Generate a next move |

Fig. 10. Selfish-Search Algorithm.

5.2 An Example of Execution

The above-mentioned selfish-search system was implemented with HIT. The result in which
the system solved the problem of Figure 2 is as follows. The execution condition was set to
the threshold value o= 1000 and p=400. A simulation was performed.

Figure 11 shows the above-mentioned conditions and is the result of performing the
problem of Figure 3 by the selfish-search system. HIT receives the input positions and
generates the higher-ranked five candidate moves: “45-pawn”, “45-bishop”, “48-rook”,
“26-rook”, and “47-gold”. But, since the difference between the score of “45-pawn” and
“47-gold” was larger than 1000 points, “47-gold” was removed as candidate. As for
“48-rook’ and “26-rook”, since the next move candidates were within 400 points, search was
closed here. About “45-pawn” and “46-bishop”, the searching was continued until the next
candidate moves were within 400 points. The evaluation function in the termination of four
candidate moves was calculated, and “45-bishop” with the highest score was chosen.

A% 2R 2R%

Fig. 11.  Anexample of search by the selfish-search system.
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6

Conclusion and Future Research

This article investigated the main characteristics of human search. The concept of “selfish
search” was introduced to describe the decision-making process of a human player. We
explained that “selfish search” is based on psychological restrictions. Moreover, we
considered a function of “selfish search” in the middle stage of a game and formulated an
adequate learning process.

Future research will address a knowledge-driven type of a computer-aided design using

“selfish search” in combination with a learning-support system for human players.
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Abstract. This paper proposes a new killer heuristic which we call the
context killer heuristic. The original killer heuristic is based on a sibling
relation between the positions considered or the blood-based similarity
in the sense that all ancestors are the same. The context killer heuristic
is based on the context-based similarity to pick up a killer move at any
ply of a game tree. The “context” means a sequence of moves leading
to a position just previously and is naturally extended as n-ply context.
The context killer heuristic is implemented, where the mixture of 1-ply
and 2-ply context killer moves are used for the dynamic move-ordering
in a game-tree search based on the realization-probability search. Self-
play experiments performed in the domain of computer Shogi show the
effectiveness of the proposed idea. In particular, a program with the
context killer heuristic played 300 games against one without it as Black
and White under the same thinking time condition, and the score was
171-129.

1 Introduction

Since shogi is similar to chess, many techniques proven to be effective in computer
chess have been adapted for shogi programs. Hence, strong shogi programs have
a structure similar to chess programs. Basically, a shogi program builds mini-
max game trees explored by an iterative alpha-beta search. Shogi programs also
make use of a variety of refinements, such as PVS-search, transposition tables,
quiescence search and move-ordering [3]. Brute-force search has been very suc-
cessful in chess. In recent years, the trend has reversed as improved algorithms
and hardware have resulted in chess programs with highly selective searches. In
shogi the need to be selective about which moves to search is much greater than
in chess. It is a consequence of the larger move lists that have to be considered.

In this article we focus on the move-ordering technique called killer heuris-
tic [2] in the framework of selective alpha-beta search, i.e., the realization-
probability search [8]. We then propose a new idea called context killer heuristic,
derived from a dynamic choice of killer moves based on a new concept of posi-
tion similarity. The key point is similarity between two considered positions. The
original killer heuristic focuses on the sibling positions to adapt a very good move
found in other positions at the same ply, because such a sibling position is likely
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to be similar to the other positions considered. Since in the original killer move
heuristic all ancestors including the parent node are the same in a game tree, we
call it blood-based similarity. Our new idea focuses on a so-called contezt-based
similarity, where we suppose that the same context may result in similar posi-
tions. With this notion of similarity, killer moves are to be dynamically picked
up and adapted in a position which has the same context.

Section 2 describes the basic ideas of the context killer heuristic. In Section 3,
experiments are performed in the domain of shogi and its results are discussed.
Then concluding remarks are given in Section 4.

2 Basic Ideas of the Context Killer Heuristic

In this section we first sketch shortly the original killer heuristic and discuss
the similarity between positions. Then we propose the so-called context killer
heuristic, and some enhancements are described.

2.1 Killer Heuristic

The original killer heuristic [2] attempts to produce a cutoff by assuming that
a move that produced a cutoff in another branch of the game tree at the same
depth is likely to produce a cutoff in the present position. It means that a move
that was a very good move from a different (but possibly similar) position might
also be a good move in the present position. By trying the killer move before
other moves, a game-playing program can often produce an early cutoff, saving
itself the effort of considering or even generating all legal moves from a position.
In this heuristic, killer moves come from the sibling nodes. It means that they
have the same ancestors. Therefore, it is based on the so-called blood-based
similarity.

2.2 Forward Similarity and Backward Similarity

Let us consider the notion of similarity since it is the key point to develop the
so-called context killer heuristic. When we focus on judging similarity between
positions, it can be of two types: forward similarity and backward similarity. In
the forward similarity, a similarity relation can be determined in advance. On
the other hand, such relation cannot be determined in advance in the backward
similarity.

For example, Kawano proposed the definition of similarity between positions
in the framework of mating search for shogi [4]. That similarity can be deter-
mined by adapting a mating sequence, found in a different position, to a sibling
position considered. If it is successfully adapted, then it is confirmed that the
two positions are in the relation of similarity.

Obviously, the original killer heuristic is in the class of the forward similarity.
In some sense, Kawano’s approach is a variation of the killer heuristic while
adapting a sequence of moves instead of a move in the sibling positions. For
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search efficiency, the forward similarity is better than the backward similarity in
finding a killer move to adapt it in other positions.

root

A

move x\

move y ]

move x\
\

&%
O

context-based similarity blood-based similarity

Fig. 1. Forward similarities.

Moreover, when we consider the forward similarity, we notice that there are
some kinds such as blood-based similarity and context-based similarity. Let us
show, in Fig. 1, the illustration of these forward similarities. If two nodes have the
same parent in a tree, then they are in the relation of truly blood-based similarity.
The ancestors are definitely the same and therefore they are brothers/sisters as
shown in the figure as node C' and D. Indeed, the original killer heuristic relies
on the blood-based similarity to assume that these two positions must be similar.

Let us show, in Fig. 1, an example of context-based similarity where positions
A and B are in this relation. Both of them have the same two-ply move sequence
(say move z and y) just previously. The paths from the root node are different
for the two positions. However, they sometimes are similar in the sense that the
same strategy is being applied. The two-ply move sequence can be naturally
extended to an m-ply move sequence. We observe that two positions become
more similar as n becomes greater.

2.3 Context Killer Heuristic

We explain the context killer heuristic using Fig. 2. Suppose position C' is a
frontier node in a game-tree search, whereas position A has the same context
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of n-ply with position C| i.e., move p;, move py ... and move p,,. In the context
killer heuristic, the best move found in position A would be stored as a killer
move, which will be later adapted in position C that has the same context of
n-ply with position A. When we pick up such a killer move based on the context-
based similarity of n-ply to adapt in other positions, we call it n-ply context killer
heuristic.

-
<move p2

1X9JU0d Jwes

move pl

(seaow Jo aouanbas)

best move

current searched
-position

use for a killer move

T

Fig. 2. Context killer heuristic.

2.4 Enhancement

When performing the context killer heuristic in practice, one critical issue is
the expected high cost to identify the context-based similarity during the entire
search. For this purpose a hash table is used, in which an entry is a best move
found in a context of game-tree search. Let us show, in Fig. 3, a pseudo code of
the context killer heuristic. The size of the hash table is ad-hoc. We use here a
number larger than all possible legal moves in shogi (approximately 8000).

For the index (hashed context) of the hash table, we use the XOR of all
hashed values of moves contained in the context. Since our priority is the speed
for the procedure to identify similarity rather than the accuracy of the context
identification, we are not seriously concerned with a conflict of the hash index.
When any conflict occurs, the entry is simply overwritten.
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4 ™
/* hash table storing killer moves */

/* N is an ad hoc value (larger than the number of legal moves) */
MOVE context_killer_table[N];

/* calculate an index for the hash table from context(moves) */
int index(MOVE pl, p2, ..., pn) {
return ( hash(pl) xor hash(p2) xor ...xor hash(pn) ) mod N;

}

/* store a set of a context and the best move on the context */

void set(MOVE best, MOVE pl, p2, ..., pn) {
context_killer_table[index(pl, p2, ..., pn)] = best;

}

/* retrieve the best move for a context */
Move get(MOVE pl, p2, ..., pn) {
context_killer_table[index(pl, p2, ..., pn)l;

U y

Fig. 3. C-like pseudo code of the context killer heuristic.

3 Experiments and Results

In this section experiments are performed to evaluate our proposed idea while
using a test set of next-move problems and carrying out self-play games. First
we describe the experimental design and then the results are discussed.

3.1 Experimental Design

For the experiments, the combination of the 1-ply and 2-ply context killer heuris-
tic were implemented in our shogi program TAcos [5]. TACOS is one of the
strongest programs and won the Computer Olympiad in 2005. It uses the alpha-
beta algorithm in the framework of selective search, the so-called realization-
probability search [8]. It also uses varieties of PVS, null-move pruning and inter-
nal iterative-deepening. Currently, move-ordering is made only in a static way.
There are over 30 categories of moves, which are generated sequentially in the
fixed order of the categories as follows:

. hashed move from transposition tables,

. moves capturing a piece which moved last,

. the killer move (by blood-based similarity),

. capture, check, escape from attack, defense, and so on.

=W N

The context killer heuristic is expected to increase the search efficiency, and
then strengthen the performance level. We expect it with some significance since
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our shogi program uses iterative-deepening search. We adapted the context-
based killer moves just after the blood-based killer move. If we obtain good
results under this condition, it shows the two killer heuristics complement each
other.

Since it is not easy to evaluate the effectiveness of the context killer heuristic
itself due to the program structure, we perform two different tests: solving next-
move problems and self-play games.

3.2 Results and Discussion

Let us show, in Table 1 and Table 2, the results of the performance tests. In
these tables, ‘context’ means a version which uses the context killer heuristic.

Table 1. The results of the test using next-move problems.

1st-dan 4th-dan

Context 67(105.2) 43(101.4)
Normal 63(102.0) 40(101.1)

Number of problems solved by each version and search speed(knodes/sec).
Dan is a difficulty level of problem sets. Each set has 100 problems.

Table 2. The results of self-play games.

Context Normal

171 129

Number of games won by each version.

The results of the test using the next-move problems show that the search
speed goes up just a little while the number of problems solved goes up. The
speed down by using the proposed idea, such as for memory accessing, can be
ignored.

In the self-play tests, the program with the context killer heuristic won
against the one without it by 171-129. The statistic shows that the program
with the proposed idea became stronger.

From the self-play test performed, we are not sure that the proposed idea
really can strengthen the program. However, from the next-problem test in ad-
dition to the self-play test we see that the proposed idea is really effective.
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From the experiments performed in this paper, we know that the proposed
idea affects the program’s performance positively, but we do not know about how
much it affects the search efficiency. We suspect that the proposed idea is useful
for decreasing the horizon effect as well as increasing the search efficiency. This
is because the horizon effect is a key factor for strengthening the performance
level [3]. Moreover, the experimental results show that the similarity of positions
is related to the context, i.e., move sequence, in the domain of shogi. Since
the proposed idea does not use any game-dependent information, it should be
possible to apply the context killer heuristic in other games.

4 Concluding Remarks

In this paper we discussed the notion of similarity based on the timing to inden-
tify it, and proposed the concept of forward similarity and backward similarity.
In this context the killer heuristic belongs to the class of the forward similarity,
i.e., the similarity relation is identified in advance to adapt a killer move. One
way is to pick up a killer move from the sibling positions like in the killer heuris-
tic. Another one is to do so based on the context-based similarity, where a killer
move is picked up dynamically with focus on the context of move sequences.
This is what we proposed in this paper as the context killer heuristic.

The context killer heuristic has been implemented in a shogi program, where
the mixture of 1-ply and 2-ply context killer move was incorporated. The perfor-
mance experiments using a test set of next-move problems and self-play games
confirmed the effectiveness of the proposed idea.

In this study the context killer heuristic has been tested in the framework
of the alpha-beta algorithm based on the realization-probability search in the
domain of shogi. One idea for future research is its application to other domains.
Moreover, the proposed idea will be incorporated in a brute-force search program
to see its effectiveness.
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Checking Life-and-Death Problems in Go
I: The Program ScANLD
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Abstract. In this paper we introduce the program SCANLD (built on
GoTooLs) which checks solutions of life-and-death problems for correct-
ness. This is a task for which computer programs are especially useful.
Not only can they do the computations, they can also do the handling of
data in checking all moves of all solutions for optimality and reporting
any errors that occur. Their refutation and their correction would be
tedious and error prone if done with a computer, but interactively.
After discussing the different types of checks that are performed and
giving some statistics resulting from checking a 500-problem tsume go
book, some examples are given. A long list of mistakes that have been
found is given in an on-line addendum to the paper.

1 Introduction

The computer Go program MoGoO (see [2]), written by Sylvain Gelly and Yizao
Wang, is built on the UCT algorithm invented by Levente Kocsis and Csaba
Szepesvari ([3]). It has much recent success, for example, by winning the latest
(March 2007) computer Go tournament on the KGS server (see [7]) and leading
the continuously ongoing tournament on the 9x9 Computer Go Server (see [1]).1
One might wonder whether there is still any purpose in using specialized Go
software, for example, in analyzing life-and-death problems.

Although programs which use probabilistic methods (e.g., by evaluating po-
sitions using Monte-Carlo and searching the tree of moves using the UCT algo-
rithm) are relatively strong Go-playing programs, they are not designed to prove
statements.

In contrast, life-and-death programs like GOTOOLS, give a result which is
supposed to be exact (if the program is bug free) and the result consists not only
of a best first move but also of a status of the position, including (if the status
is ko) the number of ko-threats that one side needs to ignore in order to win. As
a small study in [10] shows, the last few % of correctness cost an exponentially
growing amount of computation time — for GOTOOLS as a normal tree search
algorithm — and we would claim even more so for probabilistic methods.

! The success of MoGo0 is the more remarkable both in that the size of its code is only
a fraction of the amount of code that goes into established older programs and in
that it scales well, i.e., it still has reserves and will probably be able to make good
use of multi-core CPUs as they become more and more widely available.
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A contribution which life-and-death programs can make is to pre-compute the
status of enclosed areas and to store them in a data base which might be used
by full game-playing programs. An example is a database of eyes surrounded
by only one chain (monolithic eyes) which was computed recently (see [11]).
As a by-product, a classification of strange positions was obtained which might
be entertaining for Go players to look at (see also [11]). Other applications of
GoTooLS include a program that generates new life-and-death problems (see
[9], [6]) and an Internet application that solves problems online (see [8]).

In this paper GOTOOLS is the workhorse behind the program SCANLD which
is used to check thoroughly life-and-death problems including their solutions.
This is described in the next section. It is followed by a description of how
ScANLD was applied to 500 problems found in a Chinese tsume go book ([4])
which from now on we simply call ‘the book’. In section 3 we show how many
of these problems were solved by the program and how many gave problems.
What might be of most interest to Go-players is section 4. It shows examples of
problems where SCANLD uncovered non-optimal play in their solutions or other
mistakes in the book. A long list of findings is given in [5]. Go-players can use
the examples in this paper and the extensive list in [5] twice, once for solving
the given problem and one more time by trying to find out what is wrong with
the solution given in the book.

The life-and-death problems discussed in this paper are generally very inter-
esting because at least some aspect of their solution was obviously missed by the
authors, one of them being a professional 3-Dan player at the time of writing
the book.

Although all move sequences computed from SCANLD in this paper and in
[5] should be bug free, they may have ‘features’ resulting from performing a fast
but simplified search in which, for example, seki is considered to be equivalent
to life. This and other ‘shortcuts’ should be kept in mind when inspecting these
sequences. For that purpose in the appendix all limitations of the programs
GoTooLs (and thus of SCANLD) are listed for completeness.

2 About ScanLD

Life-and-death problems can be wrong in more ways than the obvious one that
the shown winning first move is wrong. The following is a list of tests that are
performed by SCANLD. The first 2 tests concern the problem itself, not the
solution.

1. After ScanLD solves the problem it tests whether the side moving first can
win, or at least reach a ko. If not then this is a less interesting problem.

2. Secondly, it determines the status for all possible first moves and thus finds
the set B of all moves that give the same optimal result. If B includes more
than one move then all moves in B and their likely follow-up sequences are
shown. In that case the problem has no unique solution and is thus not a
nice problem. We list them in section 4.3 if in the book no comment was
made about the existence of another optimal solution.
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3. The next test checks whether the first move of what is provided as the best
solution, is among the moves in B. If that is not the case then all moves
better than the best move given in the book are shown. Next, the status of
the first move of each solution sequence is tested.

4. The program compares the given status of the first move with what the
program had found earlier as the status for this move. If the given status of
the solution is an unspecified ko? and if the program found ko as status too
but a specific ko then this specific ko is from now on taken to be the correct
status of the given solution, and is used as a reference when checking the
next moves in the sequence.

5. Now the test of the solution sequences and the status of what the first move
can reach begins. The following checks are performed for each given sequence
and within each sequence for each move.

The first check tests whether the move in the sequence is legal. The second
check tests whether the move is optimal in the current situation, no matter
whether the current status is the same as the original or whether it has
changed due to earlier non-optimal play of any side.

If a move is not optimal then the better move and the optimal status that it
achieves are given. In addition, the program explains why the shown move
is not optimal by showing how it can be countered with a likely follow-up
sequence.

6. Sometimes a mistake by one side playing a non-optimal move in the solution
sequence is compensated by a mistake from the other side afterwards or is
followed by more mistakes by the same side. Therefore each solution sequence
is checked to the very end to find all mistakes.

7. Finally, the order in which the alternative solution sequences are given in
the book is checked and a comment is made if the side moving first achieves
more in a later solution than in an earlier solution. This of course is not an
error message. It only helps to sort solutions according to what they achieve.

In published problem collections variations of non-optimal moves are shown
and discussed. These are of course not mistakes in the publication. Most often
it is the wrong first move which is discussed and this would not lead to an error
report by SCANLD. But if the discussed error consists of a later move then
ScANLD would report this as a mistake. The current format of life-and-death
problems as it is used by the programs GoTooLs and SCANLD does not allow us
to mark single moves in a given sequence as known to be wrong. Therefore error
reports of SCANLD have to be checked manually to see whether they coincide
with the discussion in the publication.

3 Statistics

In this section some statistics for the success rate of SCANLD in finding mistakes
in [4] is shown. The outcome of a test falls in general into one of the following
categories which are listed again in table 1.

2 This is mostly the case as very rarely is the precise ko-status given in problem
collections, i.e., how many external ko-threats one side has to ignore in order to win.
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a Because SCANLD can solve effectively only problems with a closed boundary,
there are problems which can not be closed easily without changing their
status (1.8%).3

— For another group of problems SCANLD closes the problems too widely or
too narrowly. If the closure is too narrow the solutions are changed, if it is too
wide then the problem is too complicated for the program. In these cases the
boundary had to be adjusted by hand. The current routine used for closing
a problem has still some room for improvement. An idea to be implemented
in future is to use the solutions (if they are given) for constructing the
enclosure such that the additional stones do not interfere with any move in
any solution. On the other hand to make enclosures perfect is ultimately
as hard as solving the problems. When SCANLD reports a mistake, it also
prints the original position and the position after the closure to allow a quick
inspection and if necessary a re-run with a human-improved enclosure if it
was too narrow or too wide.

b Although most problems are fully checked in 10-30 min, others (33.4%) take
much longer or are simply too hard to be solved and checked by SCANLD in
a reasonable time of currently 1 day. The 500 problems have been divided
into 25 groups and each group was run in batch mode on a separate node of
a Pentium 4 Beowulf cluster.

¢ For another group (48.6%) of problems the program confirms all solutions
in the book in the sense that all moves in all solutions belong to the set of
optimal moves in each of the situations.

d The remaining problems where the program identifies a mistake in the book,
could be categorized according to whether the mistake changed the status
from life to death, or ko to life, etc. but we have them in one category when
the status changes to life or death (4.2%) and ...

e a smaller group (2%) of problems where a ko is overlooked which prevents
complete defeat.

f In a relatively large group (8.4%) of problems the non-optimality of moves is
only minor in that the number of necessary external ko-threats changes that
are needed to win a ko or the side changes which needs ko-threats. Although
being less dramatic, such errors can make a difference between winning or
losing a game too. Due to their relatively high number these problems are
not included in this paper and not in [5].

g Finally we list a group (1.6%) of problems in which there is nothing wrong
with the provided solutions except that the problem has more than one first
move giving the same optimal result and this has not been mentioned in the
book.

— An extra service for which no statistics has been made in this paper concerns
problems for which solutions are missed that are not optimal but that are
better than the worst solutions discussed in the publication. For example, if

3 Such problems would need stones added outside the weak boundary to build life

outside which is worth to connect to and the whole situation would have to be
enclosed by one big boundary which the program can not do automatically.
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@ has one move that kills and moves that lead to life discussed in the paper
but not existing moves that at least give a ko then this leads to a comment
by the program.

Table 1. Statistics of the 500 problems in the book

Category Problems Percentage
a. boundary not easily closed 9 1.8%

b. timed out 167 33.4%

c. agreement 245 49%

d. changes status to life/death 20 4%

e. missing ko 10 2%

f. change of # of ko-threats 42 8.4%

g. no bug, more than 1 best move 7 1.4%

Checking the 500 problems from the book put the program to a rigorous test
because for each problem the book gives 3-6 solutions and for each solution about
5-20 moves, each leading to a position that had to be solved in order to check
whether the move in the sequence is optimal. In this process 3 bugs were found
in GoTooLs that were corrected. More changes were made to the interface of
ScANLD, i.e., how it reports discrepancies and moves which counter those on
the book.

The numbers in the table reflect the situation as of April 2007. We intend to
have a closer look at the relatively large fraction of unchecked (‘timed out’) prob-
lems. We will try give them more time, use more memory to allow a larger hash
table and hand optimize the closure of the boundary to reduce their percentage.
Findings will be used to update the online available paper [5] of all mistakes
that have been found. Other outstanding work includes an improvement of the
procedures that enclose an open problem although this is not too urgent as a
closure by hand is not a problem and is done quickly.

4 Problems with Problems

As outlined in the previous section, there are three categories of mistakes which
will be discussed in the following three subsections. In all cases the first diagram
(like diagram 1 below) shows the original problem as given in the book without
extra boundary closure as added by SCANLD.

The second diagram (like 2) shows a solution with non-optimal play from
the book. If the book assumes that all moves in the sequence are correct (in this
book solution 1 for each problem) then the task is to find any error as stated,
for example, underneath diagram 2 is written ‘Find any error’. If the second
diagram discusses a move, say @), which is known in the book to be wrong then
we discuss this problem only if there is at least one more mistake following €
that is not mentioned in the book. In such a case the caption underneath the
second diagram would say ‘Find error after €’ with the understanding that it
could be move (4) that is wrong or any other move, like €. Such mistakes are
documented in the follow-up article [5]. Here we have space for only one example
in each category.
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The third and possibly further diagrams each correct one move from the
solution sequence in the second diagram as in diagram 3.

To make the paper self-consistent and useful for the reader, for each problem
a solution with correct (optimal) play should be given. If the corrected diagrams
do not already include one with optimal play (because one move in the sequence
is known in the book to be wrong and then the corrected diagrams will contain
this move too) then another (last) diagram with optimal play is added. This
extra last diagram can be solution 1 from the book (if it was correct there) or a
correct solution which was missed in the book, as in diagram 4. The extra last
diagram can also show an additional solution if the problem has more than one
best move, as diagram 12.

Go players could use this section for practice twofold: first, by covering all
diagrams except the first one and trying to solve the problem on the left and a
second time by uncovering the second diagram and trying to find the mistake in
the solution sequence.

Most often a single diagram can only illustrate but not prove the statements
that are made. In order to verify interactively comments in this paper the reader
can solve and explore problems online at [8] but has to first close the boundary
suitably.

4.1 Mistakes changing the Status to Life or Death

For all problems in the book @ plays first. What we call ‘solution 1’ below is
the first solution in the book which always is supposed to be the solution where
both sides play optimally. Later solutions typically discuss non-optimal play.

Problem 33, solution 1

19 @~ 19
18 Q%t— 18
17 - 17
16 — 16
15 — 15
14 14
Pabcditing Cabcdetin
@ to move. Find any error.
Diagram 1. Diagram 2. Diagram 3.
19
18 . . .
17 In Diagram 2, () needs to win a ko at d19 to live.
16 But (O can live by playing (2) on e19 as shown in
15 Diagram 3. The only @ that reaches at least a ko
%g is shown in Diagram 4 and is missed in the book
BT e
Diagram 4.
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4.2 Mistakes changing the Status to Ko

In the problems of this subsection moves are missed which would provide a ko
for the side that otherwise would lose. We give one example; more are listed in
[5].

Problem 181, solution 1

19 oe 11
0 12 0085

I O 17 080T
I SHELL e 3¢ eiSh
13 13 OQ

\ \ )

12 —¢ 12 —{?

11 | . 11 [ : 11 [ :
abcdefghj abcdefghj abcdefghj

@ to move. [ J@f - ) Q0O ©a®

Find any error.
Diagram 5. Diagram 6. Diagram 7.

19 )€ In Diagram 6 the move
18 o*@§.* | (s) is not optimal as it en-
17 @O @ {}— ables @ to live. Better is

(s) () on al19 as shown in Di-
agram 7 which kills. One
move earlier, @ is an er-
ror too as it could have
| — prevented death by play-
abcdertgh ing on cl16 in Diagram 8

e @O leading to a favourable ko
Diagram 8. Diagram 9. for @.

A slightly better and optimal play of @ is shown in Diagram 9 where () needs
one more ko-threat to kill. The solution in the last Diagram is equivalent to
solution 3 in the book which due to the above mistakes is described there falsely
as non-optimal.

4.3 Problems with more than one best Move

Some problems in the book are somewhat less suitable for a tsume go collection
because they have at least two equally good first moves. If there are any mistakes
in their solutions in the book then these problems have been discussed in the
previous sections. Here we give an example of an error-free problem with non-
unique solution. The extra winning move is often a strong threat which has to be
answered before the best move from the book is made. Another source of multiple
best moves is the situation where the order of € and @ can be reversed.
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Problem 81

SE555E

ol 1 1®

80
T 1T 1T 11
E5E555E
o0
T 1T 1T 11

13 - 13 3
12 - 12 ?*o*:*
11 — 11 @*0 —
10 10 @5
9 9
8 8 O
7 7
6? 1 6
abcde abcde
@ to move. Q00O ©aal3 OO WQal3 @O
®@Qbl7 @Q@al7 (®@al3 (®@pass
©aeO® ®<Ca13 Al
®0Ca13 QQals
Diagram 10. Diagram 11. Diagram 12.

In addition to @ on b16 in Diagram 11, € on al6 as in Diagram 12 also reaches
the status that @ needs two external ko-threats to win the ko although in
Diagram 12 () can afford to pass one more time (which the computer program
ScANLD does not take into account). The moves 1-10 in Diagram 11 are from
the book, the extra moves are from the program to show that @) needs in total
two external ko-threats to win.

5 Summary

The emphasis of this paper was not to judge the quality of a specific publication
on life-and-death problems but to prove the usefulness of the programs SCANLD
and GOTooLs. Like every text to be published nowadays would always be run
through a spell checker first, equally life-and-death problems should be checked
by a computer program before being published. Also for readers that are not so
strong it is advantageous to have a computer program which provides solution
sequences to the very end and which answers any refutation attempt. This is
often necessary to realize all the purposes a particular move has, they do not
become obvious in a single variation.

The book [4] is the first one we checked. It includes a huge amount of infor-
mation. The 500 problem diagrams should have not more than one best solution.
It also includes 1990 solution diagrams with on average 8 moves, giving 15920
moves, of which about (1990 - 500) are identified in the book as wrong, leaving
14430 moves that could be wrong. If we ignore the problems with multiple best
first moves but count multiple errors in one solution sequence then we found 83
wrong moves. As we checked about 65% of the book this gives an error rate of
83/(0.65 x 14430) = 0.88% for each move which seems very accurate to us.
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A Disclaimer

The following is a list of either deliberate restrictions or of non-intentional weak-
nesses that GoTooLs, and thus the program SCANLD still have.

— By performing a search with only two possible outcomes (win or loss), Go-
TooLs finds a group to be alive if it can not be killed, i.e., it does not make
a distinction between unconditional life and seki or a double ko life.

— When comparing the values of different kos and thus the quality of differ-
ent moves leading to different kos, then two measures are important which
characterize the cost for that player, say player A, to win the ko, who would
otherwise lose the fight if no external ko-threat were played. One measure is
the number of external ko-threats that A needs to have more than B. This
number is determined by GOTo0OOLS. The other measure is the number of
passes/tenuki (plays elsewhere) that either side can afford in addition to the
fact that A has to play the last move if A wants to win. This measure is not
determined by GOTOOLS currently. Ignoring this number would be correct
if playing elsewhere had no value, such as at the very end of the game.

— When evaluating a ko position, the number of external ko-threats that is
available to the loser is incremented successively until either some limit is
reached, or until the loser wins. In the computer runs for this paper this limit
is set to 5 because a position in which one side needs to ignore 5 ko-threats
may as well be counted as an unconditional loss for that side.

— Open problems have to be enclosed before GOTOOLS can solve them. If
the enclosure is too wide then the problem may be too hard to solve. If
the enclosure is too narrow then it may affect the status of the different first
moves. For example, it happens currently that SCANLD finds additional best
moves that kill but a closer human inspection reveals that they are only an
effect of a too narrow boundary. Also, if the problem that is checked would
have more than one solution but only one is given, and the side moving
first is trying to live, then a too narrow boundary may prevent one of the
solutions and SCANLD would not find that the problem is unsuitable.

— Sometimes, the variations given in published life-and-death problems do not
differ by the first move, but by a later move in the sequence. SCANLD would
report any non-optimal second or later moves in a sequence as an error.
Obviously this makes it necessary for a human to check whether in the
publication this move is mentioned to be non-optimal too. What happens
relatively frequently is that the wrong move is indicated to be wrong in
the publication too but then more wrong moves appear further down in the
sequence which are not recognized to be wrong. Such mistakes in books are
less grave but should still not be there and are probably unintended.

— The program GOTo0OLS on which SCANLD is based, performs a search with
only two possible outcomes: win or loss (apart from ko by repeating a win-
loss search with increasing numbers of external ko-threats allocated to one
side). A consequence is that there is no measure which could characterize
one losing move as being better than another losing move. In order to come
up with move sequences in which the loser plays interesting moves as well,
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losing moves are chosen which postpone defeat as long as possible. Often
this gives the most interesting sequence, but sometimes not.

Another consequence is that search stops for any position within the search
tree when a winning move is found, not necessarily the most elegant one.
An exception is the original position for which all possible first moves are
investigated. This feature is intentional as an (o — ) search resulting in a
number, not simply a win or loss, would take much longer.

For large problems GOTOOLS may simply be too slow to solve them. For the
current investigations a time limit of one day was applied for evaluating the
original problem position or any position that comes up after any sequence
of moves in any one of the solutions.

Acknowledgements. The authors want to thank Harry Fearnley for comments
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Abstract. We give a brief overview of go and the methods applied in
computer go. We discuss the weaknesses in the current approaches and
propose a design, which is aimed to overcome some of these shortcomings.
The main idea of the design is to handle the game with subgames. These
subgames consist of a part of the whole board and they have a list of
local purposes. The next move is chosen from the subgames according to
a playing style, which provides values for global goals. The moves which
strive towards the best outcome (in terms of global goals weighted with
the style) are preferred.

1 Introduction

Go is a 4000 year old two-player board game originating from China. For the
artificial-intelligence aspect go is quite interesting, because it is practically the
only classical complete-information board game in which the best computer play-
ers are defeated by average human players.!

In this paper we discuss different aspects of go and computer go in order to
state our assumptions about the game. Based on these assumptions we propose
a design for a computer go player, agent, which should be able to overcome some
weaknesses in the current approaches.

The paper is outlined as follows. In Section 2 we give an introduction to
go. In Section 3 we survey the main ideas used in computer go. We introduce
the concept of playing style in Section 4 and propose a design for using it in
Section 5. The conclusions are given in Section 6.

2 Go

We will go over the basics briefly, that is, describe the (simplified Chinese) rules
of the game, discuss the hardness of the game and emphasize the important

! In chess and Chinese chess (Xiang Qi) computers have reached already the level of
best human players. In 2005 the Japan Shogi Association told the professional shogi
players not to play against computer players publicly without a permission, so ap-
parently the chance of defeat is quite real (http://en.wikipedia.org/wiki/Shogi,
[14.5.2007]).
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aspects of playing the game skillfully. For information about the world of go the
reader is referred to [5].

A go game starts from an empty board, 19x19 intersections being the most
common size. Black and white players make moves alternatively, i.e., place a
stone of their own color on an empty intersection on the board. Placed stones
remain on the board to the end of the game, unless they are captured. A set of
horizontally or vertically adjacent stones of the same color, block, is captured if
it has no adjacent empty intersections, liberties. A player is not allowed to place
a stone on the last liberty of any of his blocks, unless he captures a group of
opposing color by doing so. A move which repeats any previous board situation
is illegal. These situations are referred as kos.2 The game ends when both players
pass, after which dead blocks (stones which could be captured even if they were
defended) are removed. The player who has more stones and surrounded empty
intersections on the board is the winner.

The rank scale of go is in Figure 1. Roughly speaking, a player is considered
to be a beginner for 30-11 kyu range and an average for 11-1 kyu range. Higher
dan ranks are considered to be quite strong amateur players. Professional players
(indicated with pro) are a chapter of their own, as the strongest amateur players
are considered to be similar strength to the weakest professional players. Kami
no Itte refers to “Hand of God”, i.e., perfect play. It is more or less generally
believed that the difference between the best professional players and perfect
play is 3—4 stones [32]. The rank difference between players gives directly the
amount of handicap stones, which the weaker player should place on the board
in order for both players to have equal chance of winning. For professional levels
three ranks equals one stone.

Fig. 1. Ranks in go.

In Figure 2 the rank development of European players (who have played in
at least 50 tournaments and whose first rank in the system [33] was 20 kyu) is
displayed over the course of years they have participated in tournaments. The
triangle line is the average rank development of the players.® The average rank
of all European tournament players is around 7 kyu.

% Every now and then a ko fight occurs, where players have to play threatening moves
somewhere else before they can return to play a local move. The player who runs
out sufficiently big threatening moves first will lose the ko fight and suffer a loss (at
least locally).

3 Tt is assumed that players’ ranks are unchanged after their last tournament appear-
ance.
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Fig. 2. Development of some human go players.

It can be said that there are four aspects in go, which make the game chal-
lenging. The first one is the difficulty of evaluating the game situation, i.e., who
is winning. The second aspect is the difficulty of deciding, what should be done.
The third one is about making efficient moves, i.e., finding the best local move.
The fourth aspect is timing — making the right moves at the right time.

2.1 Evaluating a Game Situation

It is quite hard to name precisely the aspects that are relevant to a situation
evaluation. We shall use here three terms — territory, influence and thickness —
as the basis. The go literature supports this view, although the used terminology
may vary to some degree. A situation evaluation is a combination of these three
concepts.

Territory is the amount of points the player can expect to have in the end,
i.e., the number of player’s stones and surrounded intersections. The player’s
influence represents both potential of making territory and preventing his op-
ponent from making territory. The thickness refers to the safety and stability
of player’s groups (nearby blocks of the same color). For instance, if a player
has many weak groups he will have to avoid ko fights as he would surely lose
something in such a fight.

2.2 Purposes of a Move

Like in any game, also in go a good move has a purpose. In fact, good moves
tend to have several purposes. Such purposes include: to attack an opponent’s
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group, to defend one’s own group, to extend one’s own framework (potential
territory), to reduce the opponent’s framework, to keep sente (initiative), to
make a good shape (the formation of stones is efficient), to induce a bad shape
for the opponent, etc. For example, “a sente move, which attacks an opponent’s
group in order to secure some territory while defending a weak group” sounds
like a good efficient move.

These kinds of purposes represent the local aspect of the game. However, it is
the global aspect of go which makes the game both complicated and intriguing.
These global goals could include: to have at most one weak group at a time, to
stay ahead in territory, to prevent the opponent’s “sente moves, which attack
my group(s) in order to secure some territory while defending his weak group”,
etc.

2.3 Making Efficient Moves

After the purposes for a move have been selected, it is necessary to find the
best local move to accomplish the purposes — or if it seems that no move works,
modifying or changing the purposes should take place. For example, saving a
group might be the most important thing for the result of the game, but if there
is no way to accomplish the feat currently, something else must be done.

It is quite common for stronger players to omit playing in some relatively
important area if they do not find a good efficient move in the area or if they have
difficulty deciding between seemingly equally good moves — they are delaying the
decision on the local move further, until the game situation has changed so that
the decision is easier.

2.4 Timing

The common feeling among weaker players is that the stronger player often seems
to play the move the weaker player was planning to play next. And indeed, almost
always the best time to play a move is the very last moment it can be played.

Figure 3 demonstrates the timing aspect. In the left diagram the starting
position is shown with some possible moves for black to solidify his corner. We
will have to assume that white is strong in both sides (outside the diagram).
The middle diagram shows a very nice result for white, as he has managed to
reduce blacks framework (moves 5 and 7) as well as leave behind the potential of
making a living group in the corner with A. The right diagram shows the same
moves but in the wrong order, as black has become sufficiently strong outside to
resist white 5. It is a hard question, for example, when it is the correct time to
play probing moves like 1 or valuable moves like A in the middle diagram.
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3 Computer Go

Computer go has been studied nearly 40 years, with the current state of the
art players attaining a strength around 7 kyu.* Here we will very briefly go
through the different techniques used in constructing agents. For more thorough
treatment, the reader is referred to [3,8,20], which cover the computer go field
quite well (excluding the recent advances with Monte Carlo Go). A bibliography
of go-related articles can be found in [11].

By looking at Figures 1 and 2 one can conclude that the gap between comput-
ers and the strongest humans is large. The reason for this gap is the unsuitability
of the applied methods, which have been very successful with other games. We
discuss evaluation functions in Section 3.1, move generators in Section 3.2 and
divide-and-conquer approaches in Section 3.3.

3.1 Evaluation Function

Using an evaluation function with a tree search has been a successful approach
to many games — in go the difficulty of evaluating the game situation accurately
and the vast number of possible moves have prevented a breakthrough. There
are four main approaches.

The first and the traditional one is a manually crafted evaluation function,
which combines the estimates of territories and influence.’ Then simply the move
leading to the best game situation is chosen. The thickness aspect is usually re-
garded by classifying moves to urgent and non-urgent moves, and always playing
an urgent move if there is one.

* On KGS server (http://www.goKGS.com/) the best agents have stabilized around 4
kyu. In Finnish ranks this would most likely correspond to 6 kyu, but since there is
not that much information on agents playing in real human tournaments and people
tend to play less seriously on the internet, 7 kyu is probably a reasonable estimation.

5 Influence is usually considered to represent, more or less, the probability of a given
intersection belonging to a given player — which is not quite right. In practice the
territory and influence estimation is implemented by letting stones radiate power to
their surroundings and summing it up. With proper radiation functions and thresh-
olds one gets numerical estimates for both territory and influence.
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Another approach is to create (manually or automatically) a rule database,
which directly gives a move without any game situation evaluation [22,24] —
the advantage is the quickness and multitude of thumb rules (proverbs) around,
which unfortunately hold only for the most of the time.

A black-box approach involves a training of a neural network to predict the
winner for any game situation (for instance, see [7,17,23]). Neural networks
do learn, but the common raw presentation of the game board along with some
features has proven to be insufficient to construct a strong agent. NEUROGO [10]
with its more complex board representation is the only pure neural network
implementation with a moderate success.

The final approach is called Monte Carlo Go (MCGQG), in which simulations —
i.e., random games® — are used to determine the move giving the best winning
rate. Using an UCT algorithm [15] (running more simulations on the moves
looking promising instead of running equal number of simulations for each move)
and giving a proper bias for probable good moves have resulted in a very strong
9x9 agent [12]. The MCG/UCT approach is currently studied very actively
in order to see, how well the approach will scale to 19x19 and how far the
point of the diminishing returns is [31].7 Based on their own experiments, the
practitioners of MCG/UCT seem quite optimistic on both subjects.

3.2 Move Generators

Many methods for move generators have been already mentioned in previous
sections, so there is not that much to be added here. The methods include
rule-based move generators [22], neural networks [26] or goal/purpose-driven
generators [34]. Usually each move generator gives a value for a move. The total
value of a move on a certain intersection is a combination of the values given by
different move generators.

The timing aspect of the game is not really modeled, although thinking in
terms of temperature seems quite natural in this context. However, the published
results (excluding the late part of the game) on the subject are scarce [6]. The
temperature can be viewed as the point difference depending on which player
makes a move to the area first. A point would here refer to a combined value
of territory, influence and thickness resulting from the move — which makes the
estimation of temperature difficult (in the endgame influence and thickness play
no real role, so the estimation can be done accurately).

3.3 Divide-and-Conquer Approaches

A game of go has three phases: the opening (the board is divided into players’
areas), the middle game (the areas are reduced, enlarged and exchanged) and the

% The game is played to the end using random moves (the legal moves are allowed,
although some obviously bad moves are usually excluded).

" For discussions on these subjects the reader may consult the computer-go mailing
list archives, http://computer-go.org/pipermail/computer-go/.

86



endgame (the exact boundaries of the areas are determined). Moderate success
has been attained in opening [4,24], which is the most important part of the game
— although, with amateur players the player who made the last big mistake tends
to lose. The late endgame (where the board can be divided into independent
subgames) can be considered to be solved [2] with combinatorial game theory [1].
The middle game has received the least attention and it is exactly the phase
where the current agents are being outplayed by humans.

Besides these phases, go has some subgames as well, which are called prob-
lems. In life-and-death problems one should be able to determine the status of a
group (alive, dead, depends on ko or whose turn it is) and find the correct moves
to save or kill the group. In capture problems one tries to determine, whether
given stones can be captured or not. And in connection problems one seeks for
an answer, if a pair of stones/blocks/groups can be connected/disconnected.
Several different approaches have been tried with some success, e.g., heuristics,
databases, neural networks [9,16,28] and exhaustive search [14,29, 30].

4 Playing Style

The current agents do not modify their way of play in accordance with their
opponents or their experience. The common argument for this is that it is better
to improve directly the agent against all the opponents (whereas learning has
not been implemented because the current designs are not really suited for it).
The argument is valid, but in our opinion a design which is capable of adjusting
itself is a faster and more effective way towards a strong agent.

One could say the set of players’ global goals and how he values them rep-
resent his style of play. Being strong at the local aspects of the game, tactics, is
essential for a good player. But without striving towards a good style the player
will not progress. Existence of styles manifests itself in the intransitive nature of
the game, e.g., players A, B and C with similar strength might consistently win
each other crosswise (A > B, B > C, but A < C).

We say a player’s playing style is a set of global features and weighted hy-
potheses over these features. The global features themselves are relatively sim-
ple, like “number of opponent’s weak groups”, “agent’s own estimated territory”,
“number of opponent’s big ko threats”, etc. For instance a hypothesis “number
of my weak groups < number of the opponent’s weak groups” could be part of
a good style.

5 Tactician-Strategist Design

The nature of go is twofold: the local (tactical) battles and the global (strategic)
war. If the global aspect is not handled properly, the war may be lost even if
most of the local battles are won — and similarly, the war cannot be won without
some prowess in the battles. Therefore we propose a two-part design consisting
of a tactician and a strategist. The tactician’s task is to determine the best
local moves in every area (with respect to the current game situation) and their

87



expected results as a list of accomplished purposes. The strategist then chooses
the most appropriate move (with respect to the strategist’s playing style) from
the ones proposed by the tactician.

5.1 Tactician

Section 3.2 lists some move generators that have been and are used for finding
good moves. The tactician is quite similar to a set of move generators, but
the relevant difference is how the purposes of different moves are combined. The
tactician constructs a subgame consisting of a part of the board and the winning
condition for the subgame is a list of purposes — if and only if every purpose is
fulfilled, then the subgame is won.

As there are a huge number of possible subgames, we will assume that go is
an incremental game most of the time. By incremental we mean that the result
of a subgame rarely changes by moves played outside the subgame, hence after
each move there are not that many subgames which have to be re-evaluated.
However, every now and then the result of a subgame does depend on the rest
of the board. These situations are studied in [25].

The tactician has failed, if it has not proposed a move in correct area or it
has estimated the result of a subgame incorrectly. High-quality game records can
be used to check, if the tactician proposes a move in the correct area — if not,
either the actual move in the record is bad/irrelevant or the purpose of the move
is unknown to the agent. The estimation errors in the subgame results can be
detected in retrospect.

For implementing the tactician we would propose to use the move generators
(see Section 3.2) to provide a list of moves along with their purposes. Nearby
moves are grouped together into a same subgame and the move purposes become
the winning condition for that subgame. This list of purposes is pruned until the
subgame can be won (or there are no purposes left). For the estimation of the
subgames’ result we propose the MCG/UCT approach, since it is quite suitable
for binary cases (the strongest play seems to result from maximizing the winning
probability instead of maximizing the winning margin), i.e., we only want to
know if all the listed purposes can be accomplished or not.

5.2 Strategist

There has been some research (besides the numerous studies how to improve the
evaluation function) about how one should model the global part of the game
[18,19,27]. The lack of success with these models may result from insufficient
testing or failure to model the game well. Our proposal is to incorporate playing
style into the agent (see Section 4) in a form of a strategist.

The strategist should receive a list of areas and purposes, which can be
fulfilled by playing in the corresponding area. The strategist then chooses the
area, which gives the best result in accordance with the strategist’s playing style.
The weights of the style can be adjusted by training against high-quality game
records: given that a proper area of play was suggested by the tactician and it
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was not chosen by the strategist, weights can be changed towards such values in
which the correct area would have been selected. And with correct predictions
the current weights can be reinforced. The hypotheses may be manually crafted,
or the agent can try new random hypotheses out every now and then.

6 Conclusion

Like in any system-design process, one must know what to aim at. Obviously, we
would like to construct a strong agent, but it is useful if the agent can provide
accessible reasons for its moves — for the benefit of detecting deficiencies and
teaching beginners. In Sections 2 and 3 we provided some background to go
and computer go, while pointing out that currently the biggest bottleneck is the
middle game. We proposed a design aimed at the middle game. The advantage
of the design is that self-learning can be incorporated into the system. Most
of the current approaches suffer from their design, in which one may expect
improvements only with manual tuning or by increased computing power. In
addition, several different playing styles can co-exist, making it possible to choose
a style according to the opponent.

On the other hand, the proposed design needs a good representation of the
board — which is a difficult problem by itself (some discussion about the subject
is given in [13,21]). Also, managing the timing aspect may prove to be very
challenging, i.e., how one can include temperature into the hypotheses in an
effective way. And finally, how the subgames whose results depend on some
other part of the board can be handled correctly.
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Abstract. We present three parallel algorithms for UCT. For®Go, they all
improve the results of the programs that use them againat Go 3.6. The
simplest one, the single-run algorithm, uses very few comoations and shows
improvements comparable to the more complex ones. Furti@movements may
be possible sharing more information in the multiple-rulgeathm.

1 Introduction

Works on parallelization in games are mostly about the pizdtion of the Alpha-
Beta algorithm. We address here different approaches tpatalelization of the UCT
algorithm.

Monte-Carlo Go has recently improved to compete with thé Begprograms [3-5,
7]. We show that it can be further improved using paralleitora

Section 2 describes related work. Section 3 presents ttaredigd algorithms. Sec-
tion 4 details experimental results. Section 5 concludes.

2 Related Works

In this section we expose related works on Monte-Carlo Go.fiYge explain basic
Monte-Carlo Go as implemented indBBLE in 1993. Then we address the combination
of search and Monte-Carlo Go, followed by the UCT algorithm.

2.1 Monte-CarloGo

The first Monte-Carlo Go program is@&BLE [1]. It uses simulated annealing on a list
of moves. The list is sorted by the mean score of the gamesawthermove has been
played. Moves in the list are switched with their neighbaihva probability dependent
on the temperature. The moves are tried in the games in tlee ofthe list. At the end,
the temperature is set to zero for a small number of gamesr Aftgames have been
played, the value of a move is the average score of the garnas ieen played in first.
GoBBLE-like programs have a good global sense but lack of tacticalwedge. For
example, they often play useless Ataris, or try to save cagtstrings.
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2.2 Search and Monte-Carlo Go

A very effective way to combine search with Monte-Carlo Ge haen found by Rémi

Coulom with his program €Azy STONE [3]. It consists in adding a leaf to the tree
for each simulation. The choice of the move to develop in tke tlepends on the
comparison of the results of the previous simulations thaitwhrough this node, and
of the results of the simulations that went through its silplhodes.

23 UCT

The UCT algorithm has been devised recently [6], and it has lagplied with success
to Monte-Carlo Go in the program &0 [4, 5, 7] among others.

When choosing a move to explore, there is a balance betweqaaitation (ex-
ploring the best move so far), and exploration (explorifgeoimoves to see if they can
prove better). The UCT algorithm addresses the explorégiqioitation problem. UCT
consists in exploring the move that maximizgst+ C x 1/log(t)/s. The mean result of
the games that start with the move isy;, the number of games played in the current
node ist, and the number of games that start with moys s.

TheC constant can be used to adjust the level of exploration dditarithm. High
values favor exploration and low values favor exploitation

3 Paralldization

In this section, we present the parallel virtual machiné wehave used to implement
the parallel algorithms. Then we present in three sepanéigestions the three parallel
algorithms.

3.1 TheParalle Virtual Machine

To improve search, we choose message passing as parafjehpnming model, which
is implemented in the standard MPI, also supported by LAM/|ZP. Our virtual par-
allel computer, constituted with classical personal comapsets up a fully connected
network of computers. Both communications are done onlly thi¢ global communica-
tor MPI.COMM_WORLD. Each hyper-threaded computer that allows to workvem t
threads at once, supports two nodes of our parallel comitéeh node runs one task
with independent data. Tasks are created at the beginnitigegirogram’s execution,
via the use of the master-slave model. All gtp read and wotaroands are realized
from and to the master. Slaves satisfy computing requeltsniaximum time taken by
any slave task is specified during each computing requestefdre, the communica-
tion time is added. According to time limits, the maximumeispent over all comput-
ing loops is defined by the sum of all slowest answers. We ugeasonous communi-
cation mode for data transmission, with time-constrairmdguting sequences. In the
UCT context, as the algorithm is anytime, it is naturally Madapted for synchronous
programming.
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MASTER_PART:
singleRunParallelUCTMovgoban]| ], color, ko, time)
best — —1;
(wins[ ], games[]) « initialParallelUCTMovégoban| ], color, ko, time);
for j < 0to goban.size()
| best — max(best, wins[j]/gameslj]);
returnbest;

abhwnN -

initialParallelUCTMovégoban| |, color, ko, time)
1 fori « 0togoban.size()
winsli] < 0;
gamesli] < 0;
broadcagyoban| ], color, ko, time);
fori « 0 tonbSlaves
receiveUCTSequenceswWins| |, newGames| ]);
for j « 0to goban.size()
winslj] < wins[j] + newWins[j];
games[j] < games[j] + newGames[j];
0 return(wins| |, games|]);

3
4
5
6
7
8
9
1

SLAVE_PART:
singleRunParallelUCTMoveSlavelLoQp
1  while(true)

2 | if(SingleQueryUCTSlaveLoop) == END_GAMFE) break;

3 return;

SingleQueryUCTSlavelLodp

1 if(receivgoban|], color, ko, time) == END_GAME) returnEND_GAME;
2 fori « 0to goban.size()

3 wins[i] < 0;

4 games[i] — 0;

5 (wins|], games|]) — playUCTSequencégoban] |, color, ko, time);

6 sendwins|], gamesl]);

7 returnCONTINUE,

ALG. 1: Single-Run Parallel Algorithm.

3.2 Single-Run Parallelization

The single-run parallelization consists in running mudtip CT algorithms in parallel
without communication between the processes. Each préeesa different seed for
the random-number generator, so they do not develop the Eifietree. When the
time is over, or when the maximum number of random games hezh each slave
sends back to the master the number of games and the numbieisdbwall the moves
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at the root node of the UCT tree. The master process thensiacils the number of
games and the number of wins of the moves for all the slavesgass.

The master part and the slave part of the single-run pawdt@&n are given in
algorithm 1.

3.3 Multiple-Runs Parallélization

On the contrary of the single-run parallelization algariththe multiple-runs paral-
lelization algorithm shares information between the psses. It consists in updating
the number of games and the number of wins for all the movéwseabibt of the shared
UCT tree every fixed amount of time. The master process stéfisending the goban,
the color to move, the ko intersection and the initial thintktime to the slaves, then
all the slaves start computing their UCT trees, and afterinft&al thinking time is
elapsed, they all send the number of wins and the number oég&mn the root moves
to the master process. Then the master process adds alktiits fer all the moves at
the root, and sends back the information to the slaves. Hweslthen initiate a new
UCT computation with the same shared root moves informafible communication
from the slaves to the master, the update of the master roeesnaformation, the
update of the slaves root moves information and the slavepuatations are then run
until the overall thinking time is elapsed. It is importaatriotice that at line 5 of the
mul ti pl eQuerySl avelLoop function, thenewW ns andnewGanes arrays con-
tain the difference between the number of wins (resp. gaafe)the UCT search and
the number of wins (resp. games) before the UCT search.

Another important detail of the algorithm is that in the glaythe number of wins
and the number of games of the root moves are divided by théeuaf slaves. During
the experiments of the multiple-runs algorithm, we tried teodivide, and the results
were worse than the non-parallel algorithm. Dividing by thember of slaves makes
UCT develop its tree in the slaves in a similar way as it wouithewut sharing infor-
mation, however the average scores of the root moves are anoueate than without
sharing information. The improvement comes from the imptb&verage scores.

The master part and the slave part of the multiple-runs lgdizltion are given in
algorithm 2.

3.4 At-the-leavesParallelization

At-the-leaves parallelization consists in replacing tmedom game at a leaf of the UCT
tree with multiple random games run in parallel on the slaee@sses. This type of par-
allelization costs much more in communication time thantieprevious approaches
since communications between the master and the slavesfoceach new leaf of the
UCT tree.

In the at-the-leaves parallelization algorithm, the maistéhe only one to develop
the UCT tree. For each new leaf of the UCT tree, it sends to lhes the sequence
that leads from the root of the tree to the leaf. Then eachegidays a pre-defined
number of random games that start with the sequence, antdsehe average score of
these random games. The master collects all the averagks efaves and computes
the average of the averages.

96



MASTER_PART:

multipleRunsParallelUCTMovgoban| ], color, ko, time)

1 best+— —1;

2 (wins|], games|]) < initialParallelUCTMovégoban| ], color, ko,
initial PassTime);

3 forj « 0to goban.size()

4 | best — max(best, wins[j]/gameslj]);

5 time «— time — initial PassTime;

6 while(runPassTime < time)

7 | (wins|], games[]) < runParallelUCTMovéwins[ ], games| ],

runPassTime);
8 | time «— time — runPassTime;
9 forj « 0togoban.size()
10 | best — max(best, wins[j]/games]j]);

11 returnbest;

runParallelUCTMovéwins| ], games| ], time)

1 broadcastins| ], games| ], time);

2 fori < 0tonbSlaves

3 receiveUCTSequenceswWins, newGames);
4 for j « 0to goban.size()

5 winslj] «— wins[j] + newWins[j];

6 games[j] — games[j] + newGames[j];

7 return(wins| ], games| ]);

SLAVE_PART:
multipleRunsParallelUCTMoveSlavelLogp
1  while(true)
if(SingleQueryUCTSlaveLoop) == END_GAME) break;
3 state — CONTINUE;
4 while(state == CONTINUE)
5
6

N

state «+ multipleQueryUCT SlavelLodp);
return;

multipleQueryUCT SlaveLod)

1 if(receiv€wins] |, games| |, time) == END_LOOP) returnEN D_LOOP;
2 fori « 0togoban.size()

3 winsli] < wins[i]/nbSlaves;

4 gamesli] «— gamesli]/nbSlaves;

5 (newWins|],newGames|]) « continueUCTSequenc@sme);

6 sendnewWins| ], newGames|]);

7 returnCONTINUE,

ALG. 2: Multiple-Runs Parallel Algorithm.
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MASTER_PART:
AtLeavesParallelUCTMovgoban| ], color, ko, time)
1 best+— —1;

2 broadcagyoban]], color, ko);

3 while(moreTimétime)))

4 sequence] | — getUCTSequendcg

5 newWins «— runParallelimproveAtLeavésequence]]);
8 for nodeld in sequence] |

6 wins[nodeld] — wins[nodeld] + newWins;

7 games|[nodeld] — games[nodeld] + 1;

8 forj « 0to goban.size()

9 | best — max(best, wins[j]/gameslj]);

10 returnbest;

runParallelimproveAtLeavésequence|])
broadcagsequence|]);

improvedWins « 0;

fori < 0 tonbSlaves

receivénodeWins);

improvedWins «— improvedWins + nodeWins;
returnimprovedWins/nbSlaves;

U WNPE

SLAVE_PART:
atLeavesParallelSlaveLopp
while(true)
if(receivégoban] |, color, ko) == END_GAME) break;
state — CONTINUE;
while(state == CONTINUE)
state — atLeavesQuerySlavelLoOp
return;

U WN P

atLeavesQuerySlaveLo@p

if(receive sequence[]) == END_LOOP) returnEND_LOOP;

1
2 fori « 0tosequence.size()

3 | playMove(sequenceli]);

4 nodeWins — 0

5 fori < 0tonbGamesAtLeaf

6 newNodeWins — playRandomGantg;

7 nodeWins <« nodeWins + newN odeW ins;
8 sendnodeWins/nbGameAtLeaf);

9 returnCONTINUE;

ALG. 3: At-The-Leaves Parallel Algorithm.
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The master part and the slave part of the at-the-leaveslglaration are given in
algorithm 3.

4 Experimental Results

Tests are run on a simple network of computers running LINUXIB. The network
includes 100 Mb switches. The BogoMips rating of each nodg@poximately 6000.

In our experiments, UCT uses + 4/ lfé’% to explore moves.

The random games are played using the same patterns as@o ] near the last
move. If no pattern is matched near the last move, the sefecfimoves is the same as
in CRAZY STONE [3].

Table 1 gives the results (% of wins) of 2069 games (100 with black and 100
with white) for the single-run parallel program againstGGo 3.6 default level. The
parallel algorithm has been tested with either 3,000 sitiaria (random games) for
each UCT search, or 10,000 simulations. The single-runlipbzation improves the
result bringing them from 27.5% for 1 CPU and 3,000 games t60%3or 16 CPUs
and 3,000 games per CPU. Concerning the experiments wi®Q@ames per CPU,
the results increase from 45.0% for 1 CPU to 66.5% for 16 CPRdsthe single-run
parallelization, the communication time is very small cargal to the computation
time. The single-run parallelization successfully immsthe UCT algorithm.

Table 1. Results of the single-run program againstGo 3.6.

1 CPU2 CPUs4 CPUS8 CPUs16 CPUs
3,000 simulations27.5% 40.0% 48.09%4 55.59%4 53.0%
10,000 simulationst5.0% 62.09% 61.59%4 65.09%4 66.5%

Table 2 gives the results of 2009 games for the multiple-runs parallel program
against Giu Go 3.6 default level. In these experiments, the multiple-ralgerithms
updates the shared information every 250 simulations. €kelts are similar to the
results of the single-run parallelization. They are slighetter with 10,000 simulations.

Table 2. Results of the multiple-runs program againstGo 3.6.

1 CPU2 CPUs4 CPUs8 CPU$16 CPUs
3,000 simulations20.094 32.09q 48.094 53.5% 56.0%
10,000 simulation19.0% 58.5% 72.094 72.09% 68.0%

Table 3 gives the results of 2009 games for the at-the-leaves parallel program
against Giu Go 3.6 default level. We can see an improvement when the nunfber o
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CPUs increases from 1 to 8. However increasing the numbepote than 8 does not
improve much as can be seen from the second line of the tabrgvthe slaves all play
8 games per leaf. Playing 8 games per leaf is equivalent tmgp@times more CPUs

with one game per leaf.
Concerning the 10,000 simulations experiments, the p&genof wins also in-

creases until 8 CPUs.

Table 3. Results of the at-the-leaves parallel program agaimst Go 3.6.

nbGamesAtLeal CPU2 CPUs4 CPUs8 CPUs$16 CPUS
3,000 simulationis 1 21.09% 35.09% 42.0% 46.0% 45.0%
3,000 simulationis 8 54.5% 48.5% 49.5% 47.5% 51.0%
10,000 simulations 1 47.0% 53.5% 53.5% 69.5% 62.0%

Table 4 shows the communication overhead for the at-theefeparallel program.
For one CPU, the slave process runs on the same machine aashe process, so the
communication time is small and the time used to find the fis¢eron an empty 99
goban can be used as a reference for a non-parallel prograise®\in the next columns
that the communication time progressively increases, liloythe thinking time for 8
CPUs.

Table 4. Times for the first move for the at-the-leaves parallel paogr

nbGamesAtLeafl CPU2 CPUs4 CPU$8 CPUS
10,000 simulations 1 6.21s| 10.85s| 11.56s] 13.075

The communication time for the at-the-leaves parallel paogis significantly higher
than the two previous algorithms. Given that it gives similaprovements in level, it
is preferable to use the single-run or multiple-runs akhons. The at-the-leaves paral-
lelization could be of interest to multiple CPUs machinethvai shared memory where
the communication costs are less of a problem.

5 Conclusion

We have presented three parallel algorithms that improv& &€arch. They all give
similar improvements. The single-run parallelizationtie most simple one and also
the one that uses the fewest communications between thegzes:

The at-the-leaves parallelization currently costs too mc@mmunications, how-
ever it could still be interesting on a multiple CPUs machine

We believe that the multiple-runs algorithm can be furtiheprioved to share more
information and then may become the best algorithm.
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Abstract. We identify important Go domain knowledge which is computable in
a speed comparable to random simulations in Monte-Carlo Go. We design
knowledge-guided simulations to be combined with UCT algorithm for move
decision in 9 x 9 Go. We demonstrate the merit of this approach through
extensive testing games against three top 9 x 9 Go programs available.

1. Introduction

Monte-Carlo (MC) tree search based Go programs have achieved great success on
small boards since Computer Olympiad 2006. CRAZYSTONE and MoGo have
significantly outperformed all traditional knowledge and search based Go programs
on 9 x 9 and 13 x 13 games. At the heart of this new generation of Monte-Carlo Go
programs is the algorithm called UCT (Upper Confidence Bounds applied to Trees)
[8, 7], which guides the program toward winning moves based on statistical results of
random games played at selected nodes of dynamically growing MC search tree.
These programs typically use very little Go knowledge.

In contrast, the first author’s program GO INTELLECT is knowledge intense, yet
on 9 x 9 games it was outplayed by CRAZYSTONE at the 2006 Computer Olympiad
and in subsequent long testing serious. The authors are convinced that Monte-Carlo
tree search is the best known approach to computer Go. Last Fall, we each started
developing our own MC 9 x 9 Go programs, GO INTELLECT Il 9 x 9 and JIANGO 9 x
9, respectively. We both embraced UCT algorithm and tried to incorporate Go
knowledge in “random” simulations.

This paper describes the Monte-Carlo 9 x 9 Go move decision process as
implemented in Go INTELLECT Il 9 x 9. The emphasis is on using selected Go
knowledge computable fast enough to be used in random simulations. The selected
items include simple capturing, neighborhood, eye, connection, shape, and location
knowledge.

We describe the basic move decision strategy in Section 2. We discuss capturing
knowledge for random simulations in Section 3, neighborhood and eye knowledge in
Section 4, and pattern based knowledge in Section 5. The use of Go knowledge to
pre-select candidate moves at the top level is discussed in Section 6. Section 7
presents experimental results showing the merit of knowledge enhancements on the
random simulations. Section 8 contains c%%luding remarks.



2. Basic Strategy

UCT algorithm efficiently balances exploitation of the most promising moves and
exploration of the most uncertain moves. It is an excellent tool for Monte-Carlo tree
search. GO INTELLECT Il 9 x 9 adopts the following variant of the UCT algorithm
(see Algorithm 1).

The root of the MC tree represents the current Go board configuration. We assume
the MC tree is already in the memory. If not, a MC tree with just the root is created.

While (more simulations to do) {

current node = root of MC tree;

if (the current node has a complete children set )
/* All legal moves from the position have been
generated or maximum number of children
allowed is reached */
Advance to the child, maximizing
r, + sqgqrt( log(p)/(5*n,));
/*where r, is the winning rate of move,, p is
the number of simulations passing through the
current node, n, is # of simulations passing
through child, */

else {
Add a new child to MC tree for the move with
the next highest urgency value;
Play a random continuation to game-end with
move selection probabilities proportional to
move urgency values;
Score the new node with the win/loss result of
the simulation;
Update the number of games passed by adding 1
to all ancestors;
Update the number of wins by adding 1 for
every other ancestor sharing the success;

}

Algorithm 1. A variant of the UCT algorithm used by Go InTeLneECT Il 9 x 9.

The main while loop can be controlled by a limit number on simulations, a time
limit allocation, and/or some other criteria. After random simulations, the child of the
root with the highest winning rate and exceeding a threshold of minimum number of
simulation games is selected for move decision. A more detailed UCT algorithm
description for the game Go can be found in [7].

Two factors determine the playing strength of a MC Go program based on UCT
algorithms:

a) the quality of the simulations

b) the quantity of the simulations

The quality of the simulations helps to produce more accurate evaluations and the
quantity of simulations allows MC tree to grow/see deeper. Proper balance between
quality and quantity is a key to the strength of a MC program. Only domain
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knowledge computable in a comparable time to random-move generation and
execution is beneficial to be used in the simulations.

Each move is associated with a non-negative integer urgency value, which is used
in weighted random-move generation with the urgency as the weight. We use the
knowledge to alter the urgencies of candidate moves, which normally have default
urgency 10 (this allows us to decrease urgency to a lower integer if we want). A move
with higher urgency has higher probability to be selected by the weighted random-
move generator for the simulation. We call such knowledge-guided random games
semi-random games. Figures 1 and 2 compare a typical semi-random game with a
pure-random game. Experienced Go players can see that semi-random games are
much more reasonable and will carry better feedback than pure-random games in MC
simulations.
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Fig. 1. A semi-random (partial) game. Fig. 2. A pure-random (partial) game.
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We keep the MC tree in memory at all times until the game is over. When either
side makes an actual move the corresponding subtree from the previous search is used
for the next search. A significant amount of simulations can be reused this way.

We will discuss fast computable Go knowledge adopted by GO INTELLECT Il 9 x
9 in the next three sections.

3. Capturing Knowledge

Capturing knowledge is generally recognized as extremely important for a meaningful
simulation game. Coulom [6] increases urgency 1000 fold to over 10000 fold for the
liberty of an ataried block. Cazenave [3] distinguishes the two liberties of a 2-liberty
block by counting resulting liberties when an extra stone is played at a liberty. Play
the move, called “right Atari” or “right extension”, that would generate more liberties.
Unfortunately this strategy is near sighted. It does not try to know whether the “right
atari” is producing an unsuccessful ladder chase. We fix this drawback by introducing
pseudo ladders, which we shall discuss later in this section.

Every time a new move is played on the board during a semi-random game, the
number of liberties of the block that the move is in and the numbers of liberties of its

adjacent blocks are counted. If the move block has only one liberty (hence the
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opponent could capture it in the next move) and the block consists of more than 4
stones, undo the move — we do not allow such unreasonable moves (the chance that
the block of 5 or more stones form a needed sacrifice, such as a knife-5 in life-&-
death, is slim). We keep track of all the blocks adjacent to the last move that have one
or two liberties. Sort out their urgencies based on whether they can be ladder
captured. Although a ladder search takes only a fraction of a millisecond, it still too
slow comparing to random-move generation & execution. We cannot afford the time
to perform regular ladder searches during a simulation game. We generate pseudo
ladders instead. We call the target of the capturing attempt the prey, and the prey’s
opponent the hunter. After the direction of ladder chase is determined, see Fig. 3, we
scan towards that direction (the dark & light shaded squares in Fig. 3). If the scan
encounters prey’s support stones before hunter’s stones and before Line 1, the edge of
the Go board, then the prey can escape and the ladder capturing fails, otherwise it
succeeds. This simple heuristic will read over 90% of the ladders correctly. The
urgencies of those capture, Atari, or extend moves depend on the (pseudo) ladder
capture reading outcomes.

Fig. 3. Pseudo Ladder — if the directional radar scan, checking both dark and light shaded
locations, picks up a black stone before it sees a white stone and before it reaches Line 1, the
prey can escape from the ladder, otherwise the prey can be captured.

We classify atari moves into:

a) Critical — making the move Kills the opponent block, otherwise the opponent
block can escape.

b) Over-kill — the opponent block can be killed in a (pseudo) ladder even the
opponent plays first.

c) False Ladder — the Atari is producing an unsuccessful ladder

d) Other

10000 x s? is added to move urgency for a critical move where s is the number of
stones of the short liberty opponent block. 100 x s? is added to the “right Atari” in
category d. When the number of adjacent blocks of the prey is more than 6, the
urgency of a category c atari will be reduced to 0. If not more than 6, the Atari is
classified into category d. If an Atari is an over-kill, no extra urgency is added.
Similar treatment is made to various types of extension-moves.
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The move urgencies generated will be retained through the random game until the
move is played or surrounding changes significantly. The ladder outcome can easily
be affected by future moves. To resolve this problem, we keep lists of various ladder
capture/escape points and dynamically update their urgencies after each move in a
random simulation by redoing the pseudo ladder scans.

When a block is captured, the urgencies of the adjacent block’s liberties will be
reduced 100 fold (but no less than 1)

4. Neighborhood and Eyes

We update the six arrays NuEmptyNeighbors[], NuNeighbors[Black][],
NuNeighbors[White][], NuEmptyDiagonals[], NuDiagonals[Black][],
NuDiagonals[White][] incrementally after each move in the actual game and
simulation games. Each of the six arrays uses a board point as an index, its value is
self explanatory.

The information can be used to recognize solid eyes and can help check pattern
conditions during semi-random games. For example, p is a solid eye for Black if

(Line[p] > 1) and (NuNeighbors[Black][p] = 4) and (NuDiagonals[Black][p] > 2)
or

(Line[p] = 1) and (NuNeighbors[Black][p] = 3) and (NuDiagonals[Black] [p] = 2)
or

(Pos[p] = 1) and (NuNeighbors[Black] [p] = 2) and (NuDiagonals[Black] [p] =1)

We disallow the simulation to play at a solid eye of either color by setting its
urgency to 0. For a more elaborate static eye recognition method, see [4].

5. Pattern Knowledge

We match patterns only on the surroundings of the last random move to save time.
The emphases are on blocking such as in Fig. 4 left, cutting such as in Fig 4 right,
extending such as in Fig. 5 left, and separating such as in Fig. 5 right. The patterns are
centered around the last move and are not restricted to 3 by 3 region as in some other
programs. All 8 rotations and symmetries are checked. Urgency values are updated
for the move marked by a square and are applied to both sides. So if the one to play
does not play there in the next move, it will have high urgency for the opponent also.
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Fig. 4. The left is a blocking pattern and the right is a cutting pattern. The square marks the
pattern move (currently empty). White represents ToPlay color and black represents the
Opponent color. Dark shade square represents empty or Opponent.

Fig. 5. The left is an extending pattern and the right is a separating pattern. The X is required
to be empty. The light shade represents empty or ToPlay.

Counting liberties, reading pseudo-ladders, and matching patterns are a little more
time consuming than generating random moves. As a result, only 1500 knowledge
guided simulations can be performed in a second, which is one order slower than the
simulation rates of those MC programs using little knowledge. But the quality of the
simulations is much better providing much more accurate statistical feedback in MC
tree search.

In random simulations, the default move urgency is 10. In order to reduce
frequencies of Line 1 moves at early stage of a random simulation, Line 1 moves have
a reduced default urgency 1 before move 45 (including moves in both the actual game
and its simulation extension). The weight of a pattern move is typically in hundreds.
A capture or escape move may have an urgency in tens of thousands.
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6. Selection of Top Level Candidate Moves by Knowledge

Go INTELLECT I 9 x 9 uses knowledge to select one eighth of all legal moves, but no
less than 4 (unless there are fewer than 4 legal moves), as the top level candidates in
the MC tree. And these selected candidate moves are added to the tree in the order
determined by knowledge. At the top level, restricting candidate moves to top a few
best moves as judged by program knowledge has the advantage of avoiding really
crazy moves and make the program more focused on exploring small number of best
candidates. We shall see from the experiment result in the next section, the program
versions using this strategy outperform the program versions generating all candidate
moves at the top level unless the allowed number of simulations per move reaches
more than a half million.

7. Experimental Results

We have performed a through test of Go INTELLECT Il 9 x 9 (GI3). The testing
opponents are three well established programs: GNuU Go 3.6 (default version) (Gnu),
2006 Computer Olympiad 9 x 9 Go Champion CRAZYSTONEQOOO6 (30 minutes time
limit setting) (Cra), 2005 Computer Olympiad 9 x 9 Go Champion GO INTELLECT
2005 (30 minutes time limit setting) (GI05). We tested on two groups of GI3 variants.
The first group does not use knowledge selection on top level moves, the second
group does. Each group has 7 versions with the limit of the number of semi-random
simulations per move set to 12.5K, 25K, 50K, 100K, 200K, 400K, & 800K
respectively. Each version plays 40 games against each of Gnu, Cra, & GI05. On half
of the games GI13 took Black, the other half of the games GI3 took White. In order to
investigate the effect of the amount of simulations, GI3 is controlled by the number of
semi-random simulations not by the time used. A total of 840 testing games were
played on dozens of computers. Most of the machines had 3-GHz Pentium 4
processors. 12.5K versions of GI3 use about 3 minutes per game for its moves. 100K
versions use about 20 minutes per game, and 800K versions average about 2 hours
and 45 minutes a game.

Fig. 6 shows that the performance improves with an increasing amount of
simulations. With each doubling of the simulation limit, the percentage of losing
games is reduced by an average of 17%. The versions with top-level candidate moves
selected by knowledge in general outperform the versions without this selection until
the limit on the number of simulations allocated per move becomes real large (a half
million or more).
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Performances of knowledge guided simulations

—+—No pre-selection
—e— Top lewel pre-selection

Number of games won out of 120

12500 25000 50000 100000 200000 400000 800000

Number of simulations per move
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. 6. Total games won by GI3 out of 120 testing games for each setting.

Fig. 7 combines the numbers of wins of the pre-select version and the non-pre-
select version for each color and each simulation limit. The number of wins shown is
again out of 120 total games. With 6.5 point komi, GI3 slightly prefers playing Black.

Playing Black v. Playing White

—e—#Black wins
—=— #White wins

Number of games won out of 120

12500 25000 50000 100000 200000 400000 800000
Number of simulations per move

Fig. 7. This chart compares the performances of GI3 when playing Black vs. when playing
White.
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8. Conclusion

This paper demonstrates that improving the quality of simulations is an effective way
to improve the performance of a MC Go program. If a key domain-knowledge item
can be computed in a speed comparable to the speed of generating and executing
random moves, then implementing it in the simulations is likely to improve the
program performance. We presented a number of such knowledge items in this paper.
The authors witnessed the performance improvement of our programs from adding
“fast” knowledge into the simulations in the past few months. The process itself
involved a lot of try-and-error adjustments. It is difficult to give an exact assessment
of the contribution of each knowledge item. But the overall improvement has been
very clear — the first prototype Monte-Carlo GI3 could not win more than 1/3 of the
games against the three programs used in the final testing.

The UCT algorithm works well on small Go boards. But on 19 x 19 Go board, a
semi-random simulation lasts several hundred moves; the simulation result becomes
much more random and much less reliable. We do not believe UCT can be scaled up
to 19 x 19 games directly. Integration of combinatorial game theory with Monte-
Carlo tree search gives us new hope in tackling Go games on large boards.
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Computing Elo Ratings of Move Patterns in the
Game of Go
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Abstract. Move patterns are an essential method to incorporate do-
main knowledge into Go-playing programs. This paper presents a new
Bayesian technique for supervised learning of such patterns from game
records, based on a generalization of Elo ratings. Each sample move in
the training data is considered as a victory of a team of pattern features.
Elo ratings of individual pattern features are computed from these victo-
ries, and can be used in previously unseen positions to compute a prob-
ability distribution over legal moves. In this approach, several pattern
features may be combined, without an exponential cost in the number
of features. Despite a very small number of training games (652), this
algorithm outperforms most previous pattern-learning algorithms, both
in terms of mean log-evidence (—2.69), and prediction rate (34.9%). A
19 x 19 Monte-Carlo program improved with these patterns reached the
level of the strongest classical programs.

1 Introduction

Many Go-playing programs use domain knowledge encoded into patterns. The
kinds of patterns considered in this paper are heuristic move patterns. These are
general rules, such as “it is bad to play in the corner of the board”, “it is good
to prevent connection of two opponent strings”, “don’t fill-up your own eyes”, or
“when in atari, extend”. Such knowledge may be used to prune a search tree,
order moves, or improve random simulations in Monte-Carlo programs [2, 8].

Move patterns may be built by hand, or generated automatically. A popular
approach to automatically generate patterns is supervised learning [1,4,6,7,
9,12-14]: frequent patterns are extracted and evaluated from game records of
strong players. In this approach, expert knowledge is used to produce a relevant
encoding of patterns and pattern features, and a machine-learning algorithm
evaluates them. The advantage of automatic pattern learning over hand-made
patterns is that thousands of patterns may be generated and evaluated with
little effort, and little domain expertise.

This paper presents a new supervised pattern-learning algorithm, based on
the Bradley-Terry model. The Bradley-Terry model is the theoretical basis of the
Elo rating system. The principle of Elo ratings, as applied to chess, is that each
player gets a numerical strength estimation, computed from the observation
of past game results. From the ratings of players, it is possible to estimate a
probability distribution over the outcome of future games. The same principle
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can be applied to move patterns: each sample move in the training database can
be considered as a victory of one pattern over the others, and can be used to
compute pattern ratings. When faced with a new position, the Elo ratings of
patterns can be used to compute a probability distribution over all legal moves.

1.1 Related Work

This algorithm based on the Bradley-Terry model is very similar in spirit to some
recent related works, but provides significant differences and improvements.

The simplest approach to pattern learning consists in measuring the fre-
quency of play of each pattern [4,9]. The number of times a pattern is played
is divided by the number of times it is present. This way, the strongest patterns
get a higher rating because they do not stay long without being played. A major
weakness of this approach is that, when a move is played, the strengths of com-
peting patterns are not taken into consideration. In the Elo-rating analogy, this
would mean estimating the strength of a player with its winning rate, regardless
of the strength of opponents. By taking the strength of opponents into account,
methods based on the Elo rating system can compute more accurate pattern
strengths.

Stern, Herbrich, and Graepel [12] address the problem of taking the strength
of opponents into account by using a model extremely similar to Elo ratings.
With this model, they can compute high-quality probability distributions over
legal moves. A weakness of their approach, however, is that they are restricted
to using only a few move features, because the number of patterns to evaluate
would grow exponentially with the number of features.

In order to solve the problem of combining move features, Araki, Yoshida,
Tsuruoka, and Tsujii [1] propose a method based on maximum-entropy classifi-
cation. A major drawback of their approach is its very high computational cost,
which forced them to learn on a restricted subset of moves, while still taking 8.75
days of computation to learn. Also, it is not clear whether their method would
provide a good probability distribution over moves, because, like the frequency-
based approach, it doesn’t take the strength of opponent patterns into account.

A generalized Bradley-Terry model, when combined with the minorization-
maximization algorithm to compute its maximum likelihood, addresses all the
shortcomings of previous approaches, by providing the algorithmic simplicity and
efficiency of frequency-based pattern evaluation, with the power and theoretical
soundness of methods based on Bayesian inference and maximum entropy.

1.2 Paper Outline

This paper is organized as follows: Section 2 explains the details of the theory
of minorization-maximization and generalized Bradley-Terry models, Section 3
presents experimental results of pattern learning, and Section 4 describes how
these patterns were applied to improve a Monte-Carlo program.
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2 Minorization-Maximization and Generalized
Bradley-Terry Models

This section briefly explains, independently of the problem of learning patterns
in the game of Go, the theory of minorization-maximization and generalized
Bradley-Terry models. It is based on Hunter’s paper [11]|, where interested read-
ers will find more generalizations of this model, with all the convergence proofs,
references, and mathematical details.

2.1 Elo Ratings and the Bradley-Terry Model

The Bradley-Terry model allows to make predictions about the outcome of com-
petitions between individuals. Its principle consists in evaluating the strength of
each individual ¢ by a positive numerical value ~;. The stronger i, the higher ~;.
Predictions are made according to a formula that estimates the probability that
1 beats j:

Vi
Yi + v
The Elo rating of individual 7 is defined by r; = 4001log,(V:)-

P(i beats j) =

2.2 Some Generalizations of the Bradley-Terry Model

The Bradley-Terry model may be generalized to handle competitions involving
more than two individuals. For n players:
Vi

Vied{l,...,n}, P(i wins) = .
{ b P ) MYt T

Another interesting generalization consists in considering not only individu-
als, but teams. In this generalization, the v of a team is estimated as the product
of the ~’s of its members. For instance:

V17273
Y1723 + Yav2 + 1157677

Note that the same v may appear in more than one team. But it may not appear
more than once in a team.

P(1-2-3 wins against 4-2 and 1-5-6-7) =

2.3 Relevance of Bradley-Terry Models

The choice of a Bradley-Terry model makes strong assumptions about what is
being modeled, and may not be appropriate in every situation. First, a Bradley-
Terry model cannot take into consideration situations where individual 1 beats
individual 2 consistently, individual 2 beats individual 3 consistently, and indi-
vidual 3 beats individual 1 consistently. The strengths are on a one-dimensional
scale, which does not allow such cycles. Also, the generalization to teams as-
sumes that the strength of a team is the sum (in terms of Elo ratings) of the
strengths of its members. This is also a very strong assumption that may not be
correct all the time.
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2.4 Bayesian Inference

Bradley-Terry models, as described in the previous sections, provide a probability
distribution over the outcomes of future competitions, given the strength of
individuals that participate. Most of the time the exact value of parameters ~;
are unknown, and have to be estimated from the outcome of past competitions.
This estimation can be done with Bayesian inference.

With =, the vector of parameters, and R, past results, Bayes formula is:

P(R|v)P(v)

P(|R) = P(R)

It gives a likelihood distribution over «, from P(R|v), that is to say the Bradley-
Terry model described in the previous sections, P(+), a prior distribution over
parameters, and P(R), a normalizing constant. Parameters v may be estimated
by finding v* that maximizes P(v|R).

This optimization can be made more convenient by choosing a prior that has
the same form as the Bradley-Terry model itself. That is to say, virtual results
R’ will serve as a prior: P(y) = P(R’|7). This way, the estimation of parameters
of the model will consist in maximizing P(R, R'|7).

2.5 A Minorization-Maximization Algorithm

Notations. v, ..., 7, are the strength parameters of n individuals. N results
R1, ..., Ry of independent competitions between these individuals are known.
These competitions are of the most general type, as described in Section 2.2.
The probability of one competition result may be written as

Aijvi + Bij

P(R;) =
(&) Cijvi + Dij

where A;;, B;j, Cij, and D;; are factors that do not depend on ~;. With this
notation, each P(R;) can be written in n different ways, each time as a function
of one particular ;. E; is defined as E; = Cy;y; + D;j;, and W; = |[{j|Ai; # 0}]
is the number of wins of individual i. The objective is to maximize:

N
L=]]P®;)
j=1

Derivation of the Minorization-Maximization Formula. (Readers who
do not wish to understand all the details may safely skip to the formula)
Minorization-maximization is an iterative algorithm to maximize L. Its prin-
ciple is illustrated on Figure 1. Starting from an initial guess ~° for v, a function
m is built, that minorizes L at 4°. That is to say, m(v°) = L(4°), and, for all
~, m(v) < L(v). The maximum ~* of m is then computed. Thanks to the mi-
norization property, 4! is an improvement over 4°. The trick is to build m so
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(a) Initial guess. (b) Minorization. (c) Maximization.

Fig. 1. Minorization-maximization.

that its maximum can be computed in closed form. This optimization algorithm
is often much more efficient than traditional gradient-ascent methods.

+ B;
I — 1]71 ij
H Cz]'Yz + ng

is the function to be maximized. L can be considered as a function of v;, and its

logarithm is:

N N

log L(;) Zlog Y + Bij) Zlog(Cij%- + Djj;) .
j=1 j=1

Terms that do not depend on <; can be removed, and, since either B;; = 0 or
A;j = 0, the function to be maximized becomes:

N
f(it) =W; 10g$ - Z log(Cijx + Dij) .
j=1

The logarithms in the right-hand part may be minorized by their tangent at
x = 74, as shown on Figure 2. After removing the terms that do not depend on

1og T

1—x/zg—logxg -+ vvvee

o1 I I L I
0.4 0.8 1.2 1.6 2

Fig. 2. Minorization of —logz at ¢ = 0.5 by its tangent.
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x, the minorizing function to be maximized becomes

N Cya
m(x) = W;logx — ~J
— [
J=1
The maximum of m(z) is at
W;
T=SN oy
2= E

Minorization-Maximization Formula. So, minorization-maximization con-
sists in iteratively updating one parameter v; according to this formula:

W;
Vi N Ciy

Zj:l E;

If all the parameters are initialized to 1, and the number of participants in each
competition is the same, the first iteration of minorization-maximization com-
putes the winning frequency of each individual. So, in some way, minorization-
maximization provides a Bayesian justification of frequency-based pattern eval-
uation. But running more than one iteration improves parameters further.

When players have different strengths, C;; indicates the strength of team
mates of ¢ during competition j, and Ej is the overall strength of participants.
With the minorization-maximization formula, a win counts all the more as team
mates are weak, and opposition is strong.

Batch Updates. The minorization-maximization formula describes how to up-
date just one ~;. It is possible to iteratively update all the +; one by one, but
it may be inefficient. Another possibility is to perform batch updates. A set of
mutually exclusive 7;’s may be updated in one single pass over the data. Mu-
tually exclusive means that they cannot be members of the same team. The
batch-update approach still has good convergence properties [11], and offers the
opportunity to re-use computations. In particular, 1/E; can be computed only
once in a batch.

3 Pattern-Learning Experiments in the Game of Go

A generalized Bradley-Terry model can be applied to supervised learning of Go
patterns, by considering that each sample move is a competition, whose winner
is the move in question, and losers are the other legal moves. Each move can be
considered as a “team” of features, thus allowing to combine a large number of
such features without a very high cost.
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3.1 Data

Learning was performed on game records played by strong players on KGS. These
game records were downloaded from the web site of Kombilo [10]. The training
set was made of the 652 games with no handicap of January, 2006 (131,939
moves). The test set was made of the 551 games with no handicap of February,
2006 (115,832 moves). The level of play in these games may not be as high as
the professional records used in previous research on pattern learning, but they
have the advantage of being publicly available for free, and their level is more
than high enough for the current level of Go-playing programs.

3.2 Features

The learning algorithm used 8 tactical features: pass, capture, extension, self-
atari, atari, distance to border, distance to the previous move, and distance to
the move before the previous move. Some of these features may take more than
one value, as explained in Table 1.

The 9th feature was Monte-Carlo owner. It was computed by running 63
random games from the current position. For each point of the board, the number
of final positions owned by the player to move was counted.

The 10th feature was shape patterns. Nested circles of radius 3 to 10 accord-
ing to the distance defined in Table 1 are considered, similarly to [12]. 16,780
shapes were harvested from the training set, by keeping those that appear at
least 5,000 times.

Each value that these features can take is considered as a separate “individ-
ual”’, and is associated to one strength parameter ;. Since values within one
feature are mutually exclusive, they were all updated together within one itera-
tion of the minorization-maximization algorithm.

3.3 Prior

The prior was set by adding, for each ~;, one virtual win, and one virtual loss,
against a virtual opponent whose v is 1. In the Elo-rating scale, this produces a
symmetric probability distribution, with mean 0 and standard deviation 302.

3.4 Results

Table 1 lists the values of v for all non-shape features.

Figure 3 plots the mean log-evidence per stage of the game, against the data
of Stern, Herbrich, and Graepel [12]. This mean log-evidence is the mean loga-
rithm of the probability of selecting the target move according to the Bradley-
Terry model, measured over the test set. The overall mean log-evidence is -2.69,
which corresponds to an average probability of 1/14.7. Uniform probability gives
a mean log-evidence of -5.49, which corresponds to an average probability of
1/243.

Figure 4 is a plot of the cumulative distribution of the probability of finding
the target move at a given rank, measured over the test set, and compared with
other authors.
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Feature Level v  Description

Pass 1 0.17 Previous move is not a pass
2 24.37 Previous move is a pass
Capture 1 30.68 String contiguous to new string in atari
2 0.53 Re-capture previous move
3 2.88 Prevent connection to previous move
4  3.43 String not in a ladder
5 0.30 String in a ladder
Extension 1 11.37 New atari, not in a ladder
2 0.70 New atari, in a ladder
Self-atari 1 0.06
Atari 1 1.58 Ladder atari
2 10.24 Atari when there is a ko
3 1.70 Other atari
Distance to border 1 0.89
2 1.49
3 1.75
4 1.28
Distance to 2 4.32 d(bz,dy) = |6z| + |0y| + max(|dz]|, |dy|)
previous move 3 2.84
4 222
5 1.58
16  0.33
>17  0.21
Distance to 2 3.08
the move before 3 2.38
the previous move 4 2.27
5 1.68
16  0.66
>17 0.70
MC Owner 1 004 0-—7
2 1.02 8-15
3 241 16 —23
4 141 24-31
5 072 32-39
6 0.65 40 —47
7 0.68 48 —55
8 0.13 56—-63

Table 1. Model parameters for non-shape features. Each feature describes a property
of a candidate move in the current position. A feature my either be absent, or take one
of the values indicated in the Level column.
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Fig. 3. Mean log-evidence per stage of the game (each point is an average over an
interval of 30 moves).

1 T T T T T T
Minorization-Maximization —o—
Stern, Herbrich, and Graepel (2006) - - + - -
0.9 Araki,Yoshida, Tsuruoka, and Tsujii (2007) -0+ —

Fig. 4. Cumulative distribution: probability of finding the target move within the n
best estimated moves.
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3.5 Discussion

The prediction rate obtained with minorization-maximization and the Bradley-
Terry model is the best among those published in academic papers. De Groot[9]
claims a 42% prediction rate, so his results are still significantly better.

Despite the similarity of the cumulative distributions, the mean log-evidence
per stage of the game has a very different shape from that of Stern, Herbrich,
and Graepel. Their algorithm provides much better predictions in the beginning
of the game, and much worse in the middle. It is worth noting also that their
learning experiments used many more games (181,000 instead of 652) and shape
patterns (12,000,000 instead of 16,780). So they tend to learn standard opening
sequences by rote, whereas our algorithm learns more general rules.

The learning process of our algorithm is not particularly optimized, and took
about one hour of CPU time and 600 Mb of RAM to complete. So it is very likely
that prediction performance could be improved very easily by using more games,
and more shape patterns. Most of the computation time was taken by running
the Monte-Carlo simulations. In order to learn over many more games, the slow
features could be trained afterward, over a small set of games.

4 Usage of Patterns in a Monte-Carlo Program

Despite the clever features of this pattern-learning system, selecting the move
with the highest probability still produces a terribly weak Go player. It plays
some good-looking moves, but also makes huge blunders because it really does
not “understand” the position. Nevertheless, the domain knowledge contained in
patterns is very precious to improve a Monte-Carlo program, by providing a good
probability distribution for random games, and by helping to shape the search
tree. This section briefly describes how patterns are used in CRAZY STONE [5].

4.1 Random Simulations

The pattern system described in this paper produces a probability distribution
over legal moves, so it is a perfect candidate for random move selection in Monte-
Carlo simulations. Monte-Carlo simulations have to be very fast, so the full
set of features that was described before is much too slow. Only light-weight
features are kept in the learning system: 3x3 shapes, extension (without ladder
knowledge), capture (without ladder knowledge), self-atari, and contiguity to the
previous move. Contiguity to the previous move is a very strong feature (v = 11),
and tends to produce sequences of contiguous moves like in Mogo [8].

4.2 Progressive Widening of the Monte-Carlo Search Tree

CRAZY STONE also uses patterns to prune the search tree. This is performed at
a much slower rate, so the full power of complex features can be used. When a
node in the Monte-Carlo search tree is created, it is searched for a while without
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any pruning, selecting the move according the policy of random simulations.
As soon as a number of simulations is equal to the number of points of the
board, this node is promoted to internal node, and pruning is applied. Pruning
consists in restricting the search to the n best moves according to patterns, with n
growing like the logarithm of the number of random simulations. More precisely,
the nth move is added when t,, simulations have been run, with ¢t; = 0 and
tht1 =ty +40 x 1.4™. On 19 x 19, thanks to the distance-to-the-previous-move
feature, progressive widening tends to produce a local search, like in Mogo [8].

4.3 Performance against GNU Go

Table 2 summarizes CRAZY STONE’s performance against GNU Go 3.6, on an
AMD Opteron at 2.2 GHz, running on one CPU. CRAZY STONE ran, per second,
from the empty position, 15,500 simulations on 9 x 9, and 3,700 on 19 x 19.

Pat. P.W. Size Min./game GNU Level Komi Games Win ratio
- - 9x9 1.5 10 6.5 170 38.2%
X - 9x%x9 1.5 10 6.5 170 68.2%
x X 9x9 1.5 10 6.5 170 90.6%
- - 19 x 19 32 8 6.5 192 0.0%
X - 19 x 19 32 8 6.5 192 0.0%
x X 19 x 19 32 8 6.5 192 37.5%
X X 19 x 19 128 8 6.5 192 57.1%

Table 2. Match results. P.W. = progressive widening. Pat. = patterns in simulations.

5 Conclusion

The research presented in this paper demonstrates that a generalized Bradley-
Terry model is a very powerful technique for pattern learning in the game of Go.
It is simple and efficient, can combine several features, and produces a probability
distribution over legal moves. It is an ideal tool to incorporate domain knowledge
into Monte-Carlo tree search.

Experiment results clearly indicate that significant progress can be made by
learning shapes over a larger amount of training games, and improving features.
In particular, the principle of Monte-Carlo features is very powerful, and could
be exploited more, as Bouzy did with history and territory heuristics [3].

Also, the validity of the model could be tested and improved. First, using all
the moves of one game as sample data breaks the hypothesis of independence
between samples, since consecutive positions are very similar. Sampling one or
two positions per game might be better. Also, the linearity hypothesis of the
generalized Bradley-Terry model, according to which the strength of a team is
the sum of the strengths of its members, is likely to be wrong. Estimating the
strength of some frequent feature pairs separately might improve predictions.
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Abstract. Recently, Monte-Carlo Tree Search (MCTS) has substan-
tially contributed to the field of computer Go. So far, in standard MCTS
there is only one type of node: every node of the tree represents a sin-
gle move. Instead of maintaining only this type of node, we propose a
second type of node representing groups of moves. Thus, the tree may
contain move nodes and group nodes. This article documents how such
group nodes can be utilized for including domain knowledge to MCTS.
Furthermore, we present a technique, called Alternating-Layer UCT, for
managing move nodes and group nodes in a tree with alternating layers
of move nodes and group nodes. A self-play experiment demonstrates
that group nodes can improve the playing strength of a MCTS program.

1 Introduction

In the last fifteen years, Monte-Carlo methods have led to strong computer Go
programs. The short history of Monte-Carlo based Go programs underwent two
phases. In the first phase, Monte-Carlo was introduced [2,3] as an evaluation
function. A Monte-Carlo evaluation simply estimates the value of a game state
S by statistically analyzing random games starting from S. In the second phase
the focus of research shifted to Monte-Carlo Tree Search (MCTS, [4,7,8]).

Until now, all existing work on MCTS employs tree nodes to represent only
a single move. The contribution of this work is to introduce nodes representing
groups of moves to MCTS. This article presents a technique extending MCTS
for managing group nodes. It enables the application of domain knowledge in
MCTS in a natural way.

The remainder of this article is organized as follows. Section 2 explains MCTS
and a specific move-selection function for MCTS called UCT. Section 3 intro-
duces the concept of group nodes for MCTS and Alternating-Layer UCT. Section
4 describes an experiment comparing standard UCT and Alternating-Layer UCT
and discusses the results. Finally, Section 5 gives a conclusion and an outlook to
future research.
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2 Monte-Carlo Tree Search

This section first describes Monte-Carlo Tree Search (MCTS) in general (Subsec-
tion 2.1). In Subsection 2.2 a specific move-selection function for MCTS, called
UCT, is explained.

2.1 The Monte-Carlo Tree Search Framework

MCTS constitutes a further development of the Monte-Carlo evaluation. It pro-
vides a tree-search framework for employing Monte-Carlo evaluations at the leaf
nodes of a particular search tree.

MCTS constitutes a family of tree-search algorithms applicable to the domain
of board games [4,7,8]. In general, MCTS repeatedly applies a best-first search
at the top level. Monte-Carlo sampling is used as an evaluation function at leaf
nodes. The results of previous Monte-Carlo evaluations are used for developing
the search tree. MCTS consists of four stages [5]. During each iteration, four
stages are consecutively applied:

) move-selection;

) expansion;

) leaf-node evaluation;
)

4) back-propagation.

(
(
(
(

Each node N in the tree contains at least three different tokens of information:
(i) a move representing the game-state transition associated with this node, (ii)
the number ¢(N;) of times the node has been played during all previous iterations,
and (iii) a value v(N) representing an estimate of the node’s game value. The
search tree is held in memory. Before the first iteration, the tree consists only of
the root node. While applying the four stages successively in each iteration, the
tree grows gradually. The four stages of the iteration work as follows.

(1) The move selection determines a path from the root to a leaf node. This
path is gradually developed. At each node, starting with the root node, the
best successor node is selected by applying a move-selection function to all
child nodes. Then, the same procedure is applied to the selected child node.
This procedure is repeated until a leaf node is reached.

(2) After the leaf node is reached, it is decided whether this node will be ex-
panded by storing some of its children in memory. The simplest rule, pro-
posed by Coulom [7], is to expand one node per evaluation. The node ex-
panded corresponds to the first position encountered that was not stored
yet.

(3) A Monte-Carlo evaluation (also called playout or simulation) is applied to
the leaf node. Monte-Carlo evaluation is the strategic task that selects moves
in self-play until the end of the game. This task might consist of playing
plain random moves or — better — pseudo-random moves. The main idea is
to play more reasonable moves by using patterns, capture considerations,
and proximity to the last move.
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(4) During the back-propagation stage, the result of the leaf node is back-
propagated through the path created in the move-selection stage. For each
node in the path back to the root, the node’s game values are updated ac-
cording to the updating function.! After the root node has been updated,
this stage and the iteration are completed.

As a consequence of altering the values of the nodes on the path, the move
selection of the next iteration is influenced. The various MCTS algorithms pro-
posed in the literature differ in their move-selection functions and update func-
tions. The following subsection briefly describes a specific move-selection func-
tion called UCT.

2.2 UCT

Kocsis and Szepesvari [8] introduced the move-selection function UCT. It was
fruitfully applied in top-level Go programs such as CRAZY STONE, M0OGO, and
MANGO. These programs entered in the loop of various KGS tournaments suc-
cessfully.

Given a node N with children N;, the move-selection function of UCT chooses
the child node N; which maximizes? the following criterion.

— In t(N)
Xi + €y . (1)

This criterion takes into account the number of times ¢(N) that node N was
played in previous iterations, the number of times ¢(N;) the child N; was selected
in previous iterations, and the average evaluation X; of the child node Nj.

The weighted square-root term in Equation 1 describes an upper confidence
bound for the average game value. This value is assumed to be normally dis-
tributed among the evaluations selected during all iterations. Each iteration
passing through N represents a random experiment influencing the estimate of
the mean parameter X of this distribution.

The constant C' controls the balance between exploration and exploitation [5].
It prescribes how often a move represented by child node N; with high confidence
(large t(NV;)) and good average game value (large X ;) is preferred to a move with
lower confidence or lower average game value.

The update function used together with UCT sets the value X of a node N
to the average of all the values of the previously selected children including the
latest selected child’s value X ;.

3 Grouping Nodes

We describe the concept of group nodes in this section. Subsection 3.1 outlines
related work in which domain knowledge is applied to form groups of moves.

I Coulom [7] refers to update function as back-propagation operator.
2 In Min nodes the roles are reversed and the criterion is minimized.
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Subsection 3.2 provides a detailed account of the features of group nodes. Sub-
section 3.3 presents an extension of the UCT which is able to manage group
nodes.

3.1 Related Work

The idea of categorizing moves in games is not new. The work of Tsuruoka et al.
[10], to name only one example, applies domain knowledge in the game of Shogi to
categorize follow-up moves for a given game state according to simple features.
Depending on which categories the move falls into, the amount of resources
(mainly search depth) allocated to searching this particular move is fixed. In
the domain of computer Go, simple features have been applied for various tasks
related to search. Features have been used to assign probabilities to playing
certain moves in random games or to eliminate unpromising moves.

The concept of Metapositions was established by Sakuta [9] to represent
sets of possible game states. Metapositions are employed as nodes in game-tree
search. Moreover, Metapositions were found to be suitable to represent sets of
game states consistent with observations made in the imperfect information game
Kriegspiel [6].

Set Pruning, introduced by Bouzy [1], is a technique, first developed for
computer Go. It brings together two items: first, the idea of grouping moves
according features, and second, the aspect using sets of moves in a search tree as
found in Metapositions. In Set Pruning two categories of moves are maintained:
moves labelled as Good moves and moves labelled as Bad moves. Then, Monte-
Carlo evaluation is applied to moves in both sets and a common statistic is
maintained for all moves belonging to the same category. The technique proposed
here can be viewed as a twofold extension of this technique. The first extension
effects the number of move groups which we suggest to generalize to more than
only two. The second extension this article proposes to go beyond Set Pruning
concerns the framework groups are used in: instead of considering only Monte-
Carlo evaluation, we propose to apply groups to MCTS. This second extension
implies that the statistics are no longer kept in only one place (a node to be
evaluated). Instead, the statistics alter many nodes in the search tree. Thus,
a mechanism is required to adopt the idea of groups of moves to MCTS. This
mechanism is facilitated by group nodes which are the subject of the following
subsection.

3.2 Group Nodes

In plain MCTS, all nodes of the tree represent simple moves. We call them move
nodes. To facilitate the use of domain knowledge we introduce the concept of
group nodes. A group node represents a group of moves. Domain knowledge in
the form of features is used to group the nodes.

Given a move represented by a node N, we suggest to partition the set of its
child nodes N;. We call each partition a group. The partitioning is achieved by
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assigning each N; to exactly one group according to whether they meet certain
pairwise exclusive features.

Group nodes can function in a MCTS framework only if they provide the
basic features MCTS requires a node to have (cf. Subsection 2.1). Thus, for each
group node G three features are recorded: (i) a move representing the game state
transition associated with this move, (ii) the number ¢(G) of times it was visited
in previous iterations, and (iii) a game value X . Since a group node does not
represent a single move, the game state is not altered whenever a group node is
met during an iteration. The game value of a group node is set to represent the
average game value of all nodes belonging to the group.

3.3 Alternating-Layer UCT

Alternating-Layer UCT is a technique which manages group nodes in the UCT
framework [8]. The Alternating-Layer UCT maintains two types of nodes in the
MCTS tree in parallel: (1) move nodes, and (2) group nodes.

When a move node N is expanded, it is expanded in two steps. First, N is
expanded into group nodes (first layer). Second, each of the newly expanded
group nodes is expanded into move nodes (second layer).

In the first step, all successor nodes are grouped according to features (cf.
Subsection 3.1). Each group is represented by a group node G;. These newly
created group nodes become the new children of N. In the second step, each G;
is expanded. For each member move of G; a new move node G;; is created as
child node of G;.

After completing the two steps of expanding a move node, all new leaf nodes
are move nodes. Because the root is a move node, all leaf nodes are move nodes
at the end of each iteration. Furthermore, the structure of the search tree is
such that move nodes and group nodes form alternating layers (leading to the
proposed naming).

In standard implementations of the UCT algorithm, all follow-up moves of a
leaf node L are chosen randomly until L has been played a critical number z of
times (¢(L) > z). Analogously, we suggest choosing the follow-up move of a leaf
node L among its succeeding groups with equal probability while ¢(L) > x. This
equidistribution results in an implicit weighting of moves, because the number
of members may vary between the groups. We consider, e.g., that two groups
Gy and Go are given with ny or no moves, respectively. Furthermore, nqy > ns.
If both groups are selected equally often, a move which is member of G is less
likely to be selected than a move which is member of Ga.

4 Experiment

In this section, we test the increase of playing strength gained by Alternating-
Layer UCT. Subsection 4.1 describes the setup of a self-play experiment. Sub-
section 4.2 presents and comments the results obtained.
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4.1 Set-up

Standard UCT and the Alternating-Layer UCT were implemented for the do-
main of computer Go. We refer to the resulting programs as STD and AL,
respectively.

Both implementations were compared in a series of 1,000 games of direct
play on 9 x 9 boards with 5.5 points Komi (500 games for each program playing
Black, respectively). The time setting was one second per move. The Monte-
Carlo sampling used in both implementations is based on small hand-tuned
patterns and reaches a speed of about 22,000 sampled games per second on the
given hardware (cf. below). The C parameter (cf. Equation 1) was set to 1.9,
determined by trial-and-error, for STD and AL. The z parameter (cf. 3.3) for
describing the threshold for expanding moves was set to the number of children
of the node to be expanded.

The number of iterations available per move for STD is 30,000. To compen-
sate for the grouping overhead of alternating-layer UCT, AL was allowed only
10,000 iterations per move.

Two features were used for grouping in AL resulting in three types of group
nodes. The first feature is proximity to the last move. The proximity chosen is
the Manhattan distance of 2. (For the empty board, the last move is set to be
the center.) The second feature determines whether a move is a border move.
The three resulting groups are the following.

Group 1  All legal moves in the proximity of the last move.

Group 2 All legal moves on the border of the game board which do not
belong to group 1.

Group 3 All legal moves which do not belong to either group 1 or group 2.

The experiment was conducted on a Quad-Opteron server with 3.4 GHz
Opteron processors and 32 GB of memory running a well-known Linux distribu-
tion. Both algorithms are implemented in C++.

4.2 Results

Playing the 1,000 games required a total playing time of ca. 30 hours. Of these,
about two thirds were required by STD and the remainder by AL. Of 1,000
games AL won 838 and STD won 162.

A qualitative analysis of several dozen sample games shows that AL plays
more consistently than STD. The program seems to beat STD because of its
tactical superiority. This suggests that AL takes advantage of focusing samples
on local positions more often than STD. In contrast, AL seems to shift the focus
and play non-local moves with a better timing than STD. AL never plays border
moves and does not seem to invest much effort on testing such moves during the
first 50 moves, whereas STD occasionally plays border moves.

The result of the experiment clearly shows that Alternating-Layer UCT out-
performs palin UCT. We may conclude that group nodes can serve to integrate
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domain knowledge in the MCTS framework successfully. Moreover, it may be in-
ferred that the UCT framework is sufficiently flexible to choose the right group
nodes, and that providing group nodes significantly improves the ability of the
program to focus on promising branches more quickly.

The computational overhead for grouping nodes is outweighed by the benefits
of narrowing down the search space in the experiment. While this is true for the
three computationally cheap feature groups tested in the experiment, it remains
to be seen how well this approach scales to a larger number of groups.

5 Conclusion and Future Research

In this article we introduced the concept of group nodes for MCTS. Alternating-
Layer UCT was proposed as a technique for adopting group nodes for MCTS. A
self-play experiment showed that Alternating-Layer UCT outperformed standard
UCT. Based on the outcome of the experiment we may tentatively conclude that
the proposed approach can incorporate domain-specific knowledge in MCTS
successfully.

Future work will address the following six items. First, in order to examine
whether the results found in this work generalize to deeper search, the pro-
grams will be tested with a more generous time setting. Second, the number
of groups will be increased using more refined features, e.g., by using a move
predictor. Third, the weighting of the probabilities assigned to group nodes will
be examined more closely. Fourth, other algorithms for including group nodes
in the MCTS framework could be devised. Whereas the Alternating-Level UCT
straightforwardly adds group nodes after every node expansion, it might prove
more useful to expand group nodes only for certain move nodes. This might re-
duce the computational cost required for grouping nodes. Similarly, group nodes
could be allowed to have group nodes as their child nodes. Fifth, the grouping
techniques will be compared to other means of incorporating domain knowledge
in UCT. Sixth, the new technique will be implemented in a tournament program,
e.g., MANGO.
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Abstract. The Mastermind game is well-known around the world. In recent
decades, several approaches have been adopted for solving Mastermind in the
worst case, and an optimal strategy has finally been proposed by Koyoma and
Lai in 1993 by using an exhaustive search for finding the optimal strategy in the
expected case. In this paper, a more efficient backtracking algorithm with
branch-and-bound pruning (BABBP) for Mastermind in the expected case is
introduced, and an alternative optimal strategy is obtained eventually.
Furthermore, the novel approach may be presumably applied to other games
with some modifications in order to speed up the search.

1 Introduction

Mastermind, a kind of deductive games, is well-known around the world since its
appearance in 1972. It has attracted considerable interests in recent decades. Two
players are involved in the game. One is a codemaker and the other is a codebreaker.
A secret code, which consists of 4 digits with 6 possible symbols, e.g., 1,2, ..., 6, is
chosen by the codemaker and repeated symbols are allowed. The mission of the
codebreaker is to obtain the code by guessing iteratively without any information
before he/she starts. Based on the responses, the codebreaker has to minimize the
number of guesses needed.

In more precise notation, suppose that the codemaker chooses the secret code, s =
51525354 and the codebreaker takes a guess, called g = g,2,2384. Then, the codebreaker
gets the hint [B, W]. The variables, B and W, are calculated in the following
definitions.

B B means the number of “direct hits”, i.e., B = |{l 18 = gi}|.

6
B W is the number of “indirect hits”, i.e., W :Zmln(pj,qj)—B,
j=1
where p; :|{i:Si = ]}| and ¢, :|{i:gi =]}|
For example, the codemaker gives the hint, [2, 1], if the secret code s is 1123 while

the guess g made by the codebreaker is 3124.
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A strategy for minimizing the number of guesses was first proposed by Knuth [4].
His approach achieves the optimal result in the worst case, where the maximal
number of guesses needed is 5. Meanwhile, its number of guesses in the expected
case is 4.478. Much research on finding the optimal strategy in the expected case
arose from then on. Irving [3] and Neuwirth [8] made improvements on the bounds,
which are 4.369 and 4.364, respectively. Finally Koyoma and Lai [6] introduced an
optimal strategy in the expected case for it while the expected number of guesses is
about 4.34. A comprehensive introduction to Mastermind and a new strategy were
demonstrated by Kooi [5]. Chen et al. [1] proved the exact bound of “Bull and Cow”
in the worst case, which is also a kind of deductive games and is popular in England
and Asia.

The organization of this paper is as follows. In section 2, some definitions are
described. Section 3 investigates our backtracking algorithm with branch-and-bound
pruning for Mastermind. In section 4, some parameters and experimental results are
presented. Section 5 exhibits our concluding remarks and some critical issues in the
future research.

2  Definitions and Notations

There are two issues for optimizing deductive-game problems. One is to minimize the
guesses made by the codebreaker in the worst case, and the other is to minimize that
in the expected case. An optimal strategy in the worst case is a strategy which
minimizes the maximum number of guesses needed by the codebreaker for any secret
code chosen by the codemaker. An optimal strategy in the expected case is a strategy
which minimizes the expected number of guesses required with considerations of all
possible codes. Note that a uniform distribution over all the codes is assumed.

An alternative aspect of viewing the optimization for deductive games as a game-
tree search is adopted in this paper. We have the following definitions.

Definition 1. During the gaming process, the set of remaining candidates, which
means all possible codes until now, is referred to a state.

Definition 2. A final state (leaf) is a state whose size is equal to 0. In other words, no
codes remain in the final state and the game is over.

Definition 3. The height of the game tree of a deductive game is exactly the maximal
number of guesses required by the codebreaker, i.e., the length of its longest path
from the root to a leaf.

Definition 4. The number of guesses needed in the expected case is L / n, where L is
the external path length of the game tree and n is the number of all possible codes.

Here is an example to illustrate the above definitions. Let’s consider a simple
guessing game with two players, which can be viewed as a simplified version of
Mastermind. The codemaker chooses a secret code from the set {1, 2, 3, 4}. A hint,
which is one of <, =, and >, is received by the codebreaker in each ply. Accordingly,
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the codebreaker has to guess the code by taking those hints into account. Figure 1 is a
game tree for the game.

{1,2,3,4}

Fig. 1. An illustrative example.

Some observations are revealed from Figure 1. First of all, the state of the root is
{1, 2, 3, 4} because there are four possible codes at the beginning. And it is easy to
notice that the 4 leaves are final states. The height of the game tree is 3 because at
most 3 guesses are required by the codebreaker. Furthermore, Figure 1 also shows
that the external path length is 1x1 + 2x2 + 3x1 = 8.

3 A Backtracking Algorithm with Branch-and-bound Pruning

A large number of real-world problems can be modeled as optimization problems or
games. Search algorithm is therefore a general approach for them. Unfortunately,
most of these problems are NP-hard or PSPACE. In other words, it has to take
exponential time to search for an optimal solution. Thus, there are plenty of pruning
techniques published in the literature such as A" search [9], branch-and-bound
pruning [7], etc.

Previous pruning approaches are appropriate for optimization problems since their
goal is to find a best solution in the search space. So, the search ends when it is found.
A complete search is theoretically required to our problem because of the
considerations of the optimal strategy in the expected case. Hence, traditional pruning
approaches may not easily be applied to our problem directly. 4

A novel pruning technique based on the admissible heuristic in the A" search is
proposed to solve our problem. In Section 3.1, the framework of our backtracking
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algorithm with branch-and-bound pruning (abbreviated to BABBP) is introduced.
Section 3.2 illustrates the detailed operations of our scheme.

3.1 The Framework of Our Scheme

The idea of our scheme is similar to the admissible heuristic in the A" search. The A"
search is a tree (graph) search algorithm which finds a best path from a given initial
state to a given goal with the lowest cost. The algorithm will terminate if a best
solution is found. However, a complete search is conceptually required for our
problem. Hence, BABBP will search the whole game tree and prune the unnecessary
states by using an admissible heuristic.

Suppose that /4 is the cost from the root to the current state and /" is the cost from
the current state to the final state. Then, h" is called admissible if it never
overestimates the cost to reach the final state. In other words, the actual cost is less
than or equal to I+ K", It can also be viewed as a theoretical lower bound for the
problem we deal with.

/ ™
-

current state

7 H — *
= Dn|:> estimated cost=h'+ h

s = actual cost<

> h*: the theoretical lower bound

/ final state D
~
D final state

Fig. 2. The scenario of branch-and-bound pruning.

Our scheme traverses the game tree in depth-first fashion until a final state is
reached. It then gets an actual cost s which is initially assigned to be the current-best
solution. It soon backtracks to its parent and picks one of the other child states and
uses an admissible heuristic to estimate the cost /". The search continues if s is larger
than & + k. Otherwise, a cut happens because s is less than or equal to ' + A". In
other words, there is no need to visit the child state and its sub-tree and the
correctness of the algorithm is still maintained. Similar manner continues until the
search to the whole game tree is finished.
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Figure 2 shows a scenario. The current state is a state which we consider currently.
The admissible heuristic will estimate its cost 2 and we compare i + h" with the
actual cost s to decide whether it is able to be cut or not.

A rough sketch of the whole algorithm is exhibited in Figure 3. It is especially
important to notice that BABBP always maintains a current-best solution s during the
search. Hence, BABBP goes through the downward direction at first until a final state
is reached. It therefore gets a current-best solution (s is updated). Then, BABBP
backtracks and starts to estimate /" in each of the following states. Unnecessary states
will never be visited. Note that it updates s constantly when final states are
encountered. So, BABBP will finally obtain an optimal solution when the whole
game tree has been traversed completely.

BABBP (state v) {

01 if (a final state is reached) then // Final state indicates the leaf of the
return the current- best solution s; game tree.

02 visit and expand v;
03 for (each child u of v) { // Each u is a child state of v.

04 h" = ESTIMATE( u); // ESTIMATE is an admissible
heuristic of predicting the cost
from u to a final state.

05 if (W'+ 1" <s) then // h'is the actual cost from the start
state to u.

06 BABBP(u); // Search recursively from the state u.

07 else

08 Cut the child u; /I A cut happens if A+ &" > s.

09 }

10 }

Fig. 3. The sketch of the backtracking algorithm with branch-and-bound pruning.

3.2 BABBP for Mastermind in the Expected Case

In this section, we will deal with Mastermind in the expected case. The search space
for Mastermind is first analyzed and the admissible heuristic is designed carefully. At
last, an optimal strategy is found as a result of applying BABBP to this problem.

We now investigate how large search space is for our problem. For a deductive
game, the branching factor for each ply depends on the number of possible hints r and
possible symbols ¢ of the game. Accordingly, the branching factor b = r x ¢, and
hence, the search space equals to (7 x c)h, where # is the height of the game tree. For
instance, the search space for Mastermind is (14x1296) " because the codebreaker has
6* = 1296 possible guesses in each ply while the codemaker has 14 possible hints
(also called classes).
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It takes much time to find an optimal strategy by searching the game tree
completely. A pruning technique adopted by BABBP is used to save a lot of time
instead of making an exhaustive search. Figure 4 shows the game tree of Mastermind
by applying BABBP. The circles in the figure mean the states which are the sets of
remaining candidates while the diamonds are the possible guesses the codebreaker
can choose (1296 possible guesses in each ply). In the game tree, the 14 ways
produced by the codemaker’s hints should be traversed completely and the 1296 ways
expanded by the codebreaker may be pruned by the admissible heuristic since we are
aimed to find an optimal strategy for the codebreaker. Let’s consider a situation
exhibited in Figure 4. The traversal to the sub-trees of g; (in bold style) is just finished
and g, is now taken into account. An estimated value 4" is obtained with the use of
ESTIMATE function mentioned in the previous section. The sub-trees below g, do
not have to be expanded if the result of expanding g, is better than 4". This is the key
idea of BABBP and the search can thus be completed in a more reasonable time. Note
that the correctness of BABBP is reserved because of the admissible heuristic.

Fig. 4. The game tree of Mastermind by applying BABBP.

Now the most critical issue is how to design an admissible heuristic function to
estimate the theoretical lower bound 4". Note that minimizing the number of guesses
in the expected case is the same as minimizing the external path length of the game
tree. So, the concept of volumes introduced in [2] is involved to get the theoretical

maximum bounds for the 14 classes (responses). We know that different guesses in
140



some ply result in distinct distributions of the remaining candidates in 14 classes. The
volume of a class (response) [x, y] is defined as the maximum value of the numbers of
the remaining candidates when the codebreaker makes all the possible guesses in one
ply and the codemaker responses with [X, y]. In the beginning, at the root of Figure 4,
there are totally 1296 remaining candidates (guesses). While the codebreaker makes
the first guess, there are 5 nonequivalent guesses in 1296 possible codes, i.e., “1111”,
“11127, “11227, “1123”, and “1234”. If the codebreaker guesses “1111” and the
codemaker gives the hint [1, 0], then we can derive that there are 500 possible secret
codes. Similarly, if the code-breaker guesses “11127, “1122”, “1123”, or “1234”, and
the code-maker gives the hint [1, 0], then we can derive that there are 317, 256, 182,
and 108 possible secret codes, respectively. So, the volume of the class [1, 0] is set to
be 500, the maximum value of these numbers: 500, 317, 256, 182, and 108. With the
use of Get_volume function [2] based on the above idea, the volumes of the 14
classes (responses) are obtained as in Table 1.

Table 1. The volumes of 14 classes calculated by Get_volume function.

Class |[4, 0]|[2, 2]|[1, 3]|[0, 4]|[3, O1|[2, 11|[1, 2]{[O, 31{[2, O]|[1, 1]{[O, 1]1|[0, 2]|[1, O]{[O, O]

volume | 1 6 8 9 | 20 | 48 | 132|136 | 150 | 252 | 308 | 312 | 500 | 625

We therefore employ the same principle of the extended pigeonhole principle
presented by [1] to estimate the lower bounds of the guesses needed among 14 classes
which mean 14 responses. However, there are major differences between the problem
in [1] and this problem we consider now. Only the worst case among the 14 classes is
considered for the codemaker in [1]. The so-called “worst case” denotes the class
which will result in the most guesses needed by the codebreaker. But the distribution
of each class should be taken into account for our problem. Moreover, the heuristic
function here has to calculate the “theoretical optimal” strategy in the expected case
for the codebreaker. In other words, it will assume that there exists an optimal
strategy such that all of the remaining candidates in each class may be divided evenly
in the following guesses. The actual expected number of guesses is thus more than or
equal to the value of estimations. A simple example to illustrate the calculation of the
admissible heuristic function is shown in Figure 5.

Giving a state with a size of 17, as shown in Figure 5, we imagine that the
theoretical optimal strategy will divide the 17 candidates into 14 classes evenly
without exceeding the corresponding volumes. The number in the lower half of the
circle is the volume of each class and the number in the upper half is the number of
candidates in it. Since there are 1 leaf at level 1, 13 leaves at level 2, and 3 leaves at
level 3, it is obvious that the external path length of the tree is 1x1 + 2x13 + 3x3 =36
in the ideal situation.
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Fig. 5. An illustrative example for the calculation of the admissible heuristic function.

4  Experimental Results

In order to analyze the performance of the proposed BABBP, we demonstrate the
results of the original Mastermind (4x6 Mastermind) and another version of
Mastermind which is called 3x5 Mastermind. 3x5 Mastermind has smaller search
space in the case of 3 digits with 5 possible symbols. That is to say that it has 5° = 125
possible secret codes totally. Note that the equivalent properties proposed in [8] are
able to reduce the search space. For example, 1111 is equivalent to 2222 in the first
guess because the numbers, 1 and 2, are both not used before. With the considerations
of the properties, there are five unequivalent guesses in the first guess, which are 1111,
1112, 1122, 1123, and 1234. The branching factor in the first ply changes from
14x1296 to 14x5 eventually. This technique has also been implemented in our
programs in order to speed up the search.

Table 2. The experimental results of two versions of Mastermind.

3x5 Mastermind 4x6 Mastermind
DFS > 10 hr. > 10 days
BABBP 38.68 sec. 43.76 hr.
BABBP (sorted order) 11.21 sec. 9.5 hr.
External path length 451 5625

Besides the comparison between 3x5 Mastermind and 4x6 Mastermind, we also
investigate the effect of the traversing order during the search. In other words, we
have to decide which child state should be traversed first when several child states are
encountered after the current state is visited. To deal with this issue, we estimate the
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lower bounds of the child states by making use of the admissible heuristic before they
are expanded. We sort their lower bounds and traverse these states order-by-order in
accordance with their values. All experiments were run on a dedicated PC with an
AMD Opteron 252 processor. The experimental results are exhibited in Table 2.

DES is the abbreviation of depth-first search while the term, “sorted order”, means
that BABBP visits the child states in nondecreasing order according to the values of
lower bounds. We can see that BABBP is able to obtain the optimal strategies for the
two versions and their corresponding external path length is 451 and 5625,
respectively. This means that the expected number of guesses is about 4.34
(=5625/1296) for Mastermind if we apply the optimal strategy in the expected case.
The results also show that BABBP with the considerations of expanding order has the
most outstanding performance. Without the technique of ordering, BABBP will visit a
lot of useless states. That is to say that most states will be cut if BABBP expands in
the correct order. On the other hand, DFS has very poor performance doubtlessly
since it is certainly an exhaustive search. Hence, the larger the search space is, the
more important the pruning technique is.

5 Conclusions

Previously, an exhaustive search was applied to find the optimal strategy for
Mastermind. But it may not be adopted in other larger problems or games because of
its huge search time. In this paper, a more efficient backtracking algorithm with
branch-and-bound pruning (BABBP) for Mastermind in the expected case is
introduced, and an alternative optimal strategy is obtained eventually. The effect of
expanding order during the search is significant to the performance of BABBP. How
to design a more precise heuristic function is yet another critical issue. We hope that
the approach may be applied to other related deductive games in the future.
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ROC.
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Abstract. A two-player, finite, probabilistic game with perfect informa-
tion can be presented as a four-partite graph. For Can’t Stop, the graph
is cyclic and the challenge is to determine the game-theoretical values
of the positions in the cycles. In a previous paper we have presented
our success on tackling one-player Can’t Stop. In this paper we prove
the existence and uniqueness of the solution to two-player Can’t Stop,
and present a retrograde approximation algorithm to solve it by incor-
porating the 2-dimensional Newton’s method with retrograde analysis.
We give results of small versions of two-player Can’t Stop.

1 Introduction

Retrograde analysis has been well developed for deterministic and two-player
zero-sum games with perfect information, and successfully applied to construct
endgame databases of checkers [7,9], chess [10,11], and Chinese chess [1,2, 13].
It also played a crucial role in solving Nine Men’s Morris [3] and Kalah [6]. A
recent success of parallel retrograde analysis was solving Awari [8].

On the other hand, retrograde analysis for probabilistic games is currently
under-explored. Glenn [4] and Woodward [12] solved one-player Yahtzee. We pre-
sented our success on tackling one-player Can’t Stop!, by incorporating Newton’s
method into a retrograde algorithm run on a bipartite graph representing the
game [5].

! Can’t Stop was designed by Sid Sackson and marketed first by
Parker Brothers and now by Face 2 Face Games. The rules
can be found at http://en.wikipedia.org/wiki/Can’t_Stop and
http://www.boardgamegeek.com/game/41.
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A two-player probabilistic game can be represented as a four-partite graph
G = (U, V,U,V,E), where U/U correspond to random events and V/V cor-
respond to deterministic events of the first/second players, respectively. For
Yahtzee, the graph representation is acyclic that simplifies algorithm design. In
some games, such as Can’t Stop, the graph representation is cyclic, which causes
difficulty in designing a bottom-up retrograde algorithm. In this article we gen-
eralize our retrograde approximation algorithm for one-player Can’t Stop by
incorporating the 2-dimensional Newton’s method into a retrograde algorithm.

The organization of this paper is as follows. Section 2 formulates the prob-
lem. Section 3 proves that two-player Can’t Stop has a unique solution, and
gives a retrograde algorithm to solve it. Section 4 presents the indexing scheme.
Section 5 summarizes the results of the experimental tests. A conclusion is given
in Section 6.

2 Problem Formulation

A two-player probabilistic game can be presented as a four-partite graph G =
(U, V,U,V,E), where EC (U x V)U (U x V)U((VUV)x (UUU)). Edges in
U x V and U x V represent the random events (e.g., dice rolls), and edges in
V x (UUU) and V x (UUU) represent the deterministic events (i.e., the moves),
by the first and second players, respectively. We also call vertices in U U U roll
positions and vertices in V UV move positions. A terminal vertex indicates the
end of a game. Without loss of generality, we assume all terminal vertices are
roll positions (i.e., in U UU).

A partial turn (u1,u2) (from roll position u; to roll position wus) consists
of a random event followed by a move. It is represented by a pair of edges
((u1,v), (v,u2)) in G. A sequence of partial turns (ug, u1), (w1, u2), - .., (Uk—1,Uk)
is called a turn. In Can’t Stop, a turn may consist of many partial turns. In
Yahtzee a turn consists of exactly one partial turn, and hence E C (U x V) U
(VxU)U(UxV)U(V xU).

We associate each position with a real number representing the expected
game score that the first player achieves in optimal play, denoted by a function
f:UUUUVUV — R. For two-player Can’t Stop, f(u) indicates the probability
that the first player will win the game. Since the games we consider are zero-
sum, the probability that the second player wins is 1 — f(u). For any terminal
position z € U U U, f(z) = 1 if the first player wins, and f(z) = 0 if the first
player loses. For two-player Yahtzee, a game may end in a draw. In this case we
can set f(z) = 0.5. However, it depends on the goal of the two players. If the
goal of the first player is either to win or to draw the game, we set f(z) =1 for
draw positions. Assuming the zero-sum property holds, the goal of the second
player is to win the game. On the other hand, if a draw means nothing different
from a loss to the first player, we set f(z) = 0 for draw positions.

For each non-terminal roll position u € U U U, the weight 0 < p((u,v)) < 1
indicates the probability that the game in u will change into move position v.
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Therefore,
> p((u,v)) = 1.

vo With (u,v)eE

Recall that f(u) is the expected score that the first player achieves. For each
non-terminal roll position u € U UU,

fu) = >, p((u,v))f (v). (1)
vo with (u,v)eE

In optimal play, the first player maximizes f whereas the second player min-
imizes f. Therefore, for all non-terminal move positions v € VUV,

_ fmax{f(u): (v,u) € E}ifveV,
flv) = {min{f(u) C(v,u) € B} ifveV. (2)

For all positions w € UUU UV UV, f(w) is also called the position value of w.

A database f satisfying both conditions (1) and (2) is called a solution. A
game is solved if a solution is obtained. Unless otherwise noted, all the game
graphs in this paper represent finite, zero-sum, two-player, probabilistic games
with perfect information, abstracted as above.

()05 —u ]
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+
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Fig. 1. An example of two-player game graph G = (U, V,U,V, E).

We illustrate an example in Figure 1, where uy,us € U, v1,v9 € V| 41,9 €
U, and 01,09 € V. The two terminal vertices are us and 2z with f(us) = 1 and
f(@2) = 0, respectively. This example simulates the last stage of a game of two-
player Can’t Stop. At position u1, the first player has 50% chance of winning the
game immediately, and a 50% chance of being unable to advance and therefore
making no progress at this turn. The second player is in the same situation at
position @;. By (1) and (2),

f(ur) %f( 1) + %f(w) f(vr) = f(ur), f(va) = fluz) =1
f(ar) (01) + 5f(02), f(o1) = f(u1), f(v2)= f(u2)=0.

The unique solution is f(u1) = f(71) = 2 and f(u2) = f(72) = 3.
The problem of solving a two-player probabilistic game is formulated as fol-
lows. Suppose we are given a game graph G = (U,V,U,V, E) with function
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values of the terminal vertices well-defined. First, we investigate the existence
and uniqueness of the solution. Second, we design an efficient algorithm to con-
struct the database f, assuming a solution exists.

3 Retrograde Analysis for Two-Player Probabilistic
Games

A retrograde algorithm typically consists of three phases: initialization phase,
propagation phase, and the final phase. In the initialization phase, the terminal
vertices are associated with their position values. In the propagation phase, the
information is propagated iteratively back to its predecessors until no propaga-
tion is possible. The final phase deals with the undetermined vertices.

Subsection 3.1 gives an algorithm to construct the database of an acyclic
game graph. In Subsection 3.2 we prove that two-player Can’t Stop has a unique
solution. In Subsection 3.3 we develop an algorithm to construct the database
for a game graph with cycles.

3.1 Game Graph is Acyclic

For games with acyclic game graphs, such as two-player Yahtzee, the bottom-up
propagation procedure is clear. Algorithm 1 gives the pseudocode to construct
the database for an acyclic game graph. It can also be applied to constructing
the perfect Backgammon bear-off databases with no piece on the bar?.

Consider Algorithm 1. Assuming all terminal vertices are in U U U, the set
Sy is initially empty and (}) is not required. However, it is useful for the reduced
graph G in Algorithms 2 and 3. We say a vertex is determined if its position value
is known. By (1) and (2), a non-terminal vertex cannot be determined until all
its children are determined. The sets S; and Sy store all determined but not
yet propagated vertices. A vertex is removed from them after it is propagated.
The optimal playing strategy is clear: given v € V, always make the move (v, u)
with the maximum f(u). For o € V, we make the move (v, %) with the minimum
f(@). The proof of Lemma 1 reveals that the acyclic property ensures all vertices
are determined at the end of propagation phase. Therefore, a final phase is not
required.

Lemma 1. If a game graph is acyclic, its solution exists and is unique.

Proof. In an acyclic graph, the level (the longest distance to the terminal ver-
tices) for each vertex is well-defined. In Algorithm 1, the position values are
uniquely determined level by level. Hence the solution exists and is unique. O

2 To save constructing time and database space, we may use the optimal solution of

the simplified one-player game for the approximate Backgammon bear-off databases
with no piece on the bar.
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Algorithm 1 Construct database f for an acyclic game graph.

Require: G = (U,V,U,V,E) is acyclic.

Ensure: Program terminates with (1) and (2) satisfied. > Lemma 1
Yue UUU, f(u) « 0. > Initialization Phase
Yo €V, f(v) « —oo, Yo € V, f(v) « oo.

S1 «+ {terminal positions in U U U}
S « {terminal positions in V UV} > (1)
YVu € S1 U Sz, set f(u) to be its value.
repeat > Propagation Phase
for all u € S1 and (v,u) € E do
if v € V then
F() — max{f(v), f(u)}
elsefv € V]
F(v) — min{f(v), f(u)}
end if
if all children of v are determined then > (%)
Sy — Sy U {v}
end if
end for
S1 0
for all v € S; and (u,v) € E do
F(w) — Fu) + p((u,)) f (o)
if all children of u are determined then > (**)
S1+— S1 U {’LL}
end if
end for
Sy — 0
until S US>, =0

Note that in Algorithm 1, an edge (u,v) can be visited as many times as
the out-degree of u because of (*) and (**). The efficiency can be improved as
follows. We associate each vertex with a number of undetermined children, and
decrease the value by one whenever a child is determined. A vertex is determined
after the number is decreased down to zero. As a result, each edge is visited only
once and the algorithm is linear. This is called the children counting strategy. For
games like Yahtzee, the level of each vertex, the longest distance to the terminal
vertices, is known a priori. Therefore, we can compute the position values level
by level. Each edge is visited only once without counting the children.

3.2 Game Graph is Cyclic

If a game graph is cyclic, a solution may not exist. Even if it exists, it may
not be unique. We give a condition under which a solution exists and is unique
in Lemma 2. The proof uses the Fixed Point Theorem®. With Lemma 2, we

3 See, e.g., http://mathworld.wolfram.com/FixedPointTheorem.html.
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prove that the game graph of two-player Can’t Stop has a unique solution in
Theorem 2.

Theorem 1 (Fixed Point Theorem). If a continuous function f : R — R
satisfies f(x) € [a,b] for all x € [a,b], then f has a fized point in [a,b] (i.e.,
f(c) = ¢ for some c € [a,b]).

Lemma 2. Given a cyclic two-player game graph G = (U,V,U,V,E), we use
G1 and Go to denote the two subgraphs of G induced by U UV and U UV,
respectively. G has a solution with all position values in [0,1] if,

1. The graphs Gy and G2 are acyclic.

2. There exist wy € U and wy € U such that all edges from G1 to Go end at
wy, and all edges from Gy to Gy end at wy. In other words, EN (V x U) C
V x {ws} and EN(V xU) CV x {w;}.

3. All the terminal position values are in [0, 1].

In addition, if there is a path in G1 from wy to a terminal vertex z € UUV with
position value f(z) = 1, then the solution has all position values in [0,1] and is
unique.

Proof. Let Gy = (U U{ws},V, Ey) and Gy = (U U {wl} V, Ey) be the induced
bipartite subgraphs of G. By condition 1, G1 and G, are acyclic. Consider Gh.
All the terminal vertices in Gy other than ws are also terminal in G. If we know
the position value of wsy, then by Lemma 1 the solution to G1 can be uniquely
determined. Let y be the estimated position value of ws. We can construct
a database for Gy by Algorithm 1. Denote by fi(y,w) the position value of
w € UUV that depends on y. Likewise, given x as the estimated position value
of wy, we denote by fg(x,ﬁ}) the position value of w € U U V. The values of
fi(y,w) for w € UUV and fy(z,w) for w € U UV constitute a solution to G,
if and only if fl(y,wl) =0 and fg(x,wg) = 0. The main theme of this proof is
to discuss the existence and uniqueness of z and y satisfying fl(y, wy) = x and
fa(z,we) =y, or equivalently fo(f1(y,w1),ws) =y.

Condition 3 states that all terminal position values are in [0, 1]. Tteratively
applying (1) and (2), fo(f1(0,w1),ws) > 0 and fo(f1(1,w1), ws) < 1. By The-
orem 1, there exists y* € [0,1] such that fo(fi(y*, w1),ws) = y*. Iteratively
applying (1) and (2) again, the position values of w € UUV, fi (y*,w), are all in
[0, 1]. Likewise, the position values of w € U UV, f (x*,w), are also all in [0, 1],
where z* = fl(y*,wl).

Now we investigate the uniqueness of the solution. Consider él, whose so-
lution can be obtained by propagation that depends on y, the position value of
ws. For convenience of discussion, we propagate in terms of y (i.e., treat y as
a variable during the propagation), even though we know the value of y. For
example, assuming y = %, we write max{%y, iy + %} = %y instead of % It-
eratively applying (1) and (2), all propagated values of u € U UV are in the
form ay+b, which represents the local function values of fi(y,u). By condition 3,
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0 < a+b < 1 with a, b nonnegative. We are particularly concerned with fy (y, w1 ).
Analysis above shows that fl (y,w1) in value is piecewise linear, continuous and
non-decreasing with the slope of each line segment in [0,1], and so is fa(z, ws)
by a similar discussion. These properties are inherited by the composite function
fg(fl (y,w1),wsz). The additional condition, the existence of a path in Gy from
w1 to a terminal position with position value 1 further ensures each line segment
ay + b of f1 (y,w1) has the slope a < 1. Hence the slope of each line segment
of fg(fl (y,w1),ws) is also less than 1. This guarantees the uniqueness of the
solution in [0,1] to fo(f1(y, w1), ws) = y. O

Consider the strongly connected components of the game graph of two-player
Can’t Stop. Each strongly connected component consists of all the positions with
a certain placement of the squares and various placement of the at most three
markers for each player. The two roll positions with no marker are the anchors
of the component. In one of them it is the turn of the first player, whereas in
the other it is the second player to move. When left without a legal move, the
game goes back to one of the two anchors, and results in a cycle. The outgoing
edges of each non-terminal component lead to the anchors in the supporting
components. The terminal components are those in which some player has won
three columns. Each terminal component has only one vertex with position value
1 (if the first player wins) or 0 (if the second player wins).

Theorem 2. The game graph of two-player Can’t Stop has a unique solution,
where all the position values are in [0, 1].

Proof. The proof is by finite induction. We split the graph into strongly con-
nected components, and consider the components in bottom-up order.

Given a non-terminal component with the anchors in its supporting com-
ponents having position values uniquely determined in [0, 1], we consider the
subgraph induced by the component and the anchors in its supporting compo-
nents. This subgraph satisfies all conditions in Lemma 2, where the terminal
positions are the anchors in the supporting components. Therefore, it has a
unique solution with all position values in [0, 1]. By induction, the solution to
the game graph of two-player Can’t Stop exists and is unique. O

3.3 Retrograde Approximation Algorithms

If we apply Algorithm 1 to a game graph with cycles, then the vertices in the
cycles cannot be determined. A naive algorithm to solve the game is described
as follows. Given a cyclic game graph G = (U, V,U,V, E), we prune some edges
so the resulting G = (U, V, U, V, E) is acyclic, and then solve G by Algorithm 1.
The solution to G is treated as the initial estimation for G, denoted by function
f . We approximate the solution to G by recursively updating f using (1) and
(2). If f converges, it converges to a solution to G. The pseudocode is given in
Algorithm 2.

An example is illustrated by solving G = (U,V,U,V,E) in Figure 1. We
remove (vy,1;) to obtain the acyclic graph G, and initialize the newly terminal
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Algorithm 2 A naive algorithm to solve a cyclic game graph.

Ensure: If f converges, it converges to a solution to G = (U,V,U,V,E).
Obtain an acyclic graph G =(U,V,U,V,E), where E C E. > Estimation Phase
Compute the solution f to G by Algorithm 1. > (1)
Use f as the initial guess for G.
S; « {terminal positions of G in U U U}
Sy « {terminal positions of G in V UV}
repeat > Approximation Phase
for all u € S; and (v,u) € E do
Fo) — {mfix{f(w).: (v,w) € E} %f vev, > (%)
min{ f(w) : (v,w) € E} ifv € V.
Sy — Sy U {v}
end for
S1—10
for :‘illlveSz and (u,v) € E do R
Fu) = g(uw) + 320, with (uuen P w))f(w) > (**)
S1 +— S1 U {u}
end for
So — 0
until f converges.

vertex uy with position value 0. The solution for G has f(u;) = 1. The update

is repeated with f(uy) = 2.4 il which converges to 2. Hence
f converges to the solution to G. Let e, be the dlfference between f (ul) at the
nth step and the converged value; then ez# = +. Hence it converges linearly.

Consider Algorithm 2. For two-player Can’t S‘cop7 it is natural to prune the
outgoing edges of the anchors and obtain the acyclic G. In (1), we assign an
estimated value to each vertex terminal in G but not terminal in G (i.e., the
newly terminal positions). For efficiency, we do not have to recompute the whole
(*) and (**). Updating with the recent changes of the children is sufficient.

If the conditions in Lemma 2 are satisfied (e.g., a strongly connected com-
ponent of two-player Can’t Stop), G can be obtained by pruning the outgoing
edges of the two anchors w; and ws.

The proof of Lemma 2 reveals that if we solve fl(y, wy) = z and fg(x, wa) =y
using the 2-dimensional Newton’s method?, then quadratic convergence can be
expected. In other words, if we use e, to denote the difference between the
estimation and the solution at the nth step, <23+ & ¢ for some constant ¢ when

the estimate is close enough to the solution®. An example is illustrated with the
game graph in Figure 1 as follows. We treat u; as w; and @ as wy in Lemma 2,
and let x and y be the initial estimate of the position values of u; and @,

4 See, e.g., http: //wwu.math.gatech.edu/Carlen/2507/notes/NewtonMethod.html.

5 In our case f(z,w) is piecewise linear. Hence Newton’s method can reach the solution
in a finite number of steps. In practice, however, rounding errors may create minor
inaccuracy.
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rlespectively. Then fl(y,u%) = %y + %i falz,u1) = %z Solving %y + % =z and
3% = y, we obtain x = 5 and y = 3, which are the exact position values of
uy and w7y, respectively. In this small example we obtain the solution by one
iteration. In practice, multiple iterations are expected to reach the solution. The

pseudocode is given in Algorithm 3.

Algorithm 3 An efficient algorithm to solve a cyclic game graph.

Require: G = (U,V,U,V, E) satisfies the conditions in Lemma 2.

Ensure: f1 and fz converge to a solution to G in the rate of Newton’s method.
{Estimation Phase:}
Denote the induced subgraphs G1 = (U U {w2},V, E1) and Go = (U U {w1 }, V, E»).
Assuming the conditions in Lemma 2 hold, Gl and Gg are acyclic and F1 U Es = E.
Estimate the position values of anchors w1 € U and ws € U, denoted by x and y.
{Approximation Phase:}

repeat
Solve G in terms of the current estimate y for ws by Algorithm 1. > (%)
Denote the linear segment of fi (y,w1) by a1y + b1.
Solve (2 in terms of the current estimate z for w1 by Algorithm 1. > (*%)

Denote the linear segment of fz (z,w2) by a2z + ba.
Solve x = a1y + b1 and y = a2z + b2 for the next estimates x and y.
until the values of z and y cannot be longer unchanged.

Consider Algorithm 3. In the estimation phase, the better the initial esti-
mated position values of wy and wy (denoted by = and y respectively), the fewer
steps are needed to reach the solution. In the approximation phase, the graphs
G4 and Gy are disjoint except wy and we, and the propagations in (*) and (**) in
each iteration are independent of each other. Therefore, Algorithm 3 is natively
parallel on two processors, by separating the computations (*) and (**).

A more general model is that a game graph G has two anchors wq, w2 (i.e.,
removing the outgoing edges of wy and ws results in an acyclic graph), but the
precondition in Lemma 2 does not hold. In this model the incorporation of 2-
dimensional Newton’s method is still possible as follows. Let z and y be the
current estimated position values of w; and wsy at each iteration, respectively.
The propagated values of w; and we in terms of z and y (e.g., if z = % and
y = 2, we write min{z + 1y, %x + %y} = %x + %y instead of ) are denoted
by f(z,y,w1) and f(z,y,ws). We solve the linear system of f(z,y,w;) = z and
f(ac,ymig) = y for x and y as the position values of w; and ws in the next
iteration. Three observations are worth noting. First, since the precondition in
Lemma 2 does not hold, existence and uniqueness of the solution requires further
investigation. Second, the algorithm is not natively parallel on two processors as
stated above. Third, this generalization relies on the property of two anchors,
not two players. It also applies to a one-player probabilistic game graph with
two anchors.
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4 Indexing Scheme

We use two different indexing schemes for Can’t Stop positions, one scheme
for anchors and another for non-anchors. The indexing scheme for non-anchor
positions is designed so that, given an index we can quickly compute the positions
of all of the markers, and vice versa. It is a mixed radix system in which there
is a digit for each player and column representing the position of that player’s
marker in the column; this scheme is similar to that used for one-player Can’t
Stop [5]. A different scheme is used for anchors so that we can store the position
value database in a compact form.

In the variant used in our experiments, an anchor (xa, ..., T12,¥Y2, .., Y12, 1)
is illegal if z; = y; # 0 for some ¢ (players’ markers cannot occupy the same
location with a column). With this restriction many indices map to illegal an-
chors. Furthermore, once a column is closed, the locations of the markers in that
column are irrelevant; only which player won matters. For example, if yo = 3
then we can set x5 = 0 and the resulting position represents the position where
x9 € {1,2} as well. If the position values are stored in an array indexed using the
mixed radix system as for non-anchors, then the array would be sparse: for the
official game about 98% of the entries would be wasted on illegal and equivalent
indices.

In order to avoid wasting space in the array and to avoid the structural
overhead needed for more advanced data structures, a different indexing scheme
is used that results in fewer indices mapping to illegal, unreachable, or equivalent
positions.

Write each position as ((x2,¥2), ..., (x12,y12),t). Associate with each pair
(z4,y;) an index z; corresponding to its position on a list of the legal pairs of
locations in column ¢ (that is, on a list of ordered pairs (z,y) such that z # y).
The z; and t are then used as digits in a mixed radix system to obtain the index

12 c—1
t+> ze- 2] B+1lalla—1))
c=2 d=2

where [4 is the length of column d and the term in the product is the number
of legal, distinct pairs of locations in column d. The list of ordered pairs used
to define the z;’s can be constructed so that if component u is a supporting
component of v then the indices of u’s anchors are greater than the indices of
v’s and therefore we may iterate through the components in order of decreasing
index to avoid counting children while computing the solution.

There is still redundancy in this scheme: when multiple columns are closed,
what is important is which columns have been closed and the total number
of columns won by each player, but not which player has won which columns.
Before executing Algorithm 1 on a component, we check whether an equivalent
component has already been solved. We deal with symmetric positions in the
same way.

154



5 Experiments

As proof of concept, we have solved simplified versions of two-player Can’t Stop.
The simplified games use dice with fewer than six sides and may have shorter
columns than the official version. Let (n,k) Can’t Stop denote the two-player
game played with n-sided dice and columns of length k, k+2, ..., k+2(n—1), ..., k.

We have implemented Algorithm 3 in Java and solved (3, k) Can’t Stop for
k =1,2,3. We used an initial estimate of (%7 %) for the position values of the
anchors within a component. Table 1 shows, for three versions of the game,
the size of the game graph, the time it took the algorithm to run, and the
probability that the first player wins assuming that each player plays optimally.
The listed totals for components and positions within those components excludes
the components not examined because of equivalence.

Table 1. Results of solving simple versions of Can’t Stop.

(n,k) Components Total positions Time P(P1 wins)
(3,1) 6,324 634,756 4m33s 0.760
(3,2) 83,964 20,834,282 3h45m 0.711
(3,3) 930,756 453,310,692 3d13h 0.689

Note that the time to solve the game grows faster than the number of po-
sitions. This is because the running time is also dependent on the number of
iterations per component, which is related to the quality of the initial estimate
and the complexity of the game. Table 2 gives the average number of iterations
versus the position value of the component, given as (z,y) where z (y) is the
probability that the first player wins given that the game has entered the com-
ponent and it is the first (second) player’s turn. Note that the table is upper
triangular because there is never an advantage in losing one’s turn and sym-
metric because of symmetric positions within the game. Perhaps surprisingly,
the components that require the most iterations are not those where the solu-
tion is farthest from the initial estimate of (3,4). We conjecture that this is
because positions where there is a large penalty for losing one’s turn require less
strategy (the decision will usually be be to keep rolling) and therefore f is less
complicated (has fewer pieces) and so Newton’s method converges faster.

6 Conclusion

We used a four-partite graph to abstract a two-player probabilistic game. Given
a position, its position value indicates the winning rate of the first player in
optimal play. We investigated the game of two-player Can’t Stop, and proved
that its optimal solution exists and is unique. To obtain the optimal solution,
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Table 2. Iterations required vs. position values for (3, 3) Can’t Stop

T
0.0-0.2 0.2-04 04-06 0.6-0.8 0.8-1.0
0.0-0.2  3.00 3.25 3.50 3.37 2.87

0.2-0.4 - 3.27 4.12 3.83 3.37
y 0.4-0.6 - - 2.50 4.12 3.50
0.6-0.8 - - - 3.27 3.25
0.8-1.0 - - - - 3.00

we generalized an approximation algorithm from [5] by incorporating the 2-
dimensional Newton’s method with retrograde analysis. The technique was then
used to solve simplified versions of two-player Can’t Stop. The official version has

over 1

035 components — too many to solve with currently available technology.

It may be possible to find patterns in the solutions to the simplified games and
use those patterns to approximate optimal solutions to the official game.
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Abstract. We report that it is possible to solve random instances of the
399 Puzzle, the 20x 20 version of the well-known sliding-tile puzzles, using
real-time A* search (RTA*) in a reasonable amount of time (several hours
on a regular PC). Previously, very few attempts were even made to go
beyond the 5 x 5 puzzles. The discovery is based on a recent finding that
RTA* works much better with strictly pessimistic heuristics. Our novel
contribution is a strictly pessimistic heuristic for sliding-tile puzzles.

1 Introduction

The sliding-tile puzzles have served as a testbed in the search and heuristic-search
fields since as long as one can remember, e.g., in Nilsson’s well-known book on
search [1] or in Doran and Michie’s experiments with the GRAPH TRAVERSER
program [2]. And yet, they are still very much alive and challenging to modern
search techniques as demonstrated by the abundance of very recent papers, e.g.,
[3-5].

The puzzles pose several different interesting problems; two of these are (a)
solving them optimally (i.e. in the least amount of moves possible), and (b)
solving them at all (with suboptimal solutions). Another nice property of the
puzzles is that they are of various sizes — the same problem, yet bigger and
bigger in scale. This property is very useful in a testbed as it challenges new
algorithms and instills a healthy competition among researchers.

The motivation for our research is our recent discovery that strictly pes-
simistic heuristic functions enable real-time search to work much better and
thus to solve (much) bigger problems [6]. Incomplete-search methods do not
guarantee finding an optimal solution even when used in conjunction with ad-
missible heuristics. Thus, the main reason for using admissible and consequently
optimistic heuristics is void. As we argued before [6], people nevertheless use op-
timistic heuristic functions with incomplete-search methods, because: (a) they
are often readily available, since they were developed for complete-search algo-
rithms, (b) common sense saying that since they proved useful with complete-
search methods, perhaps they are useful with incomplete-search methods as well,
and (c) it was never shown that they could be counterproductive.

While we provided a theoretical proof that pessimistic heuristics enable real-
time search to make better decisions and backed-up our theoretical deliberations
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with experiments in the 3x3-puzzle (this small puzzle was used, because we
needed to know true values of every legal position to make a complete evaluation
of the approach) with artificially constructed heuristics, we left open the question
how effective can real-time search be with a real-life pessimistic function. We also
did not explain how one is to construct pessimistic heuristics.

In the present paper we were primarily interested in how much bigger prob-
lems (if at all) it was possible to solve by using strictly pessimistic heuristics
with RTA* as suggested. The quality of solutions was of secondary importance.
We managed to construct a strictly pessimistic heuristic by mimicking how hu-
mans approach the puzzle and by recursively decomposing it into puzzles of
smaller order. We then experimentally tested this heuristic against the Man-
hattan heuristic on puzzles of various sizes. The results we obtained are quite
astonishing!

The paper is organized as follows. First, we give an extended history of
research inspired or tested by the sliding-tile puzzles. Then we present the con-
struction sketch for our pessimistic heuristic. In the experimental section we
compare it with the Manhattan heuristic on sliding-tile puzzles of various sizes.
We conclude with a brief discussion and present some of our future goals.

Fig. 1. Fifteen puzzle (goal state).

2 History

The sliding-tile puzzles have always served as a testbed in the search and heuristic-
search fields because of their large state-spaces and their scalability (various sizes
with similar properties). The state-space size of an NxN-puzzle is (NxN)!/2,
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meaning that even the modest Fifteen (4x4) puzzle contains more than 103
legal positions. Brute-force search algorithms are thus quickly rendered helpless,
and heuristic-search methods called upon.

However, before we completely turn our attention away from brute-force
search, we should mention what is possibly the largest breadth-first search in
history — Korf and Schultze [3] completely solved the Fifteen puzzle, finding
out that the hardest problem takes 80 moves to solve optimally.

A lot of research was geared towards solving the puzzles optimally. The small-
est, Eight (3x3) puzzle, containing 181,440 legal positions, could be solved with
A* [7]. However, the next bigger puzzle, the Fifteen puzzle shown in Fig. 1 was
beyond the capabilities of A*; it ran out of memory. Optimally solving the Fif-
teen puzzle required the space-saving trait of a new (at that time) algorithm,
IDA* [8]. Thus, the next challenge became the Twenty-Four (5x5) puzzle. This
time the breakthrough did not come in the form of a new algorithm; instead, it
came in the form of an improved admissible heuristic. Previously, the Manhat-
tan distance was the heuristic of choice (the sum of the Manhattan distances of
all tiles from their proper positions). The improved heuristic was still based on
the Manhattan heuristic, yet took into account some conflicts between tiles. Ten
random instances of the Twenty-Four puzzle were solved with IDA* using this
new admissible heuristic [9]. This happened already in 1996, and in the subse-
quent decade the next largest puzzle still remains unsolved optimally. The latest
attempts to solve it center around tablebase-like ideas from two-player games,
tabulating smaller puzzles and attempting to use these databases to create an
even more accurate admissible heuristic [4, 10].

In 1990, Korf [11] introduced real-time search (RTA*). Apart from being able
to make decisions in real time, this on-line algorithm was able to solve much
larger problems than off-line algorithms could. Making real-time decisions of
course meant sacrificing optimality. Yet, in the same paper, Korf also introduced
learning real-time search (LRTA*), a learning modification of RTA* that could
learn to improve its solution by repetition (on the same problem). He also proved
that with admissible heuristics LRTA* would eventually converge to an optimal
solution (as the number of repetitions approaches infinity).

It is interesting that of the two algorithms, the latter, LRTA*, became much
more popular than the seemingly more practical RTA*. The problem of finding
optimal solutions with LRTA* became a new challenge. However, researchers
quickly realized that the convergence towards optimal solutions usually takes un-
reasonable amounts of time. LRTA* today still cannot optimally solve the Fifteen
puzzle. Various approaches have been put forward to speed up the convergence
process (while maintaining the quest for optimality); most notable attempts in-
clude algorithms such as FALCONS [12], HLRTA* [13], and a combination of
both called eFALCONS [14]. These algorithms tweaked with value-update rule of
LRTA* (HLRTA*), with action-selection rule of LRTA* (FALCONS), or both
(eFALCONS). Still, none of these algorithms was able to optimally solve the
Fifteen puzzle. Another idea was also to speed up the calculation of heuristics
[15].
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In view of this, an idea of relaxing the strive for optimality was bound to
come along. Shimbo and Ishida [16] proposed going after somewhat suboptimal
solutions — while strictly controlling the level of suboptimality. They introduced
the idea of weighted LRTA* which assigns weights to admissible heuristics thus
making them possibly pessimistic (but only to a certain degree, controlled by the
parameter ¢; this parameter represents the weight). They proved that solutions
so obtained are suboptimal by at most the factor of €. In practice, however, the
solutions tend to be much better, but not optimal.

It is quite interesting how much effort was spent on finding optimal (or sub-
optimal to a controlled degree) solutions with LRTA* as opposed to finding any
solutions with RTA* quickly. After all, since one of the inherent qualities of
RTA* is the ability to solve larger problems than off-line search methods could,
one would expect this to be the focal point of research.

Yet, perhaps the absence of papers describing research of going after any
solution can be explained by a somewhat surprising fact: RTA* with admissible
heuristics was not able to scale up to the extent worth reporting. Indeed, as
shown later, our experiments with the Manhattan heuristic demonstrate that
RTA* cannot go beyond 5x5 puzzles. And since some of these puzzles were al-
ready optimally solved in the mean time this is clearly not the best advertisement
for the usefulness of RTA*.

In 2006 we proposed changing the nature of the underlying heuristics [6].
We proposed to run RTA* with pessimistic heuristics to be able to solve bigger
problems. How much bigger is the aim of this paper to show.

Of course, there are other uses of real-time search besides solving sliding-tile
puzzles. Robotic navigation and map building is one such example. A beautiful
overview of real-time search techniques and applications is given by Koenig [17].
But as a testbed the puzzles remain challenging and fun, and a natural source
for a good competition which in turn spurs the research further. We hope that
this paper will rekindle research into finding suboptimal solutions to very large
problems fast by setting a new benchmark.

3 Pessimistic Heuristic for Sliding-Tile Puzzles

There are two main ideas involved in the design of our pessimistic heuristic. The
first is modelling it after the way humans usually approach solving the puzzle.
The second is a basic problem-solving technique of decomposing a harder (bigger)
problem into two or more easier (smaller) ones. The last ingredient is recursion.

The guarantee that the heuristic is strictly pessimistic (i.e. never underesti-
mates) comes from the following fact: since we actually solved® it (in a human-
like way) it can at best be solved optimally. But most likely it will be solved
suboptimally. Therefore, the heuristic is strictly pessimistic.

1 Our heuristic actually solves the puzzle to obtain an upper bound on the solution

cost. However, the idea of the paper is to show that pessimistic evaluation functions
outperform optimistic ones when used with real-time search.
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Fig. 2. Decomposition into a smaller puzzle.

The heuristic is based on the decomposition of solving an NxN-puzzle into
a partial solution of this puzzle plus the solving of an (N-1)x(N-1)-puzzle. The
decomposition step is shown in Fig. 2. Accordingly, the heuristic upper bound on
the solution length is computed as the cost of solving the left-most column and
the top-most row of the NxN-puzzle, plus (recursively) the heuristic estimate of
the cost of the remaining (N-1)x(N-1)-puzzle.

It is possible to solve the top row, and then the leftmost column of the puzzle
one tile at a time without compromising the part already solved. A somewhat
tricky part is in solving the penultimate and ultimate tiles of the row (column).
However, it is possible to do this as follows. The penultimate tile (3 in the case
of the Fifteen puzzle in Fig. 2) can be first put in the last position of the row,
then the last tile (4) just below it (in the second row, the home position of
tile 8). The blank is then maneuvered into the home position of tile 3. Then the
following sequence of moves achieves the solution of the whole row: “RD”, where
R means moving the blank right, and D moving the blank down. Analogously, it
is possible to solve the leftmost column, the sequence in this case being “DR”.

3.1 The Quality of the Heuristic

If one has a perfect or nearly perfect heuristic there is no need to worry about
the size of the problem — a direct path (not necessarily optimal, of course) is
guaranteed with any reasonable heuristic-search method. Therefore, a relevant
question needs to be asked: how good is our pessimistic heuristic? Is it nearly
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Table 1. Experimental results for various puzzle sizes. All statistics are per puzzle
(averaged over the test set).

Manhattan Decomposition
Puzzle size| #moves CPU time (s) Deg. factor|#moves CPU time (s) Deg. factor
4x4 7,827.7 1.51 147.55 98.3 0.10 1.85
5x5 339,537.6 354.0 3,309.33 | 215.8 0.50 2.10
6x6 cannot solve 392.6 1.57 not known
10x10 cannot solve 2,194.6 124.5 not known
15x15 cannot solve 10,927.0 3,353.7 not known
20%20 cannot solve 29,085.5  13,585.1  not known

perfect? We give the answers to these questions by comparing it to the Manhat-
tan heuristic on puzzles for which we know the true values.

The average value of the (optimistic) Manhattan distance heuristic evaluation
over the 100 puzzles optimally solved by Korf [8] is 69% of the true solution costs,
whereas the average value of (pessimistic) decomposition heuristic evaluation is
250% of the true costs. Of even greater interest is the discrimination power of
the two heuristics in deciding which of the two given 4x4 puzzles is easier (has
shorter optimal solution). The Manhattan distance correctly decides in 74.2% of
all 100x99/2 possible pairs of Korf’s 100 4 x4 puzzles, whereas the decomposition
heuristic only gives correct decision in 56.9% of these pairs.

Thus, we conclude that the decomposition heuristic is actually significantly
worse than the Manhattan heuristic by both measures. This result came as quite
a surprise to us.

4 Experiments

We compared RTA* search using the Manhattan and our decomposition heuris-
tics on puzzles of increasing size. The Table 1 shows the results obtained.

We measured the solution quality (length), CPU time needed, and degrada-
tion factor (ratio between the average cost of solution and average cost of optimal
solution). The CPU time is a fairer measure than number of moves, because the
two compared heuristics take different times to compute; the decomposition be-
ing significantly slower. Tests were run on an average? PC and the programs
were entirely written in Python scripting language for the simplicity of later
making the code available.

The testsets for puzzles of various sizes were as follows. We used Korf’s 100
optimally solved puzzles from [8] for 4x4 puzzles, and Korf’s 10 optimally solved
5x5 puzzles from [9]. The latter set is small, but gives us the advantage of being
able to compute the degradation factor. For puzzles of higher orders we used
testsets of ten random positions.

2 IBM ThinkPad Z60m with 2 GHz processor and 1 GB of RAM.
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The most striking result is that while the Manhattan distance could not solve
any of the puzzles beyond the 5x5 puzzles, the decomposition heuristic could
scale all the way up to 20x20 puzzles, which contain approximately 3.2 x 10868
legal positions! The limit we imposed on the search was 1,000,000 moves made.
The depth of lookahead was one-ply (often used by other researchers to keep
the planning times low). We have tried other lookahead depths and it did not
significantly change the results.

Another important result is also that average solutions generated by the
decomposition heuristic are not unreasonably bad (cf. degradation factor). Of
course, single-run solutions can be very bad, but on average this is not the case.
These solutions are incomparably better than those provided by the Manhattan
heuristic.

5 Conclusions and Further Work

We showed that coupling RTA* search with a strictly pessimistic heuristic en-
abled it to solve drastically bigger problems than with the optimistic, admissible
heuristic, even though the latter was of significantly better quality. The results
are in line with our previous findings [6], but also show that the extent of the
benefit is much bigger than anticipated.

The solutions obtained are far from being terrible and thus useless. In view
of the size of the puzzles solved we believe this presents a new benchmark for
research focusing on finding suboptimal solutions to large problems.

An intuitive explanation for the obtained results is that the pessimistic
heuristic guides the search in the direction of the goal by constantly trying to
minimize the “guaranteed” (as much as possible by the quality of the heuristic)
upper-bound on the remaining path to the goal. The optimistic heuristic guides
the search by providing the lower-bound, in fact encouraging it to look for better
and better paths which usually results in a lot of exploration.

Once we get a solution, any solution, we can work on improving it. Not
necessarily in the spirit of LRTA*; one can approach this task in other ways
(which can, of course, be based on domain-specific knowledge, or whose success
can be based on the domain). One such idea is to look for cycles in the obtained
solution path and removing them. We feel that this can drastically improve the
solutions, at least in domains like mazes and sliding-tile puzzles. This is one
avenue of further work we intend to pursue.

The more obvious goal (in the spirit of this paper) to pursue is of course going
after even bigger puzzles. While we feel that solving slightly bigger puzzles is
already trivial (e.g., the 22x22-puzzle), our next goal is solving the 32x32 or
1,023-puzzle.
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Abstract. Reflexive Monte-Carlo search uses the Monte-Carlo searatyfen

level to improve the search of the upper level. We descrileeaibplication to
Morpion Solitaire. For the non touching version, reflexiveme-Carlo search
breaks the current record and establishes a new record obvV&sn

1 Introduction

Monte-Carlo methods have been applied with success to mamgg In perfect infor-
mation games, they are quite successful for the game of Gomitdas a huge search
space [1]. The UCT algorithm [9] in combination to the incesrtal development of
a global search tree has enabled Go programs suclRazyCSTONE [2] and MOGO
[11] to be the best on & 9 boards and to become competitive onx129 boards.

Morpion Solitaire is a single-player complete-informatgmame with a huge search
space. The current best algorithms for solving Morpiont8i#é are based on Monte-
Carlo methods. We present in this paper an improvement ofisi@al Monte-Carlo
method based on reflexivity.

In the next section we present Morpion Solitaire. In thedtsiection we detail re-
flexive Monte-Carlo search. In the fourth section we giveegitpental results.

2 Morpion Solitaire

Morpion Solitaire was first published in Science & Vie in AgB74. It has also been
addressed in Jeux & Stratégie in 1982 and 1983. The cureentd of 170 moves has
been found by hand at this time.

2.1 Rules of the Game

Figure 1 gives the starting position for Morpion Solitaifemove consists in adding a
circle and drawing a continuous line such that the line dastidne new circle as well as
four other circles. A line can be horizontal, vertical orghaal. The goal of the game
is to play as many moves as possible.

Figure 2 shows a game after five moves. In this figure only bote and vertical
moves are displayed, diagonal moves are also allowed whesilpe.
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In the original version of the game, two different moves daars a circle at the end
of a line even if the lines of the two moves have the same dinecAnother version is
the non-touching version where two different moves canhatesa circle at the end of
a line if their lines have the same direction.

2.2 Previous works on Morpion Solitaire

Hugues Juillé has described an algorithm that finds a 12Zswsiution to the touching
version [7,8]. The algorithm was made more incremental bycBaZimmer and it
reached 147 moves. The 170 moves record has been provedabfiimthe last 109
moves [4, 5].

Concerning the non-touching version, the best human reiso88 moves [3]. In
his thesis, B. Helmstetter describes a program that finds-e@&s solution using
a retrograde analysis of the 68-moves human record [5]. eeBéer 2006, the best
record was 74. It was found with a simulated-annealing @&lgwor[10, 6]. | found a 76-
moves record in December 2006 with Reflexive Monte-Carlo@gand the 78-moves
record in May 2007.

2.3 The Mobility Heuristic

An heuristic for choosing the moves to explore is thebility heuristic. It consists
in choosing randomly among the moves that lead to boardshéna the maximum
number of possible moves. The moves that lead to board thatlass possible moves
than the boards corresponding to the most mobile moves scardied.

3 Reflexive Monte-Carlo Search

This section first presents Monte-Carlo search applied tgpda Solitaire, then it is
extended to reflexive Monte-Carlo Search.

3.1 Monte-Carlo search

Monte-Carlo search simply consists in playing random gafres the starting posi-
tion. The code for playing a random game is given in the fumgiiayGame():

int variation [200];

int playGane () {

nbMves = 0;

for (;5) {
if (nmoves.size () == 0)

br eak;

nmove = chooseRandoniMove (noves);
pl ayMove (nove);
vari ati on [ nbMoves] = nove;
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updat ePossi bl eMoves (nove);
nbMoves++;

}

return nbMves;

}

Moves are coded with an integer, and theiation array contains the sequence of
moves of the random game.

TheplayGame() function is used to find the best game among many random games
with the functionfindBest M ove():

int nbPrefix = 0;

int prefix [200];

i nt previousBestScore = 0;
int bestVariation [200];

int findBestMve () {
int nb =0, best = previ ousBest Score - 1,
for (int i = 0; i < best; i++)
bestVariation [i] = bestVariation [i + 1];

initialBoard ();
for (int i =0; i < nbPrefix; i++)
pl ayMove (prefix [i]);
menori zeBoard ();
while (nb < nbGanes) {
retrieveBoard ();
if (noves.size () == 0)
return -1;
i nt nbMoves = playGne ();
if (nbMoves > best) {
best = nbMoves;
for (int i =0; i < best; i++)
bestVariation [i] = variation [i];
}
}

previ ousBest Score = best;
return bestVariation [0];

}

Thepre fix array contains the moves that have to be played before tdemagame
begins. In the case of a simple Monte-Carlo seanél®re fixz equals zero. In the case
of a Meta-Monte-Carlo search the prefix contains the movéiseofurrent meta-game.

Theinitial Board() function puts the board at the initial position of MorpioniSo
taire. Thememorize Board() function stores the current board with the list of possible
moves, and theetrieve Board() function restores the board and the list of possible
moves that have been stored in themorize Board() function.
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3.2 Meta Monte-Carlo Search

Reflexive Monte-Carlo search consists in using the residta Monte-Carlo search to
improve Monte-Carlo search. A Meta-Monte-Carlo searcls @as®onte-Carlo search
to find the move to play at each step of a meta-game. A Meta-Metate-Carlo search
uses a Meta-Monte-Carlo search to find a move at each step efaeameta-game, and
so on for upper meta levels.

We give below thelay MetaGame() function which plays a meta-game:

int playMetaGanme () {
previ ousBest Score = 0;

for (;;) {
int move = findBest Move ();
if (nmove == -1)
br eak;

prefix [nbPrefix] = nove;
nbPref i x++;

}

return nbPrefix;
}

This function is used to find the best meta-move in a Meta-Nébate-Carlo
search. We give below the code for thiéndBestMetaM ove() function that finds
the best meta-move:

int nbMetaPrefix = O;

int metaPrefix [200];

int previousMet aBest Score = 0;
i nt bestMetaVariation [200];

i nt findBestMetaMwve () {
int nb = 0, best = previousMet aBest Score - 1;
for (int i =0; i < best; i++)
best MetaVariation [i] = bestMetaVariation [i + 1];
while (nb < nbMetaGanes) {
for (int i = 0; i < nbMetaPrefix; i++)
prefix [i] = metaPrefix [i];
nbPrefix = nbMetaPrefix;
i nt nbMoves = playMetaGane ();
if (nbMoves - nbMetaPrefix > best) {
best = nbMoves - nbMet aPrefi x;
for (int i =0; i < best; i++)
best MetaVariation [i] = prefix [nbMetaPrefix + i];
}

nb++;

}

previ ousMet aBest Score = best;
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if (best <= 0)
return -1;
return bestMetaVariation [0];

}

The code for the meta-meta level is similar to the code fontkea-level. In fact all
the meta-levels above the ground level use a very similag.cbidere is no theoretical
limitation to the number of levels of reflexive Monte-Carkmsch. The only limitation
is that each level takes much more time than its predecessor.

4 Experimental Results

For the experiments, the programs run on a Pentium 4 cadenn@8 GHz with 1 GB
of RAM. All experiments concern the non-touching version.

Table 1 gives the lengths of the best games obtained with Isagngnd random
moves for different numbers of random games. It corresptmdsimple Monte-Carlo
search.

Table 1. Best lengths for different numbers of games with samplirdyramdom moves.

game 10 1001,00010,000100,0001,000,00(010,000,000
lengt 55 58 60 63| 63| 63| 64
time|0.008s[0.12s| 1.0s] 9.8s 98s 978s| 17,141s.

Table 2 gives the lengths of the best games obtained withlgagrgnd themobility
heuristic for choosing moves in the random games. We carradsgeat for a similar
number of random games, th@hility heuristic finds longer games than the completely
random choices. However, it also takes more time, and fowalgnt search times, the
two heuristic find similar lengths.

Table 2.Best lengths for different numbers of games with samplirgjraobility.

games 10| 100 1,00010,000100,0001,000,000
length 60 61 62 62 63| 64
time|0.12s{1.05s|10.2s| 101s{ 1,005s| 10,063s,

The UCT algorithm uses the formula + 4/ lggx(ts) to explore moves of the global
search treqy; is the average of the games that start with the corresponuting  is the
number of games that have been played at the nodes Enithe number of games that
have been played below the node starting with the correspgmndove. We have tested
different values for th&' constant, and the best results were obtained @lith 0.1.
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Table 3 gives the best lengths obtained with UCT for differamrmbers of simula-
tions. The results are slightly better than with sampling.

Table 3.Best lengths for different numbers of games with UCT and titgbi

game$ 10 100/1,00(10,000100,0001,000,000
length 60| 60 61 64 64 65
time|0.16s|1.3s| 16s| 176s| 2,108s| 18,060s|.

Reflexive Monte-Carlo search has been tested for differ@mibinations of games
and meta-games, each combination corresponds to a sintlemsta-game. The length
of the best sequence for different combinations is giverabld 4. The first line gives
the number of meta-games, and the first column gives the nuaftgames. Table 5
gives the time for each combination to complete its search.

Table 4.Best lengths for different numbers of games and meta-games.

1/10{100 1000
1|6363 67| 67
10/63|67| 69| 67
1006569 72
100Q71]

Table 5. Times for different numbers of games and meta-games.

1 10 100 1,00(
1 5s| 42s| 417s| 3,248

10f 23s]| 774s| 3,643s|27,688s.
100 253s{4,079s/26,225s.
1,00Q3,188s

We have obtained sequences of length 76 with different cordtgns of the reflex-
ive search. The configuration that found the 78 moves recongists in playing 100
random games at the ground level, 1,000 meta-games at tlaelenet, and one game
at the meta meta level. The search took 393,806 seconds tplenThe sequence
obtained is given in figure 3.
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Fig. 3. 78 moves for the non-touching version.
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5

Conclusion and Future Research

Reflexive Monte-Carlo search has established a new recor8 afoves for the non-
touching version of Morpion Solitaire. This is four movesmathan the best attempt
made by other programs, and it is ten moves more than the hrenard for the game.
Concerning the touching version the human record of 17@lisratch better than what
current programs can achieve.

Reflexive Monte-Carlo Search is a general technique thabeaapplied in other

games. Also, future works include the parallelization efaélhgorithm and its application
to other games.
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Abstract. Monte-Carlo Tree Search is a new method which has been
applied successfully to many games. However, it has never been tested
on two-player perfect-information games with a chance factor. Backgam-
mon is the reference game of this category. Today’s best Backgammon
programs are based on reinforcement learning and are stronger than the
best human players. These programs have played millions of offline games
to learn to evaluate a position. Our approach consists rather in playing
online simulated games to learn how to play correctly in the current
position.

1 Introduction

Monte-Carlo Tree Search has among others been applied successfully to the game
of Go [5,7], the Production Management Problem [4], the game of Clobber [9],
Amazons [10], and the Sailing Domain [9]. These games are either one-player
games with a chance factor or two-player games without a chance factor. It seems
thus natural to try this approach on a two-player game with a chance factor.
The game of Backgammon is the most famous representative of this category
and is therefore a good testbed. Furthermore, thanks to the works of Tesauro, it
has already been proved that a very strong Al can be written for this game [11].
The actual approach is to train a neural network by playing millions of offline
games. In this paper we present a contrasting approach consisting of using only
online simulated games from the current position.

2 The Game of Backgammon

Backgammon is a board game for two players in which checkers are moved
according to the roll of two dice. The objective of the game is to remove all
of one’s own checkers from the board. Each side of the board is composed of 12
triangles, called points. Figure 1 gives the initial position from Black’s point of
view. The points are numbered from 1 to 24 and connected across the left edge
of the board. The white checkers move in the clockwise direction and the black
checkers in the opposite one. The points 1 to 6 are called Black’s home board
and the points 19 to 24 White’s home board.
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2.1 Rules of the game

i2 11 10 9 8 7 6 5 4 3 2 1

LRI

i

13 14 15 16 17 18 19 20 21 22 23 24

Fig. 1. The initial position of a Backgammon game.

Initially, each player rolls one die and the player with the higher number
moves first using both dice. The players then alternately move, rolling two dice
at the beginning of each turn. Let’s call  and y the number of pips shown on
each dice. If possible, the player must move one checker x points forward and one
checker y points forward. The same checker may be used twice. If it is impossible
to use the dice, the player passes its turn. If © = y (doubles), each die must be
used twice.

It is forbidden to move a checker to a point occupied by more than one
opponent’s checker (the point is blocked). If a checker lands on a point occupied
by exactly one opponent’s checker, the latter is taken and placed on the middle
bar of the board. As long as a player has checkers on the bar, he cannot play
with his other checkers. To free them, he must play a die which allows him to
reach a point of the opponent’s home board that is not blocked (e.g., a die of 1
permits to reach the 1-point/24-point and a die of 6 the 6-point/19-point).

When all the checkers of a player have reached the home board, he can start
removing them from the board. This is called bearing off. A checker can only go
out if the die number is the exact number of points to go out. However, there
is an exception: a die may be used to bear off checkers using less points if no
other checkers can be moved with the exact number of points. If a player has
not borne off any checker by the time his opponent has borne off all, he has lost
a gammon which counts for double a normal loss. If the losing player still has
checkers on the bar or in its opponent’s home board, he has lost a backgammon
which counts for triple a normal loss [2].
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Before rolling the dice on his turn, a player may demand that the game be
played for twice the current stakes. The opponent must either accept the new
stakes or resign the game immediately. Thereafter, the right to redouble belongs
exclusively to the player who last accepted a double.

2.2 Efficient Representation

The choice of an efficient representation for a backgammon configuration is not
as trivial as it seems. It must be efficient to do the following operations:

1. determine the content of a particular point,

. compute where the white/black checkers are,

. decide if a checker can move from point A to point B,

. compute if all the white/black checkers are in the home board, and
. actualize the representation after a move from point A to point B.

Uk W N

The straight-forward idea of using simply an array which gives the number
of checkers present in each point is not sufficient. This representation has in fact
the drawback that the second and fourth operations require to traverse all the
array. Even if the latter has only a size of 24, those operations will be performed
millions of time and should go faster. For this reason, we use:

— An array PointsContent[25], where the 7* cell indicates how many checkers
are on the i** point. +x indicates that z black checkers are present, —z that
x white checkers are present, and 0 that the point is empty.

— A vector BlackCheckers whose first element is the number of points con-
taining black checkers and the other elements are the corresponding point
number in increasing order.

— A vector WhiteCheckers whose first element is the number of points con-
taining white checkers and the other elements are the corresponding point
number in decreasing order.

— Two integers BlackCheckersTaken and W hiteCheckersTaken which gives
the amount of black/white checkers taken.

The first operation can be performed immediately as PointsContent|i] gives
the content of point ¢ directly. The second operation takes a time proportional
to the length of BlackCheckers/W hiteCheckers. The third operation is trivial
as it depends only on whether PointsContent[B] is blocked or not. The fourth
operation is also immediate: all the black checkers are in the home board if and
only if BlackCheckers[1] 3 is greater than 18, and all the white checkers are in
the home board if and only if WhiteCheckers[1] is smaller than 7.

The fifth operation requires to adapt PointsContent[A] and PointsContent|B]
to their new content which is immediate. The point A must be removed from
Blackcheckers/W hiteCheckers if A contains only one own checker. The point
B must be added if it was empty or contained one opponent’s checker. In this
latter case, it must be removed from WhiteCheckers/BlackCheckers.

3 Since BlackCheckers is sorted in increasing order from the second element on, the
element indexed 1 is the lowest point.

177



3 Monte-Carlo Tree Search

In this section, we describe the structure of an algorithm based on Monte-Carlo
tree search. This is a standard Monte-Carlo Tree Search [7] adapted to include
chance nodes.

3.1 Structure of MCTS

In MCTS, a node ¢ contains at least the following two variables: (1) the value
v; (usually the average of the results of the simulated games that visited this
node), and (2) the visit count n;,. MCTS usually starts with a tree containing
only the root node. We distinguish two kinds of nodes. Choice nodes correspond
to positions in which one of the players has to make a choice. Chance nodes
correspond to positions in which dice are rolled.

Monte-Carlo Tree Search consists of four steps, repeated as long as there is
time left. (1) The tree is traversed from the root node to a leaf node (L), using
a selection strategy. (2) An expansion strategy is called to store one (or more)
children of L in the tree. (3) A simulation strategy plays moves in self-play until
the end of the game is reached. (4) The result R of this “simulated” game is +1
in case of a win for Black, and —1 in case of a win for White. R is backpropagated
in the tree according to a backpropagation strategy. This mechanism is outlined
in Figure 2. The four steps of MCTS are explained in more details below.

Repeated X times
h Selection ——{ Expansion ——— Simulation —{ Backpropagation }—+

The selection function is
applied recursively until
aleaf nodeis reached

One or more nodes
might be created

One simulated The result of thisgameis
gameis played backpropagated in the tree

Fig. 2. Scheme of a Monte-Carlo Tree Search.

Selection is the strategic task that selects one of the children of a given node.
In chance nodes, the next move will always be chosen randomly, whereas in a
choice node it controls the balance between exploitation and exploration.
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On the one hand, the task is often to select the move that leads to the best
results (exploitation). On the other hand, the least promising moves still have to
be explored, due to the uncertainty of the evaluation (exploration). This problem
is similar to the Multi-Armed Bandit problem [6]. As an example, we mention
hereby the strategy UCT [9] (UCT stands for Upper Confidence bound applied
to Trees). This strategy is easy to implement, and used in many programs. The
essence is choosing the move ¢ which maximizes formula 1:

1
- 1)
where v; is the value of the node 7, n; is the visit count of i, and N is the
visit count of the parent node of i. C' is a coefficient, which has to be tuned
experimentally.

Expansion is the strategic task that, for a given leaf node L, decides whether
this node will be expanded by storing some of its children in memory. The
simplest rule, proposed by [7], is to expand one node per simulation. The node
expanded corresponds to the first position encountered that was not stored yet.

Simulation (also called playout) is the strategic task that selects moves in self-
play until the end of the game. This task might consist of playing plain random
moves or — better — pseudo-random moves. Indeed, the use of an adequate sim-
ulation strategy has been shown to improve the level of play significantly [3, 8].
The main idea is to play better moves by using patterns, capture considerations,
and proximity to the last move.

Backpropagation is the procedure which backpropagates the result of a simu-
lated game (win/loss) to the nodes it had to traverse to reach the leaf. The value
v; of a node is computed by taking the average of the results of all simulated
games made through this node. This procedure affects equally chance nodes and
choice nodes.

Finally, the move played by the program is the child of the root with the
highest visit count.

4 The Computation of the Online Random Games

Until today, computing the random games very fast was not really an issue.
Since the computation was made offline, winning some microseconds was not
that important. The difficult part in playing random games is to be able to
compute the list of all the possible moves efficiently. Once this is done, a simple
program can be used. It should choose dice values at random, call the functions
that find all the possible moves and choose one of them randomly, and repeat
for both players until the end of the game is reached.
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4.1 Computing all the Possible Moves

When the dice are not doubles, the number of possible moves is small and easy to
compute. Even if we do have doubles only once every six dice rolls, the number
of possible moves will be so much higher that it is very important to take care
of computing this very fast.

Let us define a tower as a point containing own checkers. The straightforward
idea for doubles in many programs is to use a simple loop which traverses the
board to find a tower from which it is possible to make a first move. Then,
another loop is embedded to find all the possible ways to make a second move
from either the same tower or another one not already traversed by the main
loop. And so on for the third and fourth move.

The obvious problem of this method is that the embedded loops consume
time by traversing the same parts of the board again and again. A less obvious
problem of this method is that it generates clones when the same position can
be obtained through different moves. They must then be deleted afterwards.

Therefore, we have used a software-engineering approach for solving this
problem. We have isolated a simple subproblem and solved it efficiently. Then,
we have added more and more features to this subproblem to finally be able to
solve the original question. The idea is to compute how often each tower can be
used maximally. This depends on the number of checkers of the tower, and of
the maximum number of steps that can be done from this tower with the same
checker.

13 14 15 18 17° 18 19-720" 21220 23" 24
B B () B

B e [ [
r £ ¢ F o e r

Fig. 3. A typical backgammon position. Black has six towers labelled from A to F.

For example, in the position of figure 3, suppose that it is Black’s turn and
that the dice are 3-3. The towers B and F cannot be used at all, because the
10-point is blocked and because it is not allowed to start the bearing off already.
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Tower A can be used maximally two times since each checker can be moved
to the 21-point, but none can go to the 18-point which is blocked. Tower E can
be used maximally three times since each checker can be used to move one step.
Finally, all the dice could be used on the towers C and D so that they can be
used maximally four times. This gives us, if we ignore the towers that cannot be
used, the following table of the possible towers uses:

Our primitive function takes as argument this table and the number of dice
that will be used. From this, it computes all the possible ways to use the towers.
In our example, it would be the following list:

AACC, AACD, AACE, AADD, AADE, AAEE, ACCC, ..., DEEE

The idea of our algorithm is recursive. One basic case is when only one die
must be used. In this case, we return the list of all the towers that can be used
at least once. The second basic case is when the table is empty. An empty list
is returned as there is no tower to use at all. In the other cases, we separate the
solutions in two complementary groups:

— The solutions for which the first tower of the table is not used. These are
computed by a recursive call where the first entry of the table has been re-
moved and the number of dice has been kept.

— The solutions for which the first tower of the table is used at least once.
These are computed by a recursive call where the table has been kept and
the number of dice has been decreased by one. Adding one more use of the
first tower to all these solutions solves the problem.

Now that we know all the possible towers uses, we still do not know all the
possible moves. Indeed, using a tower three times for example can be executed
in different ways: move the upper checker of the tower three steps ahead, make
two steps with the upper checker and one step with the second checker, or make
three one-step moves with three checkers. Note that making one step with the
upper checker and then two steps with the second is not another possibility. It
leads to the same position as the second possibility.

The second step of our engineering approach was thus to extend the solution
found by our primitive function to all the possible real moves. This can be
achieved very fast. The idea is again recursive. If the list of the tower moves is
empty, the list of the real moves is also empty. Else, we compute all the possible
real moves corresponding to the first tower move of the list. Then we compute
recursively all the other possible real moves and add the new ones in front.
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The computation of all the possible real moves corresponding to a particular
tower move has been precomputed manually. This means that the computer does
not have to waste time by computing them using an algorithm, because we have
coded all the elementary cases one by one. The code is thus a long cascade of
if..then..else statements, but it executes extremely fast.

Now we have a function that finds all the possible moves when we are free
to move as we want. However, when some of our own checkers are taken, we are
not. We must first reenter the checkers from the bar and can only then choose
the remaining moves freely. As we are in the case of doubles, deciding if we can
reenter checkers at all or not is trivial. It is possible if and only if the z-th point
of the opponent’s home board is not blocked, where z is the dice value. And if
it is possible to reenter one, it is also possible to reenter two, three or four (on
the same point).

5 McGammon 1.0

Our program has been called MCGAMMON, where MC of course stands for Monte
Carlo. In this paper we present the very first version of the program. We have
made a simplification of the game rules to compute the random games faster
and already have early results. The simplification is that when all the checkers
are in the home board, the player directly wins the game.

Our program plays thus bad at the approach of the endgame, where it tries
to accumulate the checkers on the left-part of the home board. We are currently
working on another version which implements good bearing-off strategies. We
expect thus this problem to disappear in our next version. The new version will
be finished soon and will compete in the Olympiad 2007 competition.

5.1 Results

The program is able to play about 6500 games per second on a quad-opteron
2.6 GHz. As a test-bed, we have used the starting position of the game. For
the fifteen possible initial dice (no doubles are allowed for the first move), we
have run 200,000 random games to choose our first move. We have compared
the moves found with the suggestions given online by professional players [1],
see Table 1.
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Dice|McGAMMON|% Expert playing|Main move played by
roll move this move the experts

1-2 | 8/6, 24/23 0% 13/11, 24/23 (60.1%)
1-3| 8/5,6/5 99.9% 8/5, 6/5 (99.9%)
1-4 13/8 2.2% 24/23, 13/9 (74.5%)
1-5 | 24/23, 13/8 72.8% 24/23, 13/8 (72.8%)
1-6 13/6 0% 13/7, 8/7 (99.8%)
2-3| 13/10, 8/6 0% 24/21, 13/11 (51.8%)
24| 13/9, 8/6 0% 8/4, 6/4 (99.8%)
2-5| 13/8,8/6 0% 13/11, 13/8 (55.4%)
2-6| 8/2,8/6 0% 24/18, 13/11 (81.4%)
3-4 13/6 0% 24/20, 13/10 (38.8%)
35| 8/3,6/3 97.8% 8/3,6/3 (97.8%)
3-6 13/4 0% 24/18, 13/10 (76.4%)
4-5| 13/9, 13/8 30.5% 24/20, 13/8 (63.1%)
4-6 | 8/2,6/2 27.3% 24/18, 13/9 (37.0%)
5-6 13-2 0% 24/13 (99.3%)

Table 1. Opening moves played by MCGAMMON

Our program has found three strong advises and two openings played by
around 30% of the professionals. It has also found one move played by a small
minority of experts. For the other nine initial dice, MCGAMMON plays very
strange moves, especially for 1-6 and 2-4 where most of the professional players
agree on another move than the one found by our program. This is due to the
fact that we work with simplified rules and the program tries to put checkers in
the home board as soon as possible because it thinks that this is the way to win
a game. This explains why it plays a checker on the 6-point as soon as it can.
We expect this kind of moves to disappear in our next version.

6 Conclusion

In this paper, we have shown the first results of a Monte-Carlo tree search in
the game of Backgammon. Even if we have only implemented a simplification of
the game, our program is already able to find some expert moves. Despite of the
poor quality of the random games, the games played with good starting moves
achieve more wins than the ones played from obvious bad moves.

As future work, we will very soon finish the implementation of the bearing-off
strategies. Then, we plan to add human-expert strategies to the random games
to improve their quality. In the long run, it could also be envisaged to combine
learning and Monte-Carlo Tree Search. One possible idea is to learn strategies
offline and use them in our random games. A more promising idea is to play
random games with a program from the learning community but pilot them
with the Monte-Carlo Tree Search algorithm.
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Abstract. The game of the Amazons is a quite new game whose rules
stand between the game of Go and Chess. Its main difficulty in terms
of game programming is the huge branching factor. Monte-Carlo is a
method used in game programming which allows us to overcome easily
this problem. This paper presents how the Monte-Carlo method can be
best adapted to Amazon programming to obtain a good level program,
and improvements that can be added to it.

1 Introduction

The game of Amazons (in Spanish, El Juego de las Amazonas) has been invented
in 1988 by Walter Zamkauskas of Argentina. Although it is very young, it is
already considered as being a difficult game: its complexity is between Chess
and the game of Go.

The main difficulty of the game of Amazons is its complexity: the average
number of moves is 80, with a branching factor of approximately 500, and no
more than 2176 available moves for the first player. With this in head, we can
clearly see that an exhaustive full tree-search is a difficult task: there are no
more than 4 millions different positions after two moves. Moreover, even if many
of theses moves are clearly bad, there are often positions where more than 20
moves can be considered as “good” moves, and selecting these moves is a hard
task [2].

Monte-Carlo (short: MC) is a simple game-independent algorithm which has
recently proven to be competitive for the game of Go, especially including a part
of Tree Search (different from the classical minimax approach), and knowledge
of the game. Now, considering that the game of Go has the same main draw-
back as the Amazons, a huge branching factor, and that both these games are
territory-based games, thus increasing the similarity, we can expect the Monte-
Carlo approach to give good results for the game of Amazons.

After a brief description of the rules of the game, section 2 of this paper
focuses on the main core of a Monte-Carlo Amazons program. Section 3 presents
some improvements that can be added to it, with the results discussed in section
4. Section 5 focuses on our latest improvement to the program, before concluding
and discussing future works in section 6.
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2 Using Monte-Carlo for the Game of Amazons

The rules of this game (usually called simply “Amazons”) are very simple: it is
played on a square board of 10x10, sometimes less but this size is the classical
one. Each player begins with 4 Amazons, placed all over the board (left of figure
1). A player move consists first on moving one of his Amazons: it can be moved
in every direction in a straight line, on any square accessible from the Amazon,
exactly as Queen in Chess. Then, after having moved an Amazon, the player
chooses a square accessible from the one on which his Amazon just landed, and
shoots an arrow on this square: this square becomes blocked until the end of the
game. No further Amazon move or arrow shot can go through it or land on it
(right of figure 1).
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Fig. 1. Beginning position in Amazons (left) and after one move (right).

Each player alternatively makes one of these moves, so a square is blocked
on each move. The first player that cannot move any more loses the game, and
the score of the game is usually determined as being the number of moves that
the other player could have played after it.

All Monte-Carlo Amazons programs should include recent developments made
to combine MC and Tree-Search (short: T'S). A pseudo code is given in figure 2.

One run (or playout) of the evaluation consists on three steps:

— First, after the search tree used in the evaluation has been initialized to the
root itself only (line 2), a new node of the game tree is selected to be added
later to the current search tree (line 6), combined with its evaluation.

— Then, a completely random game is performed, starting from the given node,
until the end of the game (line 5). The evaluation given is usually either the
score of the game (if available), or the information win/loss/draw.
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1. Function find_move ( position )

2. treeSearch_tree = tree ( position )

3. while ( time is remaining )

4. Node new_node = search_new_node ( treeSearch_tree )
5. v = evaluate ( new_node )

6. treeSearch.add ( v, new_node )

7. return best_move()

8.

9. Function search_new_node ( tree )

10. node = root ( tree )

11. while ( number_unvisited_children ( node ) != 0 )
12. node = find_best_children ( node )

13. node = random_unvisited_children ( node )

14. return node

Fig. 2. Pseudo-code for Monte-Carlo using tree-search.

— Finally, the given node is added to the current search tree: the evalua-
tion given is stored in all the nodes that have been visited in the function
search_new_node and in the new node.

The search function is the main core of the tree-search Monte-Carlo model.
In previous versions of MC, it always returned one of the children node of the
root, either chosen randomly, or so that each node is visited the same number
of time [1], or chosen by some knowledge [4]. Following the algorithm UCT [7],
our program visits the current search tree by exploring nodes that maximizes
the score given by the formula:

Score(node(i)) = Evaluation(node(i)) + C * \/l"(”bZ;ﬁZigf&T;ﬂég‘;ie(i))) (1)

The first term of formula (1), the evaluation, is usually given either by the
expected win/loss ratio of the node, or the expected average score. The number
of visits of one node is the number of times it was selected in the process of
searching for a new node (line 9 of figure 2). Both these values (number of visits
and average evaluation) are updated after each playout (line 6). The second term
allows nodes not to be forgotten during the process, raising if the node is not
visited while his parent is. Finally, the factor C has to be tuned experimentally.

In the field of Amazons playing, some features need to be discussed:

— Each move consists of two actions (Amazon movement + arrow shot), and
usually, one node results from a combination of these actions. However, we
can also choose to split every action decision in two: in every random game,
an Amazon movement is selected at random, and then an arrow shot from
this Amazon, not a combination. Also, we can do the same with the search

187



tree used by UCT, by not using a usual two levels tree, but a four levels one.
On the first level are the positions obtained after an Amazon movement, on
the second the positions obtained after an arrow shot from the Amazon just
moved, and similarly for the third and fourth level, with movements and
shot from the other player.
This changes should allows us basically to run more playouts, and thus to
increase in a very simple way the level of the program, because it does not
have to compute every move at each position in the random games.

— The evaluation has also to be chosen accordingly to the game which is played.
A Win-Loss ratio is usually used for MC + TS in game programming [6],
but we could also use an average score, or a combination of both.

Tests and discussion of these three features (splitting in the random games,
splitting in the tree used by UCT and the evaluation) are given in section 4.

3 Improving the Random Games

Our program (CAMPYA) includes the algorithm presented in section 2 to choose
a move. However, at this state, it lacks seriously of some knowledge of the game,
and can easily be defeated by a fair human player.

Improvements to a Monte-Carlo with Tree-search program can basically be
made at three levels:

— In the random games, by adding knowledge to it [3]

— In the tree-search part, changing the behaviour of UCT or using other tech-
niques [5]

— At the final decision of the move, for example by pruning moves [4]

Improving the random games has already proven to be a good way to im-
prove the level of a Monte-Carlo program, by adding knowledge to create pseudo-
random games. Moves can be chosen more or less frequently according to pat-
terns or to simple rules, as we did here for the game of Amazons. We decided to
focus on this method to improve the level of CAMPYA.

3.1 The Liberty Rule

Mobility is an important factor in Amazons. Having an Amazon which is com-
pletely or almost completely enclosed at the beginning of the game is like fighting
at 3 against 4 for the remaining game. We defined the number of liberties of an
Amazon as the number of empty squares adjacent to this Amazon, using a con-
cept similar to the game of Go. Then, we added the following rules to the random
games:

— Any Amazon with 1 or 2 liberties has to be moved immediately
— Any opponent’s Amazon with 1 or 2 liberties should be enclosed if possible

Two liberties is a critical number: if they are adjacent, one can move an
Amazon on one of these, and shoot an arrow on the other one. This way, we
punish bad moves, and try to avoid being punished.
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3.2 Pruning Moves from Enclosed Amazons

We say that an Amazon is isolated if any of the squares accessible from this
Amazon in any number of moves cannot be accessed by opponent’s Amazons.
An isolated Amazon is inside a territory and should not be moved, except in
situations of Zugzwang. Since this concept is way beyond the simplicity we search
in the random games, we added the following rule to the random games:

— Any isolated Amazon should not be moved if possible

Obviously, if all Amazons are isolated, one has to be moved. But in this
case, the game should be considered to be over: no player can now access to its
opponent territory.

Tests and discussion of these two features will be discussed in section 4.

4 Experiments and Results

Due to the absence of popular Amazons servers and game protocol, testing of
these improvements has been realised through self-play games against a standard
version of our program. Each test consisted of runs of 250 games with 3 minutes
per player, each player playing half of the time as first player. Some games were
also played by hand against an other Amazons program: INVADER [9], with an
equivalent 30 sec/move time setting for both programs.

The standard version used for testing, later called VANILLA-CAMPYA, uses
a light version of the algorithm presented in section 2: Monte-Carlo without
Tree-Search. Moves in the random games are split, and the evaluation of the
games is given by their score. The results of the game-independent features are
shown in table 1, and those of game-dependent features (liberty rule and pruning
isolated Amazons moves) in table 2. Each feature or set of features was added
to VANILLA-CAMPYA to produce a new version of the program, and then tested
against the Vanilla version.

Table 1. Results of CAMPYA integrating some features against a standard MC version.

Feature tested Win ratio

Not splitting moves in the random games 20,4%
Evaluation by Win-Loss ratio 43,6%
Evaluation by combining score and Win-Loss ratio  63,5%
Using tree-search 81,6%
Using tree-search and combined evaluation 89,2%

(*) Using tree-search, combined evaluation,
and splitting moves in the tree-search 96%

The results obtained by the version not splitting moves in the random games
are conform to our intuition, with only 20% of win against the Vanilla version.
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Further tests (not included here) showed us also that, even with an equivalent
number of playouts, the non-splitting version was behind. The results obtained
using different evaluations are a bit more surprising: it seems that, for the game
of Amazons, evaluation with a Win-Loss ratio is not the key, and that the score
alone is not sufficient either. Finally, the results obtained by integrating Tree-
Search are not surprising: a Tree-Search based version of CAMPYA is way above
the others. Also, splitting the moves in the tree used by this version seems really
effective, and not only because of the higher number of random games that
CAMPYA could launch: as for splitting moves in the random games, even with
an equivalent number of playouts, the non-splitting version was behind.

Table 2. Results of CAMPYA integrating some features against a standard MC+TS
version.

Feature tested Win ratio
Features (*) + liberty rule 94,4%
Features (*) + pruning 92,8%

Features (*) 4+ pruning + liberty rule 96,4%

The version of CAMPYA using the features (*) in table 1 was used as a basis to
test the knowledge-based improvements (liberty and pruning). Results obtained
using them do not show a significant difference with the results given in table 1.
However, considering that:

— Adding this form of external knowledge slowed the playouts, and thus did
not permit us to launch as many as without, and

— The knowledge of liberties is especially useful against players who know how
to exploit it, so not against VANILLA-CAMPYA,

we can still consider this integration of Amazons-knowledge in CAMPYA as be-
ing an improvement. Moreover, the first few games played against INVADER
were terrific in the opening, because CAMPYA had no knowledge of Amazon im-
prisonment. Adding it permitted our program to perform better games against
INVADER.

5 Integrating the Accessibility in CAMPYA

At this point, CAMPYA still lacked an important knowledge, used a lot in other
programs. The accessibility to a square by a player can be defined as the min-
imum number of Amazon move a player has to perform to place an Amazon
on this square. This number is set to infinite if the player has no access to the
square. It is used by many programs, such as Amazong [8]

Accessibility is territory-related: if a player has a better accessibility to a
square than his opponent, this square has a higher chance to be part of this
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player’s territory at the end of the game than to be part of his opponent’s.
This goes even more true as the game reaches its end. Lacking this knowledge,
our program could not understand the idea of potential territory, and thus was
mostly crushed in the opening and middle game by other programs or good
human players.

Integrating this knowledge in a Monte-Carlo architecture cannot be done
easily: it requires lots of computations, and thus slows down the speed of the
random games too much to be useful. However, it can be integrated as a new
evaluation, which led us to this:

— random games are not any more evaluated by their a combination score +
win/loss at the end of the game, but by the estimated score of the game
after a fixed number of plies

Tests of this new feature have been done the same way as presented in section
4, with the difference that the reference version was not VANILLA-CAMPYA any
more, but the version (1) of table 1. Results are shown in table 3.

Table 3. Results of CAMPYA integrating accessibility-based evaluation against its pre-
vious version, in number of games (average score).

Version (1) Version (1) + accessibility evaluation
15 (3) 205 (12)

Using the accessibility heuristic as a score evaluator allowed CAMPYA to per-
form much better results, having more than 80% of win against its previous
best version and losses by only a few points, any feature similar except for the
evaluation. The games played against INVADER also showed us that its level in-
creased and that it was now able to understand the concept of potential territory,
still not being able, in its actual version, to perform better than INVADER, but
showing lots of potential.

6 Conclusion and Future Works

We presented in this paper how to best integrate the Monte-Carlo method for the
purpose of obtaining a good Amazons playing program. We discussed the main
features, and proposed forcing moves by the liberty rule and pruning useless
moves as ways to improve the level of the play. Finally, we proposed combining
MC and an evaluation function as being the best way to obtain a good level
program, thus using MC to explore a game tree and not any more to create an
evaluation function.

Further works mostly include finding other light forms of knowledge to im-
prove the random plays, specifically related to the endgame and the opening.
Also, we would like to find the best way to combine Monte-Carlo tree-search and
en evaluation function for the game of Amazons.
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Abstract. General Gaming is a field of research on systems that can manage
various game descriptions and play them effectively. These systatfite ape-
cialized ones, must deal with various kinds of games and cannot regngn
kind of game algorithms designed upstream, such esHERBLUE ones. This

field is currently mainly restricted to complete-information board gameserGi

the lack of more various games in the field of General Gaming, we peoipos
this article a very open functional model and its tested implementation. This
model is able to bring together on the same engine both card games add boa
games, both complete- and incomplete-information games, both detdiminis
and chance games.

1 Introduction

Many people are playing strategy games like Chess all artumdvorld. Beyond the
amusement they provide and their abstract forms, theysle@dl to create some kind of
reflection process that would be useful in everyday life.yTingild this way some kind
of ‘intelligence’. This is one of the main reason why they ayw are a prolific research
field in computer science, which need highly efficient frarogg and especially in
Artificial Intelligence which tries to define new ones.

Many Artificial Intelligence projects such asEBPERBLUE are focused on specific
games. This implies they use highly specific players, whesspecialized data corre-
sponding to some particular attributes of the game theylayéng. Such players would
certainly be efficient when confronted to their game, everety similar ones, but they
could not afford playing any other simply different gameswéver, since quite some
time [1] a branch of Artificial Intelligence focuses on thi®plem and tries to develop
players that would be able to play any kind of strategy gai@esteral Gaming.

In General Gaming, as in the Metagame project [2], the objds to compute
players that would be efficient in various kinds of games. Adwave seen, these players
are not be implemented focusing on a specified game. Thisémf define games
engines which are able to deal with such players and to liektto the desired games.
General Gaming's objective is to afford playing a maximundiferent games, but
card games, for example, are so much different from strajegyes that nowadays, no
general gaming project integrates them with strategy gafeseral Gaming engines
focus only on strategy games, which is already a large aedesting field.

General game engines already exist. The General Game IByaject from the
Stanford University Computer Science Department [3] is@dgexample. Using games
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rules defined as logic programs, it makes play worldwide ageplayers on various
strategy games, allowing players to know the game rules@addpt themselves to be
more efficient on a specific rule. Some commercial enginest ®0, such asiZLIONS
OF GAMES [4], which has a specific functional language to describeragggrule. Us-
ing a proprietary engine, he creates the game’s engine kovesdiuman players to play
against their own proprietary computer player. A huge ctibe of games is already
downloadable and is extended day by day by the users. Howbese two projects
have some limitations and use structures that restrict tiegige to strategy games.
Some of these restrictions are: no incomplete-informationor very few chance and,
for the second one, no way to create efficient connection gdikeeHex.

Based on this observation we have designed and implementedgine based on
three objectives. The principal one is to allow players tofaant each other on many
game kinds, including strategy games but also card game$é@eard games such as
Monopoly. Our second point is to give to players of variousdsi the ability to simulate
sequences of moves. The last but not the least point is to muategames and players
easy to define. Such an engine is useful to compare playérséaty on various kinds
of games.

However, allowing players to confront each other on manyemhas some limits.
We planned to integrate as many board games as possibleproputers are limited.
We intend to manage finite strategy games such as Chess, amesgboard games
such as Monopoly and domino games. For different reasondinviteour games to
non-continuous boards, no query/answers games, no speegpate games, and no
ultra-rich game universes as for role-playing games. Samneeg like wargames or deck
collection games (such as Magic the Gathering) are lefednithe current version, but
our structure intends to be easily adaptable to them.

This article presents the general gaming model we have defiiest the way we
define games, then the way we connect players to games artd@&lethe main engine
process. We conclude with a short discussion.

2 Games Descriptions

Any game is composed by exactly two things: A setEgfuipments, with specific
properties (boards, pieces, cards, dices) an&tlie of the game, which describes how
players interact with components. Equipments which maynsteebe very different
can often be unified together. Here we present an organizafiall the components
we need to use to play a game, then we define what are game ndleventually we
present a simple rule as it is written in our engine.

2.1 Equipments

A strategy game often uses a board and some pieces. The baardriea composed
of a list of independent positions where the pieces can tlapThesdositionsare
themselves relatives, they form a graph where nodes aréqsand arcs arBirec-
tions. The pieces ar&lementswith different specifications. They are organized into
Assortmentsof pieces, sometimes with many identical pieces, and somestino two
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pieces are the same. The Equipments we use here are: Aredmi3p Directions, Ele-
ments, and Assortments. Areas are graphs of Positions aadtidns, Assortments are
composed of Elements.

A card game often uses a table with some defined placementsedal It also uses
some abstract Equipments such as players’ hands whichtarefsards. The table is a
kind of Area, generally but not systematically without [Zitiens defined. The cards are
Elements, organized into Assortments too. The abstrazb$eards are represented on
tables Areas as Positions because it makes easier theaefatien of the game and the
human interface. This implies that Positions can be occupi¢éh multiple Elements,
but this is already the case in some strategy games, so ieisnpd modification in our
Equipments list. Moreover, we use exactly the same Equipsrierdefine both strategy
and card games.

However, some other Equipments are necessary to completedr the field of
board gamesDicesas chance generators aBdore markers to register score. At last,
we need @layer which represents one of the active player in our system arabke
which is the container of all other Equipments. With all ¢a&xjuipments, we could
define almost all computable board games, if we specify s@siictions. Here is a
recapitulated view of these Equipments with few spottedarsi

1. Area: A picture associated with a Position graph.
— Area, Direction and Positions define the board or the caié tab
— Almost all games have at least one Area, but this numbera#iydtee.
2. Position: Node of Area’s graph.
3. Direction: Oriented and labeled arc of Area’s graph.
— Positions could be empty, occupied with one Element, or piecliwith an
ordered list of Elements.
4. Assortment: A list of Elements used in the game. This coejdesent a card deck,
or a stock of go stones.
— Almost all games have at least one Assortment, but this nurabetally free.
5. Element: These are cards, pieces, stones, etc.

— Elements must be able to receive any kind of attribute, withossible value.
This allows to define cards (with colors, values, ranks,) eicChess pieces
(with type, cost, etc.). Actually, this restriction is entied to all the Equip-
ments in the game, for easiness in the rule definition process

Dice: A specific equipment to generate chance.

Score: A specific equipment to keep score data as in masgeanes.
Player: One more specific equipment representing a piayke game.
Table: This last equipment is a container of all other piapgints in play.

©oN

All of these Equipments possess methods that return otleedeEquipments. This
way the engine and the Rule can navigate through them adrtibit

2.2 Rule

The second thing defining a gameRsle. First it defines the number of players. Then
it defines a graph of successions of player’s tdrhdes of this graph are play stages

1 Many strategy two players games simply alternate the two players rolesping complex
games like traditional Mah-Jong needs all the potential of graphs.
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where one or more players may choose to execute Actions.akecbrace of players
and possible Actions.

Then the rule defines the initial state of the Equipnteats final conditions with
associated winners. These parts of the rules need the useaihad call. The last thing
defined by the rule is the explanation of legal Actions. THegal Actions are the link
between initial state and final states described with finatitns. Here again, the use
of a method call to create the list of legal Actions is coerced

Method calls are needed to define initial states, Actionsfewadl conditions. These
methods must be defined in the rules objects and will always ba single argument
a Table. This argument refers to all Equipments defined inRle and used in the
play. The method must return new built objects correspantbratomicActions that
alter the Table and correspond to players moves. Thesemisctiould be any ordered
combination of any number of Actions to ensure complex Atdiability to be defined.
The initial state method must return exactly one Action. Tihal condition method
return nothing or one special end game Action.The movesadstmust return the list
of actual legal Actions for the current stage of the play.

The possible Actions and their effects are:

Pass: Nothing to do.

Move: Move any number of Elements from a Position or an Assent to another.
Score: Mark points in a Score Equipment.

FinishPlay: Declare some winners, some losers or a dravega

Set: Add an attribute to any Equipment.

Del: Removes an attribute to any Equipment. Access tethttsbutes is ensured
by methods in Equipments. Here are just defined Actions tteatthe Equipments.
Distribute: Distributes all Elements from a Position orA&ssortment to a list of
Positions or Assortments and affects them a new ownervelatithe Positions.
8. Sort: Sort the list of Elements in a Position or an Assortine

9. Shuffle: Shuffle the list of Elements in a Position or an Assent.

10. Roll: Randomly changes the value of a Dice list.

ok wNE

~

2.3 Example

Algorithm 1 is an example of the full definition file for a rulehe game is basic Tic-tac-

toe. The language used is python. Tear d andt ur ns values respectively describe
the board graph and the turn order arc. Inline tools are gealio easily generate these
lists but the use of such lists ensures that any board or taer graph can be defined

even when automatic method fails.

Thedef i neEqui pnent s method selects the Equipments used in the game. The
Assortment last argument is the Elements layout. The twiori@shods define the final
conditions and the legal Actions.

Notice the way the play data are accessexbl e. get Posi ti ons().Suchasin
tabl e. get El enent ( pl ayer =t abl e. get Current Pl ayer () ), Equipments
methods may have arguments to restrict returned Equipnoandsy attribute values.

2 Equipments are indeed first defined in the rule too, so the rule is enougliytddfine a game.
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This short page is enough to create a complete game with @imenThe complex
parts of code of Algorithm 1 are detailed in Appendix A.

1 fromrule import *

2 board=[ (AL (60, 60), [(H’, 'B1), (V','A2), ('B",'B2)]) ,
('B1’, (150, 60), [(H’, 'C1), (V','B2), ('B’, 'C2Y)]),
('C1, (240, 60), [('V', 'C21)]),
]
3 turns=[ (wait Cross’, True, True, [(CrossTicT acT oe.move, 'wait Circle")]),
('wait Circle’, True, True, [(Circle’,TicT acT oe.move, 'wait Cross’)]) ]
4 pawns=[ (X', 'Cross’, 'images/cross.gif"),
('O, 'Circle’, 'images/circle.gif’)]

5 class TicTacToéRule):

6 def__init__(sel f):

7 sel f.name = "Tic Tac Toe’

8 sel f.players =['Cross’, 'Circle’]
9 sel f.turns = turns

10 def defineEquipmentsel f, table):
11 table.add Equipment(Area(images/tttboard.qgif’, board))
12 table.add Equipment(Assortmentpawns, [[name’, 'player’, 'image’]))

13 def playResultsel f, table):

14 action=table.get Last Player Action()
15 if action!=None andtable.hasN ew Line([move.get PositionTo()], 3,
elementRestraintg¥player’: table.getCurrent Player() }):
16 return FinishPlay@ble, table.getCurrent Player())
17 def movésel f, table):
18 res=[]
19 for pos in table.get Positions():
20 if pos.isEmpty():
21 res.append(Move(table.get Assortment(), pos,
table.get Element(player=zable.getCurrent Player())))
22 returnres

ALG. 1: Tic-Tac-Toe Class.

3 Players Descriptions

Here is a quick list of possible players we have started teldgvand integrate in our
general gaming model. All these methods can be easily cadbin

1. Alpha-Beta, Min-Max, tree exploration based,
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2. Monte-Carlo methods,
3. Neural Networks,
4. Genetic Algorithms and Genetic Programming.

Our model is based on functional rule description and stegtéyy play unfolding.
At any time in the game when some player can make an Actios pilaiyer is called
with a list of each player possible Actions computed follogvthe rule definition on the
players variant of the Table. The player has to send back ttie\he prefers. He may
also launch a simulation of an Action and his consequencéssguliay. He could pursue
this process anytime he wants and explore the play tree.n€omiplete-information
games the player sees all unknown information trough a rahdgenerated possible
Table state. This unknown part of the play can be shuffledmeyto simulate another
possible situation.

As for games, there are some limits to our application angbtéger that we could
connect to it. One is that our model is based on functional delscription and step by
step play deployment. This implies that we do not providdstdor analyzing game
rules before the play begins. Actually no access to theseigarovided yet and it can
be easily improved, but itis complex enough to implemers thodel without querying
about pre rule analyzer players. The other point is that aygps are highly integrated
in our game engine and that the engine is in charge of gengrptissible Actions for
the player, even in simulations. Detaching players to trydive this problem is one of
the planned evolution of our engine.

Our players are connected to our engine with some few methods

=

. doAct i on: Play the selected player’s Action.

2. doSi nul at eAct i on: Play any legal Action and compute the next possible Ac-
tions for all players, modify only the players specific Table

3. undoSi nul at eAct i on: Undo the last simulated Action and restore specific Ta-
ble and next possible Actions.

4. get Choi ces: Return the list of all possible players Actions correspogdo the
current simulation or play.

5. get Eval : Read the game engine’s result on current simulation or. play

4 Engine Description

In this section we will focus on our game engine. First we @iplain its global be-
havior, then we will present how we have implemented it and hve want to use and
improve it later.

4.1 Main Loop of the Engine

The Algorithm 2 presents the main tasks of the Engine. Afésiirtg initialized the rule
object, the engine uses its attributes to define the diffgparts of the play: the turn
order graph and the Tables related Equipments. The turrr grdeh leads the main
course of the events by defining the possible players anddbsilge Actions during
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each play step. In order to do that, the engine needs to applyutes Action creation
method on each player’s Tables (lines 7 and 8).

Then the engine calls the players to let them define the Attiey want to realize
(lines 9 and 10). During this phase, each player can use itsTelvle to manage Action
simulations. Then the engine deals with different priokityd of rules to select the next
legal Action in the players answers (Line 11). There are tegsjble ways to select the
Action, one is to choose the faster player (this allows togara quick-thinking players
to deep thought ones on fast based games). The other way ésd¢ailuk priority rules
in the rule file as for in traditional Mah-Jong.

In incomplete-information games the player has in his Talle possible distri-
bution of the Elements he does not know. During the creatfohctions (relatives to
player’s Tables but equivalents to the engine selectedlom®) 2) there is a coherency
engine which modifies any player’s Tabko that these Tables correspond to the desired
Action.

Then, the program loops until the engine detects a FinighRtdion returned by
Rul e. pl ayResul t () (line 6).

Createrule usingrule.__init__()
Createurn_graph usingrule.turns and select start node
Createl able[engine] usingrule.de fine Equipments
For eachplayer in rule.players:
Createl'able[player] usingrule.de fine Equipments
While rule.play Result(Table[engine]) == None:
For eachurc in turn_graph.current_node:
Createpossible_actions[player] using(T able[arc.player], arc.method)
For eachplayer havingpossible_actions:
10 Selectfavorite_action|player] usingT able[player]
11 Select one player'savorite_action
12 Recreataelected_favorite_action on all Tables
13 Apply selected_favorite_action on all Tables
14 Updateturn_graph.current_node

©O©CoOO~NOULEAWNPE

ALG. 2: Engine main loop.

4.2 Implementation of the Engine

At the moment, the engine implementation is in progresserPython language. Three
games are defined: A Tic-Tac-Toe which is described by Atgoril, a Go-Moku
which uses a very similar file and a Chinese-Poker which isua fitayers card game
using poker combinations. One player is implemented too:iA-Max player with op-

3 e.g. Before George plays a3 Jane was thinking he had in his hands onlfaand a7<.
When George play his#, Jane’s knowledge on Georges hands would change this way: 3
anywhere guessed position would be swapped with eithetGher the7® ones in Jane’s idea
of George’s hands. Then George could play this card.
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tional Alpha-Beta cut. A Monte-Carlo player is on the poifibeing added, as soon as
multiple Table control is fully realized.

All Equipments are already defined and created, except tbe. Bill Equipments
are linked to some others ones. The state of these relatpnesents the state of the
table during the play. Rule can use many Equipments metlwtisst this state. For
instance, these are few of the Position Equipment methoitlastrate the principle:

1. get Area() : Returns the Area which the Position depends on.

2. get El enent s(restraints): Returns the list of Elements played on the Po-
sition. Restraint is an optional dictionary of attributebki@h filters the returned
Elements.

3. getDirections(nane, orientation): Returns the possible Directions
that links this Position with others on its Area.

4. get Opposi teDirections(direction): Returns the opposite Directions
(if any) to the one given as argument.

All Actions are already defined too. They have two main meshaliowing the
engine to really alter Tables. OnedsAct i on() which performs the desired action
and the other isindoAct i on() which restores the Table in its previous state. This
way the engine manages players simulations. Actions havatitity to add themselves
to each others, shbve() +Set () is seen by the engine as only one Action. There
are many other Actions methods used by the engine (to marragéig interface for
instance) we choose not to describe here.

The engine uses a few more classes to implement the modghi@iaterface, en-
gine which manages the main loop, and graphs are used to@ &ber no fundamental
tools are provided: It is possible to define options in ganesrgsuch as exactly or at
least five pawns on Go-Moku). These options are defined intthee. __init__ ()
method and must be chosen before the engine starts to playl Astprovided to au-
tomatically generate the Area’s graph definition lists dabsn dimensions. Some com-
plex non required methods are provideihpl e. hasNewLi ne() for instance) to
make easier rule creation.

Despite of its early development stage, this engine caadyrmanage both complete-
information strategy games such as Chess and both inca¥ipfermation card chance
based games such as traditional Mah-Jong. Today, as far kseme there is no other
engine with similar proficiency.

4.3 The Future of the Engine

There are many possible uses or upgrades to this engine.@aferppmow the main ones.
The first use is for Artificial Intelligence benchmarking.tWthe capability to cre-
ate very different kinds of games, based on opposite movaseps or goals and the
capability of develop various General Gaming players, ¢éimgine would be useful to
compare their efficiency, their robustness and even theatieness facing various

4 Each player has its own Table, which corresponds to what he knows pfdl. These Tables
are highly cross-referenced to each others to manage incompletsxatfon games coherence
engine. This part is in debugging stage.
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problems which have often already been classified [5]. Thdahwas first developed
in this perspective.

Another evident possible use is for entertainment of maayeats around the world,
connected to many possible games against efficient comenggnes. The easiness in
the game’s rule creation would probably lead to such an argamllection of games
than for ZLLIONS OF GAMES if we bother to distribute this engine as they did.

Furthermore, this engine is quite young and it would be utsive to develop it in
some new ways, in extending the range of possible gamestaefiror in players inter-
face. Some evolutions concerning games could be the ititegraf collecting games,
such as wargames or card collecting games, where the playessfirst define their
army or their deck following specific rules before confrogtiother players with their
owns. Another game interface evolution could be the manageof continuous boards
with some geometric tools in place of Areas and their Pasiticsts.

For the engine upgrading, it would be pleasant to tear aparptayers and the
engine, in order to allow engines players to perform thearsplay explorations. This
would lead to a more open engine players system, with capedilpre rule analysis.

There are many much more ways to improve this system and nagérroom here
to describe them all.

5 Discussions

Before concluding this article, we suggest some short dson about our engine in
the form of short queries with their answers.

— Is this model better than Stanford ones?

- No, it is not better, it is different. Stanford general gapteying model uses rules
in logic form, is limited to simple strategy games, and aloplayers to analyze
rules. Our model is driven by the intention of playing easilmost any game and
our players are restricted to choose the best Action in ailfessee of Actions.
The two model are completing each other.

— Isn’t the model too heavy?

- No, the model isn't heavy. It's a relatively light model tower the large field of
possible games. However, as the engine must compute adiiglaimulations trees,
it is quite long to play a game. This is one of the reasons whs @inthe next
upgrade would probably be the full players parting from thgiee.

— Isitreally interesting to test Monte-Carlo methods on ctatginformation games
or Alpha-Beta methods on chance incomplete-informationes?

- Yes, good results have been obtained on go with Monte-Qéalgers [6].

6 Conclusion

Nowadays, computers are very effective in most board gafites.issue of years of

research in such fields as Computer Science and Artificielligence is that computers
are capable to defeat the best humans players in almoshadiy@vith some exceptions
nevertheless). This shows how the advancement of thesegssiare awesome. But all
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these engines are specifics to their games, and do not reflatiaepart of the human
mind which is able to be (almost) good in any game, with theesanimd.

So, itis the next step to explore the huge field of generalisgimethods as general
gaming tries to address. We have done one more step by gremtiplementing and
testing a new model which is the first to allow the use of suctoua games as strategy,
card and board games. Furthermore, we have opened the wegllting games.

This way only, Computer Science and Atrtificial Intelligeng#l continue on their
march to maybe beat, one day, human mind not because theassgednd more robust
systems, but because they are more malleable and adaptise on

A Algorithm 1 Code Explication

Some complex calls in Algorithm 1 are detailed here:

— Line 11: Ar ea is an Equipment. The arguments are the board picture and a lis
of positions data. The position layout is (name, coordingaeof (direction name,
direction goal)).

— Line 12: Assor t nent is an Equipment. The arguments are a list of pieces data
and the corresponding layout. Some attributes (such aseymagst been defined
in the layout.

— Line 14:Tabl e. get Last Pl ayer Acti on() returns the previous move in the
game. This test is needed to control that we are not beforérghenove.

— Line 15:Tabl e. hasNewLi ne() returns a boolean defining if a line is detected
into an Area. Arguments are the list of positions that mayrbthe line® the size
of the line, and some restraints which must be checked forEdement at each
Position on the line. Here the restraint is the name of thgepléhat owns the
Element.

— Line 16:Fi ni shPI ay is an Action which defines the winner, which here is the
current player.

— Line 21:Move is an Action. Arguments are the source, the target and thadties
moved. Here, we move one Element (returned aipl e. get El enent () ) from
Table’s Assortment to the Table’s search current Positina (9).
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Abstract. The search engines of high-performance game-playing pro-
grams are getting increasingly complicated as more and more enhance-
ments get added. To maintain and further enhance such engines is an
involved task, and the risk of introducing bugs or other unwanted be-
havior during modifications is substantial. In this paper we introduce
GTQL, a query language specifically designed to query game trees. A
software query tool based on GTQL both helps program developers to
gain added insight into the search process, and makes regression testing
easier. Experiments using the tool to query game-tree log files gener-
ated by the public-domain chess program Fruit, show GTQL to be both
expressive and efficient in processing large game trees.

1 Introduction

The development of high-performance game-playing programs for board games
is a large undertaking. The search engine and the position evaluator, the two
core parts of any such programs, become quite sophisticated when all the nec-
essary bells and whistles have been added. To maintain and further enhance
such complicated software is an involved task, and the risk of introducing bugs
or other unwanted behavior during modifications is substantial. For example,
different search enhancements affect each other in various ways, and changing
one may decrease the effectiveness of another. Similarly, tuning an evaluation
function to better evaluate specific types of game positions may have adverse
side effects on others.

A standard software-engineering approach for verifying that new modifica-
tions do not break existing code is to use regression testing. To a large extend this
approach is what game-playing program developers use. They keep around large
suits of test positions and make sure the modified programs evaluate them cor-
rectly and that the search finds the correct moves. Additionally, new program
versions play a large number of games against different computer opponents
to verify that the newly added enhancements result in genuine improvements.
Nonetheless, especially when it comes to the search, it can be difficult to detect
abnormalities and they can stay hidden for a long time without surfacing. These
can be subtle things such as the search extending useless lines too aggressively, or
poor move-ordering resulting in unnecessarily late cutoffs. Neither of the above
abnormalities result in erroneous results, but instead seriously degrade the ef-
fectiveness of the search. To detect such anomalies one typically must explore
and/or gather statistics about the search process.
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Fig. 1. The GT-tool suite.

In this paper we introduce Game-Tree Query Language (GTQL), a language
for querying game-tree log files. This language is a part of a larger suit of tools
intended to alleviate the difficulty of debugging large game trees. The query
language allows the game-program developers to gain better insight into the
behavior of the search process and makes regression testing easier. A programmer
can keep around a set of pre-defined queries that check for various unwanted
search behaviors (such as too aggressive extensions or large quiescence searches).
When a new program version is tested, it can be instructed to generate log files
with search trees, and the queries are then run against the logs to verify that
the search is behaving in accordance to expectations.

The paper is organized as follows. In the next section we give a brief overview
of the larger suit of tools GTQL belongs to, then we discuss the syntax and se-
mantics of GTQL and evaluate the performance of our implementation. Finally,
we briefly survey related work before concluding.

2 GT-Tools Overview

GTQL is an integral part of a larger collection of tools for aiding researchers in
the analysis and visualization of large game trees. An overview of this suit of tools
is shown in Figure 1. It consists of a library for logging game-tree information,
the game-tree query tool for processing GQTL queries, and a game-tree viewer
for graphically viewing game-tree log files and query results. The game-playing
program’s developer adds to its program a handful of calls to the log library using
a well-defined API (the API details are outside the scope of this paper, but an
example of its use is provided in an appendix). The game-playing program then
generates files containing the search trees, which can then be either viewed with
the game-tree viewer or analyzed using the game-tree query tool.
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3 Description of GTQL

In this section we first describe the syntax and the semantics of GTQL. Then, to
highlight the expressiveness of the language, we give several examples of GTQL
queries that one might want to ask about game trees generated by alpha-beta
based search engines. A complete EBNF description of the GTQL syntax is
provided in an appendix.

3.1 Syntax and Semantics

A GTQL query consists of three parts: a node-expression part, a child-expression
part, and a subtree-expression part:

node: <node-expression>
child: <child-expression>
subtree: <subtree-expression>

The keywords node, child, and subtree indicate the type of the expression that
follows — if the expression is empty then the keyword (along with the follow-
ing colon) may be omitted. Valid expressions must be formed such that they
evaluate to either true or false. The language is case sensitive.

A query is performed on a game-tree file. The corresponding game tree is
traversed in a left-to-right depth-first manner and the node-expression part of
the query is evaluated for each node in a pre-order fashion (i.e. on the way down).
If the node-expression evaluates to true, then the child and subtree parts of the
query are evaluated as well (we use a one-pass algorithm for this as described
in the next section). A node fulfills the query if all expression parts evaluate to
true for the node. The query returns either a set of nodes that fulfill the query
or, in case the node-expression is an aggregate expression, the number of nodes
that fulfill the query.

Expressions consist of attributes, constants, operators, and functions. At-
tributes refer to the attribute values of the nodes stored in the file being queried.
For each node several attributes are stored, two of which are always present
(node_id and last_move) and others that are optional. The optional attributes
are typically algorithm/domain dependent and may contain whatever informa-
tion the users decide to log in their game-playing programs (e.g. information
about the search window passed to a node, the value returned, the type of the
node, etc.). The name of the attributes must follow a naming convention where a
name starts with a letter and is then optionally followed by a series of characters
consisting of letters, digits, and the underscore (_) character. Also, an attribute
name may not be the same as a reserved keyword in the language. Constants
are either numeric integral types (i.e. integer numbers) or user-defined names
that refer to numeric integral types. The same naming convention is used for
constant names as for attribute names. Information about attribute and con-
stant names available in a query are stored in the game-tree file being queried.
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Table 1. Operators listed by precedence.

Operator Type Arity

[, [<] Hierarchical| unary

| Attribute |binary

<,>, >=, <=, =, | =| Relational |unary
not Logical |unary

and Logical |binary

or Logical |binary

In the current version of the language attribute values, like constants, can only
be numeric integral types.

The language operators fall into four categories: attribute, hierarchical, rela-
tional, and logical operators. They are listed in Table 1 in a decreasing order of
precedence. The evaluation of operators of equal precedence is right-to-left asso-
ciative. The hierarchical operators are used as prefixes to attribute names, and
identify the hierarchical relationship of the referenced node in relation to the cur-
rent node (the one being evaluated in the node expression). Currently there are
two such operators defined, and they may be used only in child expressions. The
first operator, [], stands for the child node of the current node that is being evalu-
ated. For example, the child expression count ([]type=type) counts the number
of children that are of the same type as the current node (in child-expressions,
attributes without a prefix refer to the current node). The second operator, [<],
stands for the previously evaluated child. The sub-expression ([<]type=[]type)
thus asks about two consecutive child nodes of the same type. The attribute op-
erator | is essentially an inclusive bitwise or, and is used to extract flag bits
out of attribute fields. For example, a single node may be flagged as being si-
multainiously a pv-node and a quiescence node. The relational operators test
for equality or inequality of attributes, constants, and sub-expressions, and the
logical operators allows us to form combined Boolean expressions. Parentheses
can be used to control precedence and order of evaluation.

There is only one function in the language, the count (<expression>) func-
tion, and it returns the number of nodes in the expression scope (i.e. tree, chil-
dren, or subtree) that evaluate to true. Functions cannot be used recursively,
that is, the expression inside count cannot contain a call to count. The wild-card
character * may be used with the function instead of an expression to refer to the
empty expression, which always evaluates to true. Note that because expressions
must evaluate to either true or false, the count function must be used with a
relational operator, e.g. count(*) > 0. The only exception to this is when the
function is used in a node-expression (e.g. node: count (type|typePVNode)). In
that case, the query returns the number of nodes fulfilling it. Node-expressions
can be either aggregate or regular, whereas child and subtree expressions must
contain an aggregate function to be meaningful. The word count is a reserved
keyword in the language.
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3.2 Example Queries

In the examples below we assume that the search is logging for each node in-
formation about its ply-depth in the search tree (depth) and flags indicating the
node type (type). A node can be simultaneously flagged as being of several types,
e.g. a pv-node and a quiescence node.

Query 1 In this first example query we want to find whether the game-playing
program is extending the search too aggressively. We form the query by asking
for nodes where the depth attribute has a value greater than some deep threshold
value, excluding nodes in the quiescence search.

node: depth>=10 and not typeltypeQuiescenceNode

Query 2 As in the previous query, we are interested in identifying subtrees
where too aggressive expansion occurs. However, now we want to identify places
where the quiescence search is too aggressive. We form the query by asking for
quiescence root nodes having a subtree larger than 50 nodes.

node: typel|typeRootQuiescenceNode
subtree: count(*) > 50

Query 3 In this example, we want to identify nodes where the principal varia-
tion of the search changes frequently. Note that the node-expression part is not
necessary for retrieving the answer, however, it is beneficial to include it as it
constrains the search space of the query such that the child-expression is evalu-
ated only at pv-nodes.

node: typel|typePVNode
child: count( [JtypeltypePVNode ) > 2

4 Implementation of the Query Tool

In here we describe the implementation of the game-tree query tool. The tool is
written in C++ and its task is twofold: first to parse the query and construct
a parse tree, and second to traverse the game-tree file and identify nodes where
the parse-tree evaluates to true. We first describe the building of the parse tree,
and then the game-tree traversal and evaluation.
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node: type = PV and depth >=0

<ANDexpr>

I <item> II <op>|| <item> I

I <item> " <op>|| <item> |
<alias>

Fig. 2. Example parse tree.

4.1 Parsing a Query

A recursive-decent parser is used to parse the query and build a parse tree. The
parse tree consists of several different types of parse nodes. An example tree
is shown in Figure 2, along with the query being parsed. Given a set of node
attribute values, a parse-tree expression evaluates to either true or false. For
example, in the above example the attribute value of both the type and depth
fields are required for evaluating the query. A special provision must be taken for
queries containing the aggregate function count; in that case, in addition to the
attribute values, a special structure containing count information accumulated
in the subtrees must be provided.

4.2 Evaluating a Query

The parse-tree is evaluated for all nodes in the game tree. The algorithm we
use allows us to do that in a single depth-first left-to-right traversal of the game
tree. As the algorithm traverses down a branch, the node-expression part of the
query is first evaluated. If it evaluates to true, and the query contains either a
child or a subtree expression part, an instance of that query is kept active while
the node’s subtree is traversed. This is because the child and expression part
can only be evaluated after the subtree has been traversed, using information
accumulated during the traversal. This means that multiple query instances can
be active at the same time. The number of simultaneously active instances is
though bounded by the maximum game-tree depth. A stack is used to keep track
of active query instances.

An example of a tree traversal and parse-tree evaluation is given in Figure 3.
The node-expression part of the query looks for pv-nodes. The root is a pv-node
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node : type =PV
child : count([<]best < [ Jbest )>0
subtree: count(type = CUT)> 0 and count(best > 0) >2

Instance stack leaving node 2
niD | Counter 3

Instance stack leaving node 5
niD Counter <

1 type=CUT 1
best >0

1 type =CUT 2
best =0 4

Instance stack leaving node 4

niD Counter c
2 type =CUT
best =0
1 type =CUT
best = 0

4:cuT 7T:ALL
best=10 best=2

Fig. 3. Traversing the data tree using instances.

1
2
1
2

S0 a new query instance is created on the stack. An instance contains an entry
for each count function appearing in the query’s child- and subtree-expressions.
The entry stores a pointer to the count subexpression (more specifically, to the
parse-node representing the root of the subexpression), and a counter variable
initialized to zero (the c field in the figure). The pointer allows us to evaluate the
count subexpressions for all nodes in the corresponding subtree, and the counter
variable accumulates information about for how many nodes in the subtree the
subexpressions evaluate to true.

The traversal continues down the left branch, and as the node-expression is
also true for node 2 and 3, instances are created on the stack for those nodes as
well. Now, because a leaf has been reached, the tree traversal algorithm starts
to backtrack. However, before backtracking it pops the top query instance off
the stack if the instance belongs to the current node, and finishes evaluating
that query. Also, all remaining subexpression count instances on the stack are
updated. This process continues until the entire tree has been traversed. A snap-
shot of the query instance stack is shown in the figure at selected points.

4.3 Performance Evaluation

We have experimented with the query tool on actual game trees generated by
the public-domain chess program FRUIT (version 2.1) [7]. On large game trees,
containing tens of millions of nodes, the processing time is still acceptable; the
tool processes approximately 100,000 nodes per second even when evaluating
complex queries on a middle-end PC desktop computer (2.0GHz CPU). The
memory footprint of the tool is also low because of sequential processing. Also
of interest is that we have been able to identify several positions where suspect
behavior occurs, for example where the quiescence search explores exceedingly
large trees.
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5 Related Work

To the best of our knowledge GTQL is the first language specifically designed
for querying game trees. However, there exists several query languages for tree
structures. The best know is probably XPath [4], which was designed to query
XML data. The XPath language has been extended to increase its expressive-
ness (XQuery [3]), to better handle sub-documents (XSQirrel [8]), and to use
with linguistic data (LPath [1]). Although the above languages all provide query
mechanism for referencing children, parents, descendants, and ancestors, then
they do not allow aggregation. Also, they are primarily designed for use on rela-
tively small and shallow trees, and consequently can afford complex expressions.
GTQL is on the contrary designed for use on large trees, and the query ex-
pressiveness is tailored such that the queries can be evaluated in an one-pass
left-to-right tree traversal.

In addition to query languages, game-tree visualization tools are helpful for
gaining insight into the search process. There exists several such tools, some of
which draw the trees in a graph-based hierarchical fashion [2, 6] as well as others
that use more innovative 2D surface representations [5].

6 Conclusions

We introduced a new query language specifically designed to query game trees.
Such a language is useful to both help program developers gain added insight into
the search process, and in assisting with regression testing. Experiments using
a software tool based on the language show it to be both efficient in processing
large game trees, and to be expressive enough to detect many interesting search
anomalies. We are still working on improving the processing performance of the
query tool even further. The plan is to make the entire GT-Tool suite of tools
available to the game-developers community, including the GTQL query tool.
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A Appendix

A.1 Logging Game Trees

This is an example to show how to use the game-tree log interface in a game
program. We use here a simple iterative deepening and minimax procedure for
demonstration purposes (and omit various details that are not relevant for our
demonstration purposes). Essentially, one must create a handle in the beginning
(and delete in the end), open a new file for each search iteration, and call special
functions when entering/exiting a node. The user collects the information he or
she wants to log in the structure data.

/* Example TicTacToe program. */
#include "gt_log.h"

GTDataDescript gtDataDescr = /* <= GTL data description */

{ "TicTacToe", sizeof(Data_t), 0, {}, 5,
{

{ "depth", offsetof(Data_t,depth), sizeof(int) },

{ "best" , offsetof(Data_t,best), sizeof(int) I},

{ "type" , offsetof(Data_t,type), sizeof(int) } }
};

GTLogHdl hGTL; /* <= Game-tree log handle. */

Value Minimax( Position_t *pos, int depth, Move_t move_last ) {
Data_t data; /* <= GTL data record, user defined. */

data.depth = depth;
gtl_enterNode( hGTL, move_last ); /* <= GTL enter node.*/
n = generateMoves(pos, moves);
for ( i=0 ; i<n ; i++ ) {
makeMove ( pos, moves[i] );

value = -Minimax( pos, depth-1, moves[i] );

retractMove( pos, moves[i] );
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3

data.best = best;
gtl_exitNode( hGTL, &data ); /* <= GTL exit node */
return best;

}
Value IterativeDeepening( ... ) {
for ( iter=1 ; iter<=maxIter ; ++iter ) {
é'.ci_startTree( hGTL, filename, strFEN ); /% <= GTL new tree */
\;z;iue = Minimax( &pos, iter, NULL_MOVE );
éi.:].._stopTree( hGTL ) ; /* <= GTL close tree */
}
}

int main() {

hGTL = gtl_newHdl( "TicTacToe", &gtDataDescr ); /*<= GTL new handle*/
if ( hGTL == NULL ) exit(EXIT_FAILURE);

gtl_deleteHd1l( &hGTL ); /* <= GTL delete handle */

3

A.2 EBNF for GTQL

<query> = <node>
| <child>
| <subtree>
| <node><child>
| <node><subtree>
| <child><subtree>
| <node><child><subtree>

<node> = 'node’ ’:” <nodeexpr>

<child> = ’child’ ;" <childexpr>
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<subtree>

<nodeexpr>

<expr>

<ANDexpr>

<term>

<item>

<treeexpr>

<treeANDexpr>

<treeterm>

<treecountitem>

<childexpr>

<childANDexpr>

<childterm>

<childcountitem>

<siblingexpr>

<siblingANDexpr>

3 9.

’subtree’ ’:’ <treeexpr>

<expr>
| ’count’ ’(* <expr>’)’

<ANDexpr> ’or’ <expr>
| <ANDexpr>
| <wildcard>

<term> ’and’ <ANDexpr>
| <term>

<item> <op> <item>
| 'not” <term>
| 'C <expr>’)

<var>
| <number>

<treeANDexpr> ’'or’ <treeexpr>
| <treeANDexpr>

<treeterm> ’'and’ <treeANDexpr>
| <treeterm>

<treecountitem> <op> <treecountitem>
| 'not’ <treeterm>
| ( <treeexpr> )

"count’ ’(” <expr>’)’
| <number>

<childANDexpr> ’or’ <childexpr>
| <childANDexpr>

<childterm> ’and’ <child ANDexpr>
| <childterm>

<childcountitem > <op> <childcountitem>
| 'not” <childterm>
| ’( <childexpr> )’

‘count’ ’(’ <siblingexpr> ’)’
| <number>

<siblingANDexpr> ’or’ <siblingexpr >
| < siblingANDexpr >
| <wildcard>

<siblingterm> ’and’ <sibingANDexpr>
| <siblingterm>
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<siblingterm> = <siblingitem> <op> <siblingitem>
| 'not’ <siblingterm>
| ’C <siblingexpr> ")’

<siblingitem> = <sibling><var>
| <var>
| <number>
<number> = - <digits>
| <digits>
| <alias>
<sibling> = <P
<Op> = 7:7 ‘ 7!:7 | 7<’ | ’>7 | 7>:7 | 7<:7 ‘ "7
<wildcard> = B
<digits> = [70-"9"]]°0-"9 ]*
<var> = [ 7A7_3Z?7 7a7_7Z7 ] [ 7A7_7Z?7 ’&7-72’7 777, 707_’95 ]*
<alias> = [ 7A7_7Z7’ 7a?_7Z7 ] [ ’A?_’Z7’ 7a7_7z7’ 777’ 507_797 ]*
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Abstract. One of the most challenging tasks when creating an adap-
tation mechanism is to transform domain knowledge into an evaluation
function that adequately measures the quality of the generated solutions.
The high complexity of modern video games makes the task to generate
a suitable evaluation function for adaptive game AI even more difficult.
Still, our aim is to fully automatically generate an evaluation function for
adaptive game AI. This paper describes our approach, and discusses the
experiments performed in the RTS game SPRING. TD-learning is applied
for establishing a unit-based evaluation term. In addition, we define a
term that evaluates tactical positions. From our results we may conclude
that an evaluation function based on the defined terms is able to predict
the outcome of a SPRING game reasonably well. That is, for a unit-based
evaluation the evaluation function is correct in about 76% of all games
played, and when evaluating tactical positions it is correct in about 97%
of all games played. A straightforward combination of the two terms did
not produce improved results.

1 Introduction

Modern video games present a complex and realistic environment in which game
AT is expected to behave realistically (i.e., ‘human-like’). One feature of human-
like behaviour of game AI, namely the ability to adapt adequately to changing
circumstances, has been explored with some success in previous research [3,4,
6]. This is called ‘adaptive game AI’. When implementing adaptive game Al,
arguably the most important factor is the evaluation function that rates the
quality of newly generated game AI. An erroneous or suboptimal evaluation
function will slow down the learning process, and may even result in weak game
Al Due to the complex nature of modern video games, the determination of
a suitable evaluation function is often a difficult task. This paper discusses our
work on fully automatically generating a good evaluation function for a real-time
strategy (RTS) game.

The outline of the paper is as follows. In section 2, we discuss two approaches
of creating adaptive game Al for RTS games. Section 3 describes how we col-
lect domain knowledge of an RTS game in a data store. How we establish an
evaluation function for RTS games automatically, based on the collected data,
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is discussed in section 4. In section 5, we test the performance of the generated
evaluation function and provide the experimental results. We discuss the results
in section 6, and in section 7 provide conclusions and describe future work.

2 Approaches

A first approach to adaptive game Al is by incrementally changing game Al to
make it more effective. The speed of learning depends on the learning rate. If the
learning rate is low, learning will take a long time. If it is high, results will be
unreliable. Therefore, an incremental approach is not very suitable for rapidly
adapting to observations in a complex video game environment.

A second approach is by allowing computer-controlled players to imitate hu-
man players. This approach can be particularly successful in games that have
access to the Internet and that store and retrieve samples of gameplay expe-
riences [5]. For this approach to be feasible, a central data store of gameplay
samples must be created. Game Al can utilise this data store for two purposes:
(1) to establish an evaluation function for games, and (2) to be used as a model
by an adaptation mechanism. We follow the second approach in our research.

Our experimental focus is on RTS games, i.e., simulated war games. Here,
a player needs to gather resources for the construction of units and buildings.
The goal of the game is to defeat an enemy army in a real-time battle. We use
RTS games for their highly challenging nature, which stems from three factors:
(1) their high complexity, (2) the large amount of inherent uncertainty, and
(3) the need for rapid decision making [2]. In the present research, we use the
open-source RTS game SPRING. A SPRING game is won by the player who first
destroys the opponent’s ‘Commander’ unit.

3 Data Store of Gameplay Experiences

We define a gameplay experience as a set of observable features of the environ-
ment at a certain point in time. To create a data store of gameplay experiences
for the SPRING environment, we start by defining a basic set of features that will
play an essential role in the game. For our first experiments, we decided to use
the following five features.

1. Number of units observed (maximum 5000) of each type (over 200),
. Number of enemy units within a 2000u radius of the Commander,

. Number of enemy units within a 1000u radius of the Commander,

. Number of enemy units within a 500u radius of the Commander.

. Percentage of the environment visible to the friendly player.

T W N

SPRING implements a so-called ‘Line of Sight’ visibility mechanism to each
unit. This implies that game AI only has access to feature data of those parts
of the environment that are visible to its own units (illustrated in Figure 1).
When the game AIl’s information is restricted to what its own units can ob-
serve, we call this an imperfect-information environment. When we allow the
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Fig. 1. Observation of information in a gameplay environment. Units controlled by
the game Al are currently residing in the dark region. In an imperfect-information
environment, only information in the dark region is available. In a perfect-information
environment, information for both the dark and the light region is available.

game Al to access all information, regardless whether it is visible to its own
units or not, we call this a perfect-information environment. We assume that
the reliability of an evaluation function is highest when perfect information is
used to generate it. For our experiments a data store was generated consist-
ing of three different data sets: the first containing training data collected in a
perfect-information environment, the second containing test data collected in a
perfect-information environment, and the third containing test data collected in
an imperfect-information environment.

4 Evaluation Function for Spring Games

This section discusses the automatic generation of an evaluation function for
SPRING. First, we discuss the design of an evaluation function based on weighted
unit counts and tactical positions. Second, we discuss the application of temporal-
difference (TD) learning [7] using a perfect-information data store to determine
appropriate unit-type weights. Third, we discuss how the established evaluation
function can be enhanced to enable it to deal with imperfect information.

4.1 Design of the Evaluation Function

The five defined features are selected as the basis of our evaluation function.
Accordingly, the reference evaluation function for the game’s status is denoted
by

v=pv + (1 —p)vs (1)
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where p € [0...1] is a free parameter to determine the weight of each term of
the evaluation function, the term v, represents the ‘number of units observed
of each type’, and the term wvo represents the ‘number of enemy units within a
certain radius of the Commander’. The term v; is denoted by,

vy =Y wylCuy — Cu,) (2)

where w,, is the experimentally determined weight of the unit u, ¢,, is the
number of units of type u that the game Al has, ¢,, is the number of units of
type u that its opponent has. The term wvs is denoted by:

U2 = Z wy(Cry — Cry) (3)
red

where w, is the experimentally determined weight of the radius r, ¢,, is the
number of units the opponent has within a radius r of the game AI’s Commander,
Cr, is the number of units the game Al has within a radius r of the opponent’s
Commander, and d is the set of experimentally determined radii [500, 1000, 2000].
The evaluation function v can only produce an adequate result in a perfect-
information environment, because in an imperfect-information environment c¢,,,,

¢r, and ¢, are unknown.

4.2 Learning Unit-type Weights

We used TD-learning to establish appropriate values w,, for all unit types u. TD-
learning has been applied successfully to games, e.g., by Tesauro [8] for creating
a strong Al for backgammon. Our application of TD-learning to generate an
evaluation function for SPRING is similar to its application by Beal and Smith
[1] for determining piece values in chess.

Given a set W of weights w;,7 € N, i < n, and successive predictions F;, the
weights are updated as follows [1]:

t
AW, = a(Py — P) Y ANFVy By (4)
k=1
where « is the learning rate and A is the recency parameter controlling the
weighting of predictions occurring k steps in the past. Vy Py is the vector of
partial derivatives of P; with respect to W, also called the gradient of wPj.
To apply TD-learning, a series of successive prediction probabilities (in this
case: the probability of a player winning the game) must be available. The pre-
diction probability of a game’s status vy, P(vy) is defined as

1
P) = = o)
where vy is the evaluation function of the game’s current status, denoted in
Equation 2 (this entails that learning must be applied in a perfect-information
environment). Figure 2 illustrates how a game state value vy of 0.942 is trans-
formed into a prediction probability P(vq) of 0.72.
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v (value of game status)

Fig. 2. Conversion from game status to prediction probability [1].

4.3 Dealing with Imperfect Information

In an imperfect-information environment, the evaluation value of the function
denoted in Equation 1, which has been learned in a perfect-information environ-
ment, will typically be an overestimation. To deal with the imperfect information
inherent in the SPRING environment, we assume that it is possible to map re-
liably the imperfect feature-data to a prediction of the perfect feature-data. A
straightforward enhancement of the function to this effect is to scale linearly the
number of observed units to the non-observed region of the environment. Ac-
cordingly, the approximating evaluation function v’ for an imperfect-information
environment is as in Equation 1, with the term v{ denoted by

v =Y wlew, — ) (6)

where w,, ¢y, are as in Equation 2, o,, is the observed number of opponent’s
units of type u, R € [0,1] is the fraction of the environment that is visible to the
game Al The term v} is denoted by

07-1 OTO
red " o

where w,, r, d, and p are as in Equation 3, o,, is the observed number of units
of the game AI within a radius r of the opponent’s Commander, R,, € [0,1] is
the fraction of the environment that is visible to the opponent within the radius
T, Or, is the observed number of units of the opponent within a radius r of the
game Al's Commander, and R,, € [0,1] is the fraction of the environment that
is visible to the game AI within the radius 7.

If enemy units are homogenously distributed over the environment, the ap-
proximating evaluation function applied to an imperfect-information environ-
ment will produce results close to those of the reference evaluation function in
a perfect-information environment.
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FRIENDLY ENEMY #GAMESIN #GAMESIN #GAMESIN

TEAM TEAM TRAINING SET TEST SET TEST SET
(Collected with  (Collected (Collected
perfect with perfect with imperfect
information)  information) information)

AAI AAT (selt-play) 500 200 200
AAI TSI 100 200 200
AAI CSAI 100 200 200
AAI RAI - 200 200

Table 1. The number of SPRING games collected in the data store.

5 Experiments

This section discusses experiments that test our approach. We first describe the
experimental setup and the performance evaluation, and then the experimental
results.

5.1 Experimental Setup

To test our approach we start collecting feature data in the data store. For
each player, feature data was gathered during gameplay. In our experiments
we gathered data of games where two game Als are posed against each other.
Multiple SPRING game Als are available. We found one game AI which was open
source, which we labelled ‘AAT’. We enhanced this game AI with the ability to
collect feature data in a data store, and the ability to disregard the line-of-
sight visibility mechanism so that perfect information on the environment was
available. As opposing game Als, we used AAI itself, as well as three other Als,
namely ‘T'ST’, ‘CSATD’, and ‘RAT’. Table 1 lists the number of games from which
we built the data store. The data collection process was as follows. During each
game, feature data was collected every 127 game cycles, which corresponds to
the update frequency of AAI. With 30 game cycles per second this resulted in
feature data being collected every 4.233 seconds. The games were played on the
map ‘SmallDivide’, which is a symmetrical map without water areas. All games
were played under identical starting conditions.

We used a MatLab implementation of TD-learning to learn the unit-type
weights w, for the evaluation function of Equation 2. Unit-type weights were
learned from feature data collected with perfect information from 700 games
stored in the training set, namely all the games AAI played against itself (500),
TSI (100), and CSAI (100). We did not include feature data collected in games
where AAT was pitted against RAI, because we wanted to use RAI to test the
generalisation ability of the learned evaluation function. The parameter a was
set to 0.1, and the parameter A\ was set to 0.95. Both parameter values were
chosen in accordance with the research of Beal and Smith [1]. The unit-type
weights were initialised to 1.0 before learning started.
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Weights of the radii defined in the set d were chosen by the experimenter as
0.05, 0.20 and 0.75 for a radius of 2000, 1000 and 500, respectively. The parameter
p was set to 1 (unit-based evaluation), 0 (evaluation of tactical positions) and
0.5 (a straightforward linear combination of the two terms).

5.2 Performance Evaluation

To evaluate the performance of the learned evaluation functions, we determined
to what extent it is capable of predicting the actual outcome of a SPRING game.
For this purpose we defined the measure absolute prediction as the percentage
of games of which the outcome is correctly predicted just before the end of the
game. A high absolute prediction indicates that the evaluation function has the
ability to evaluate correctly a game’s status.

It is imperative that an evaluation function can evaluate a game’s status
correctly at the end of the game, and desirable throughout the play of a game.
We defined the measure weak relative prediction as the game time at which the
outcome of all tested games is predicted correctly at least 50% of the time. We
defined the measure normal relative prediction and strong relative prediction as
the game time at which the outcome of all tested games is predicted correctly
at least 60% and 70% of the time, respectively. Since not all games last for an
equal amount of time, we scaled the game time to 100% by averaging over the
predictions made for each data point. A low relative prediction indicates that
the evaluation function can correctly evaluate a game’s status early in the game.

We determined the performance using two test sets. One test set contains
feature data collected in a perfect-information environment, the other feature
data collected in an imperfect-information environment. Feature data is collected
of 800 games, where AAI is posed against itself (200), TSI (200), CSAI (200),
and RAI (200).

We first tested the reference evaluation function in a perfect-information
environment. Subsequently, we tested the approximating evaluation function in
an imperfect-information environment.

5.3 Results of Learning Unit-type Weights

The SPRING environment supports over 200 different unit types. During feature
collection, we found that in the games played 89 different unit types were used.
The TD-learning algorithm therefore learned weights for these 89 unit types. A
summary of the results is listed in Table 2. Below, we give three observations on
these results.

First, we observed that the highest weight has been assigned to the Advanced
Metal Extractor. At first glance this seems surprising since it is not directly
involved in combat situation. However, at the time the game AI destroys an
Advanced Metal Extractor not only the opponent’s ability to gather resources
decreases, but it is also likely that the game Al has already penetrated its op-
ponent’s defences, since this unit typically is well protected and resides close to
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UNIT-TYPE WEIGHT

Advanced Metal Extractor (Building) 591
Thunder Bomber (dircrafi) 5.57
Metal Storage (Building) 4.28
Freedom Fighter (dircraft) 4.23
Medium Assault Tank (GroundUnit) 4.18

Minelayer/Minesweeper with Anti-Mine Rocket (GroundUnit) — -1.10

Arm Advanced Solar Collector (Building) -1.28
Light Amphibious Tank (GroundUnit) -1.52
Energy Storage (Building) -1.70
Defender Anti-air Tower (Building) -2.82

Table 2. Learned unit-type weights (summary).

the Commander. This implies that destroying an Advanced Metal Extractor is
a good indicator of success.

Second, we observed that some unit types obtained weights less than zero.
This indicates that these unit types are of little use to the game Al and actually
are a waste of resources. For instance, the Light Amphibious Tank is predictably
useless, since our test-map contains no water.

Third, when looking into the weights of the unit types directly involved in
combat, the Medium Assault Tank, Thunder Bomber and Freedom Fighter seem
to be the most valuable.

5.4 Absolute-Prediction Performance Results

Using the learned unit-type weights, we determined the absolute-prediction per-
formance of the evaluation functions. Table 3 lists the results for the trials where
AAI was pitted against each of its four opponent Als.

For the reference evaluation function in a perfect-information environment
the average absolute-prediction performance is 76% for a unit-based evaluation
(p=1), 97% for an evaluation of tactical positions (p = 0), and 71% for a com-
bined evaluation (p = 0.5). As the obtained absolute-prediction performances
consistently predict more than 50% correctly, we may conclude that the refer-
ence evaluation function provides an effective basis for evaluating a game’s sta-
tus. Additionally, we observe that in two of the four trials the absolute-prediction
performance of the combined evaluation is higher than that of the unit-based
evaluation. However, on average the absolute-prediction performance of the com-
bined evaluation is lower than that of the unit-based evaluation. These results
imply that a combined evaluation of the defined terms has potential, yet it is
currently in need of fine-tuning.

For the approximating evaluation function in an imperfect-information en-
vironment, the average absolute-prediction performance is 73% for a unit-based
evaluation (p = 1), 92% for an evaluation of tactical positions (p = 0), and
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ABS. PREDICTION ABS. PREDICTION

AAI-AAL PERFORMANCE AAI-CSAI PERFORMANCE
p=1 82% | 79% =1 85% | 87%
p=0 99% | 92% p=0 98% | 95%
p=0.5 90% | 86% p=0.5 86% | 87%
AAI-TSI AAI-RAI
p=1 68% | 57% p=1 70% | 70%
p=0 96% | 92% p=0 96% | 89%
p=0.5 56% | 50% p=0.5 52% | 56%
AVERAGE
p=1 76% | 73%
p=0 97% | 92%
p=0.5 71% | 70%

Table 3. Absolute-prediction performance results. Each cell contains trial results for,
in sequence, (1) the reference evaluation function applied in a perfect-information en-
vironment, and (2) the approximating evaluation function applied in an imperfect-
information environment.

70% for a combined evaluation (p = 0.5). From these results, we may conclude
that the approximating evaluation function in an imperfect-information envi-
ronment successfully obtained an absolute-prediction performance comparable
to the performance of the reference evaluation function in a perfect-information
environment.

5.5 Relative-Prediction Performance Results

In Table 4 the relative-prediction performance is listed. We observe that for
all values of p the weak relative-prediction performance is on average 54% in a
perfect-information environment, and 51% in an imperfect-information environ-
ment. Results of the normal and strong relative-prediction performance are more
divergent. The normal relative-prediction performances are on average 67% and
81% in a perfect-information and imperfect-information environment, respec-
tively. The strong relative-prediction performances are on average 78% and 96%
in a perfect-information and imperfect-information environment, respectively.
This indicates that the reference evaluation function in a perfect-information en-
vironment manages to predict the outcome of a game considerably earlier than
the approximating evaluation function in an imperfect-information environment.

As an exception to the before-mentioned indication, we observe that for p = 1
the obtained weak relative-prediction performance is significantly better in an
imperfect-information environment than in a perfect-information environment.
This might seem strange at first glance, but the explanation is rather straight-
forward: early in the game, when no units of the opponent have been observed
yet, the approximating evaluation function will always predict a victory for the
friendly team. Even though this prediction is meaningless (since it is generated
without any information on the opponent), against a weaker game Al it is very
likely to be correct, while against a stronger Al, it is likely to be false.
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WEAK REL. NORMAL REL. STRONG REL.
PREDICITON PREDICITON PREDICITON
AAI-AAT  PERFORMANCE PERFORMANCE PERFORMANCE

p=l 28% | 1% 37% | 54% 47% | 99%
=0 19% | 23% 59% | 65% 79% | 96%
p=0.5 32% | 50% 48% | 59% 64% | 73%
AAI-TSI
p=l 85% | 1% 96% | 100% 100% | 100%
=0 54% | 61% 73% | 91% 91% | 97%
p=05 97% | 100% 100% | 100% 100% | 100%
AAI-CSAI
p=l 20% | 78% 26% | 83% 32% | 94%
=0 92% | 92% 94% | 94% 95% | 97%
p=05 20% | 77% 26% | 83% 33% | 94%
AAI-RAI
=l 73% | 1% 89% | 57% 100% | 100%
p=0 27% | 33% 53% | 90% 95% | 96%
p=0.5 99% | 95% 100% | 100% 100% | 100%
AVERAGE
p=l 52% | 20% 62% | T4% 70% | 98%
=0 48% | 52% 70% | 85% 90% | 97%
p=05 62% | 81% 69% | 86% 74% | 92%

Table 4. Relative-prediction performance results. Each cell contains trial results for,
in sequence, (1) the reference evaluation function applied in a perfect-information en-
vironment, and (2) the approximating evaluation function applied in an imperfect-
information environment.

In a perfect-information environment, the strong relative-prediction perfor-
mance is 70% on average for (p = 0), 90% on average for (p = 1), and 74%
on average for (p = 0.5). We observe that only when a game is nearly finished,
(p = 1) can accurately predict the game’s outcome correctly. As (p = 1) ob-
tained an absolute-prediction performance of 97%, this result implies that the
term that evaluates tactical positions is particularly effective in the final phase
of playing the game, and less effective in earlier phases.

Figure 3 displays the percentage of outcomes correctly predicted as a func-
tion over time. The figure compares the predictions of the reference evaluation
function in a perfect-information environment, with the predictions of the ap-
proximating evaluation function in an imperfect-information environment, for
p = 0.5.

6 Discussion

When evaluating exclusively by means of the feature ‘number of units observed
of each type’ (p = 1), the reference evaluation function obtained an average
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Fig. 3. Comparison of outcomes correctly predicted as a function over time. The black
line represents the prediction performance of the reference evaluation function, the gray
line that of the approximating evaluation function, for p = 0.5.

absolute-prediction performance of 76%. Thus, just before the game’s end, it
still wrongly predicts almost a quarter of the outcomes of the tested games.
This is explained as follows. A SPRING game is not won by obtaining a territorial
advantage, but by destroying the so-called Commander unit. Thus, even a player
who has a material disadvantage may win if the enemy’s Commander is taken
out. Therefore, an evaluation function based purely on a comparison of material
will not always be able to predict the outcome of a game correctly. Nevertheless,
with a current average absolute-prediction performance of about 76%, and a
strong relative-prediction performance of 70% on average, there is certainly room
for improvement.

Evaluating tactical positions (p = 0) is likely to serve as such an improve-
ment, as it obtained an average absolute-prediction performance of 97%. How-
ever, it also obtained a strong relative-prediction performance of 90% on average,
which implies that it is not capable of correctly evaluating a game’s status early
in the game.

Straightforwardly combining of the two terms (p = 0.5) occasionally in-
creased the absolute-prediction performance, but on average both the absolute-
and relative-prediction performance deteriorated. We expect that including in-
formation on the phase of the game into the evaluation function will produce
improved results. This enhancement will be the focus of future work.
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7 Conclusions and Future Work

In this paper we discussed an approach to automatically generating an evalua-
tion function for game Al in RTS games. From our experimental results, we may
conclude that both the reference and approximating evaluation functions effec-
tively predict the outcome of a SPRING game expressed in terms of the absolute-
prediction performance. The relative-prediction performance, which indicates
how early in a game an outcome is predicted correctly, is lower (i.e., better) for
the reference evaluation function than for the approximating evaluation function.

Two terms were defined to evaluate a game’s status, namely a unit-based term
and a term based on tactical positions. The term to evaluate tactical positions is
capable of predicting the final outcome of the game almost perfectly. However, it
only predicts accurately in the final phase of the game. The unit-based term, on
the other hand, is only moderately accurate in predicting the final outcome of
the game. However, it achieves a high prediction accuracy relatively early. This
implies that the accuracy of outcome predictions is closely related to the phase
of the game. Thus, to improve performance, the weights assigned to each term
of the evaluation function should be made dependent on the phase of the game.

For future work, we will extend the evaluation functions with additional
terms and will incorporate a mechanism to evaluate a game’s status dependent
on the phase of the game. Our findings will be incorporated in the design of an
adaptation mechanism for RTS games.
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Abstract. To develop an annotated database of spontaneous, multi-
modal, emotional expressions, recordings were made of facial and vocal
expressions of emotions while participants were playing a multiplayer
first-person shooter (fps) computer game. During a replay of the session,
participants scored their own emotions by assigning values to them on
an arousal and a valence scale, and by selecting emotion category la-
bels (e.g. ‘happiness’ and ‘frustration’). The fps-game proved to be a
successful evoker of a diversity of emotions. The annotation results re-
vealed interesting insights in current models of emotion. While the two-
dimensional arousal-valence space is usually described as circular, we
found a V-shape pattern of reported arousal and valence values instead.
Furthermore, correlations were found between emotion characteristics
and user-specific preferences about games. The recorded data will be
used in future research concerning automatic and human recognition of
emotions.

1 Introduction

Emotions and automatic emotion recognition increasingly play important roles
in designing and developing computer games [16,9]. Automatic emotion recog-
nition is an emerging technology that can provide an enormous boost to the
entertainment industry. Imagine an adaptive computer game that adjusts its
difficulty level to the observed frustration level of the user [8]. Or imagine a
speech-enabled computer game that responds to affective voice commands [13].
In order to develop affective videogames, the system first needs to be able to
sense the player’s emotional state in a least obtrusive manner. Physiological
measures such as heart rate or skin response can be relatively good predictors
of a human’s emotional state but these are usually measured through special
equipment that is attached to the body, which can be experienced as obtrusive
by the player. Other channels through which emotions can be expressed are voice
and facial expressions. Vocal and facial expressions of emotions can be relatively
easily registered by a camera and a microphone which are usually perceived as
less obtrusive. Hence, we focus on measurements of vocal and facial expressions
in this study.
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There is a vast amount of literature available on the automatic recognition
of vocal and facial expressions of emotions (e.g., [23,18]). However, it is dif-
ficult to compare these studies to each other and draw conclusions about the
performances of the recognizers with respect to its applicability in a real-world
situation. A reason for this, among others, is that there is no agreement on how
to represent or describe emotions. Further, most of these studies are based on
typical, full-blown emotions that were acted out by actors. We rarely encounter
these typical extremities of emotions in real-life situations: in real-life, we tend
to adhere to the unwritten social conversational rules and express more sub-
tle emotions. One of the obstacles in emotion research is the lack of annotated
(i.e., information about what type of emotion occured when) natural emotion
data. For the development of automatic emotion recognition applications that
employ machine learning techniques, a large amount of natural emotion data is
needed to train and test the emotion models. Several eliciation methods have
been employed in the past to evoke natural, spontaneous affective responses.
For example, efforts have been made to elicit spontaneous emotions by showing
movies or pictures (e.g., [15,24]), by interacting with spoken-dialogue systems
or virtual characters [1,2, 6] and by playing games [14, 12, 22, 25]. Since most of
the games are designed to evoke emotions and we think that games can trigger a
relatively broad range of different types of emotions, we used a multiplayer first-
person shooter computer game to elicit affective responses and to study what
type of emotional experiences and expressions are associated with this type of
computer game.

In this paper, we present our first results of this data collection effort and
illustrate how computer games can be used to elicit affective responses. Vocal
and facial expressions of the players were registered during gameplay and, sub-
sequently, were evaluated on emotion by the players themselves. Two different
annotation methods were used. In the first method, participants were asked to
rate their own emotions on continuous scales of arousal (active vs. passive) and
valence (positive vs. negative). In the second method, a categorical description of
emotions was adopted and participants were asked to choose between a number
of predefined emotion labels. They were also given the possibility to give their
own emotion label if there was no appropriate label present.

This paper is organized as follows: Section 2 will present a short summary of
the most important topics in current emotion research. Section 3 will describe
how the experiment was accomplished, while Section 4 will outline its results.
Finally, Section 5 will discuss how the results can be interpreted and used for
future research.

2 Emotion Theory

There is an ongoing debate about the question how emotion can be defined
and represented, especially concerning categorical and dimensional (or contin-
uous) approaches to emotion. Research that supports the categorical approach
to emotion usually asserts the existence of a number of basic emotions that are

232



universally expressed and recognized (e.g., [17,7]). The best known list of basic
emotions is often termed the ‘Big Six’: happiness, sadness, fear, anger, surprise
and disgust [5]. Corresponding with the categorical approach, emotions can be
annotated by assigning category labels to them. The following twelve emotion
labels were used in our experiment: happiness, surprise, anger, fear, disgust, ex-
citement, amusement, relief, wonderment, frustration, boredom and malicious
delight. This list of labels was based on basic emotions and typical game-related
emotions (derived from [16]).

Research that supports the dimensional approach models emotion as a two-
or three-dimensional space (e.g., [20,4]). As an annotation method, participants
can be asked to define a point in space that corresponds to a particular emotion.
This point can be defined as the intersection of two or more values. Since consis-
tently identifying a third dimension (e.g. tension, control or potency) proves to
be difficult [21], two dimensions are usually used, which are labeled as arousal
(ranging from ‘calm’ i.e., low arousal to ‘excited’ i.e., high arousal) and valence
(the degree to which the pleasantness of an emotional experience is valued as
negative or positive, thus ranging from highly negative to highly positive). An
example of such a method is the Feeltrace annotation tool (see [4]). Although
some agreement exists that reported values in arousal-valence space form a cir-
cular pattern, results in [3] describe annotation tasks where participants had
to watch pictures or listen to sounds and where reported arousal-valence values
formed a V-shaped pattern in the two-dimensional space.

In our experiment, the name of the arousal scale was changed to ‘intensity’.
This was done to make the task more accessible for naives, because using the old
term might have yielded less consistent results due to the misunderstanding of
the exact meaning of the term. In addition, there is no real appropriate Dutch
translation of ‘arousal’ with respect to emotion annotation.

The next section describes how we applied the arousal-valence model and the
category labels for the acquisition of an annotated emotion database.

3 Method

An experiment was performed in order to elicit emotional responses from par-
ticipants who were invited to play a computer game and to carry out an exper-
imental task.

3.1 Participants

Seventeen males and eleven females participated in the experiment with an av-
erage age of 22.1 years and a standard deviation of 2.8. They were recruited
via e-mail under a selection criterium of age (between 18 and 30 years). Peo-
ple suffering from concentration problems were not allowed to participate in the
experiment. In addition, participants were asked to bring a friend or relative in
order to have a teammate who they were already acquainted with prior to the
experiment. The reason for this is the fact that people report and show more
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arousal when playing with a friend compared to playing with a stranger [19],
especially when friends are playing in the same room [11]. A compensation was
paid to all participants, sometimes in combination with a bonus (which was re-
warded to the players of the two teams with the highest scores in the game and
to the two teams with the best collaborating teammates). The function of these
bonusses was to keep the participants motivated and to encourage them to talk
while playing since one of our goals was to elicit and record vocal expressions.

3.2 The Game

Participants played in two teams of two players. The game they played was the
first-person shooter Unreal Tournament 2004 by Epic Games, which has the
possibility for players to play the game with and against each other through
a Local Area Network (LAN). Unreal Tournament 2004 offers diverse multi-
player game modes, from simple ‘deathmatches’ to rather complex mission-based
modes. Since at least some participants were expected to be unfamiliar with the
game, the game mode ‘Capture the flag’ was selected to be used in the experi-
ment. This game mode has a low learning curve, but nevertheless invites strategy
talk. A very small 3D world (called ‘lonl-Joust’ in the game) was selected for
the participants to play in, in order to evoke hectic situations in which (tactical)
communication and frustrations would easily arise. For both teams the goal of
the game was to capture the other teams flag as many times as possible while
defending their own flag.

At any time in the game (for example, in less exciting periods in the game) the
experimenter was able to generate unexpected in-game events to keep players in-
terested and surprised. Some examples were the sudden appearence of monsters,
the sudden ability to fly, an increasing or decreasing game speed and unexpected
problems with the gameplay. These events were evoked at an average frequency
of one event per minute using Unreal Tournament’s build-in cheatcode list.

3.3 Apparatus

Four PC’s (connected via a LAN) were used as game computers, while web-
cams and microphones were connected to four laptops, one for each participant.
Video recordings were made using Logitech Quickcam Sphere webcams. In-game
events were captured by creating a screenshot of the game every second. These
screenshots were concatenated to one single avi file.

3.4 Procedure

In short, the time schedule for the experiment was as follows:
e General instruction (15 minutes)

e Training session: getting used to the game (10 minutes)
e Instruction about the computer task followed by a short break (20 minutes)
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e Training session: getting used to the computer task (20 minutes)

e Session la: playing the game (20 minutes)

e First questionnaire followed by a break (25 minutes)

e Session 1b: computer task with a ten-minute break halfway. (50 minutes)
e Long break (40 minutes)

e Session 2a: playing the game (20 minutes)

e Second questionnaire followed by a break (25 minutes)

e Session 2b: computer task with a ten-minute break halfway. (50 minutes)

After reading a general instruction about the experiment, participants re-
ceived a training session in which they could get used to the game rules and
gameplay. During this session, which took ten minutes, the experimenter pro-
vided the players with some additional guidelines about the game, helping them
to play and enjoy the game better. Beforehand, the experimenter reminded the
players about the bonusses they could receive and stimulated them to discuss
their strategies and to get a score as high as possible. Throughout the training
session, recordings were made of players’ faces and speech and of the in-game
events.

Subsequently, participants received instructions about the experimental task
they had to perform after each game (see Section 3.6). A thorough twenty-minute
training session allowed them to ask questions about the task and to be corrected
by the experimenter if necessary.

After they finished their training, this same procedure of playing and an-
notating was repeated two times while play time and consequently annotation
time were twice as long. The schedule allowed for long breaks of twenty to thirty
minutes between sessions and shorter breaks within sessions. Participants were
also asked to fill in two short questionnaires between sessions (see Section 3.5).

3.5 Questionnaires

Participants performed a bipolar Big-Five personality test (see [10]) and a gaming-
related questionnaire. The gaming-related questionnaire asked among others:

How much do you like to play games in general?

How much do you like to play first-person shooters in general?

Did you like to play the game in the experiment?

How much time do you play computer games in general?

How much time do you play computer games together with other people, for
example using the internet?

Fri Lo

3.6 The Annotation Task

The recorded material was presented to the participants only twenty minutes af-
ter playing, including continuous recordings of the in-game events. While watch-
ing and hearing their own facial and vocal expressions and the captured video
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Annotation task 1: Dimensional rating

STRONG POSITIVE
Sterk Positief

Video of Video of recorded
participant in-game events

N

WEAK  NEGATIVE

Zwak Negatief
t ﬁ Annotation task 2: Category labels
Happiness Excitement Boredom Anger
Blijdschap Opgewondenheid Verveling Boosheid
Amusement Relief Surprise Frustration
Amusering Opluchting Verbazing Frustratie
Malicious delight | Wonderment Fear Disgust
Leedvermaak Verwondering Angst Walging

Fig. 1. The participant annotates his/her own emotions by watching his/her own video
and the captured video stream from the in-game events. The participant performs two
different annotation tasks. The Dutch translations that we used are in italics.

stream of the game, participants were asked to remember which emotions they
experienced and how strong those emotions were at exactly that moment in the
game. A two-part computer task was created for the annotation process. The
first part asked participants about the intensity (ranging from weak to strong)
and valence (reaching from negative to positive) of their emotions on two contin-
uous scales, presented vertically and next to each other (as can be seen in Figure
1, together with Dutch translations, since the participants were Dutch). It is pre-
sumably easier for naive participants to perform the annotation on one scale at
a time rather than evaluating both scales at the same time in a two-dimensional
space, as is the case with the Feeltrace method [4]. Every ten seconds, an ar-
row indicated that a value on the intensity scale had to be selected, i.e. that a
point on the first axis had to be clicked. Subsequently, a second arrow appeared,
indicating that a value on the valence axis had to be clicked.

During the second part of the annotation task, participants watched and
listened to the same material again and were asked how they would label their
experienced emotions. This time, they were able to define the start and end
points of the emotional moments themselves, activating or de-activating labels
if a corresponding emotion occured or disappeared respectively. As previously
mentioned, we selected twelve labels from which participants had to choose.
Although the number of labels was kept as small as possible in order not to
complicate the task for the participants, we expected that these labels would
cover the whole range of emotions that could occur. In addition, participants
had the possibility to verbally mention a term that they found more suitable for
a certain emotion than the labels that the computer task contained. Figure 1
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gives an overview of both the first part and the second part of the annotation
task.

4 Results

Figure 2a gives a global overview of the reported values of all participants in the
continuous annotation task. Darker areas contain more values than lighter areas.
Figure 2b shows the percentage of reported values for nine subareas of the two-
dimensional space. As can be derived from figures 2a and b, most values were
selected from the center area of the two-dimensional space, while the upper-right
corner with its high arousal and positive valence was another frequently visited
region. In cases of low arousal, valence was nearly always analyzed as close to
neutral, while high arousal was accompanied by more diverse valence values.

2D Histogram representation of self-reported Distribution of self-reported arousal-valence values,
arousal and valence values divided over 9 regions in the arousal-valence space
(N=6823, nbins=50)
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Fig. 2. Graphs representing the density of reported arousal-valence values of all par-
ticipants, plotted in an arousal-valence space.

We can observe in Figure 2 that the reported values follow a certain pattern,
which can be described as a ‘V-shape’. This is not entirely surprising since it is
difficult to imagine an extremely negative or positive vocal or facial expression
with weak intensity. Therefore, we calculated correlations between intensity and
valence in order to see whether this observation can be supported. A significant
quadratic relationship between arousal and valence was found with r = 0.47
(significant at p < 0.01). Furthermore, in the positive valence half of arousal-
valence space, a linear relationship between arousal and valence with r = 0.55
(p < 0.01) was found. A corresponding negative correlation between arousal and
valence was found in the negative valence half, with r = —0.46 (p < 0.01). These
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correlation figures suggest that higher intensity values are reported if valence is
more extreme to either the positive or the negative side.

Fig. 3. Movie stills of registered emotions from four participants.

2D Histogram representation of 2D Histogram representation of
arousal/valence values of a specific participant arousaljvalence values of a specific participant
(N=245, nbins=50) (N=241, nbins=50)
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Fig. 4. 2D-histograms representing the density of reported arousal/valence values of

two examples of different types of players, corresponding to the upper left and right
players from Figure 3 respectively.
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The diversity of emotions can also be attributed to the fact that different
types of players participated in the experiment. Figure 3 shows some examples
of movie stills of registered emotions from four participants. Figures 4a and b
show plots of reported values in the two-dimensional space of an enthusiastic and
an often frustrated not so enthusiastic player, corresponding to the upper left
and right players from Figure 3 respectively (who also reported in the gaming-
related questionnaire they liked and disliked the game respectively). The plots
show again an overview of the reported values. It is clear that the reported
values of these players still fall within the V-shape pattern, despite of individual
differences between the players.

There seems to be a relation between reported valence values and the amount
of everyday life multiplayer playing time (Pearson’s r = 0.49; significant at
p < 0.05) and on the question whether players like the first-person shooter genre
in general (Spearman’s » = 0.50; p < 0.05). The reported arousal values seem
to be related with both the questions ‘do you like to play games in general’
(Spearman’s r = 0.50; p < 0.05) and ‘did you like to play the game in this
experiment’ (Spearman’s r = 0.45; p < 0.05). In all of these cases, average
arousal or valence values were higher if questions were answered more positively
or if players played more often in everyday life.

5 Conclusions and Discussion

The most important aim of this study was to collect annotated natural emotion
data through the use of a first-person shooter computer game and two differ-
ent types of annotation methods. The first-person shooter proved to be a good
elicitation tool for emotion. The game evoked a lot of different and intense emo-
tions (ranging from negative to positive and from low to high arousal), probably
caused by its intense atmosphere and the fact that the game was played by a
group of four people who were all motivated to receive a reward. The game also
evoked a lot of vocal expressions (in addition to facial expressions), probably
caused by the fact that players were rewarded for good collaboration and the
necessity of discussing strategies in order to perform better in the game. Making
recordings proved to be relatively easy while participants were playing: they sat
in front of their monitor while the webcam and the microphone registered all the
expressions. In general, using a game as elicitation tool offers the opportunity to
register relatively natural emotions in a somewhat laboratory environment: by
playing computer games, participants become more immersed in a virtual world
and pay less attention to their environment.

A first look at the annotation results offers some interesting insights consid-
ering the arousal-valence space. Our acquired arousal-valence values show that,
while reported values in arousal-valence space are usually described as forming
a circular pattern (e.g. [20,4]), participants clearly followed a V-shape pattern
while they were annotating their emotions. The V-shape pattern implies that
participants interpreted a very negative or very positive emotion automatically
as being accompanied by a high level of arousal and a more neutral emotion as
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having a lower arousal level. Note that the pattern of the reported arousal and
valence values can be dependent on the type of game. However, our finding is in
line with [3], which was interestingly the result of a very different emotion elicita-
tion experiment. We can imagine that a very positive or very negative emotion is
rather difficult to associate with low arousal. Future research might therefore fo-
cus on the validity of a circular or rectangular arousal-valence space. It might be
interesting to investigate whether different emotion evokers yield different pat-
terns of values in arousal-valence space. Further data analysis will reveal where
naive participants think the emotion category labels from the second annotation
task should be placed in the arousal-valence space.

Self-reported valence values were increasingly higher for players who spend
more time on playing games with other humans in their spare time. This fact is
a nice addition to what was concluded in [19], namely the fact that self-reported
valence is more positive when people play against another human compared with
playing against the computer. Hence, it appears that ‘The people factor’ is an
important evoker of positive emotions in games, as was already mentioned in
[16]. Furthermore, self-reported valence was also more positive if players liked
the first-person shooter genre better. Arousal values were increasingly higher if
players liked playing games in general or playing the game during the experiment.
So it seems that in general, players experience more positive and/or more aroused
emotions if they like a game or the multiplayer aspect of a game better.

In a follow-up study, participants will evaluate and annotate a selection of
the recorded material in different modalities (visual and auditive). These anno-
tations will be compared with the annotations made by the players themselves,
trying to answer questions like ‘How good can humans recognize emotions in
different modalities (visual and auditive), with or without contextual informa-
tion (the captured video stream of the in-game events) from which the emotions
emerged?’” and ‘Are arousal and valence levels equally difficult to recognize in
different modalities or do differences exist between them?’. Furthermore, the
recorded data will be used for multimodal automatic emotion recognition re-
search. Subsequently, we can investigate how human emotion recognition com-
pares to automatic emotion recognition.
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