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Abstract. The board game Surakarta has been played at the ICGA
Computer Olympiad since 2007. In this paper the ideas behind the agent
SIA, which won the competition five times, are revealed. The paper de-
scribes its αβ-based variable-depth search mechanism. Search enhance-
ments such as multi-cut forward pruning and Realization Probability
Search are shown to improve the agent considerably. Additionally, fea-
tures of the static evaluation function are presented. Experimental results
indicate that features, which reward distribution of the pieces and pe-
nalize pieces that clutter together, give a genuine improvement in the
playing strength.

1 Introduction

Since 2007 the board game Surakarta has been played six times at the ICGA
Computer Olympiad, a multi-games event in which all of the participants are

computer programs. The Surakarta agent SIA won the gold medal at the 12th,

13th, 15th, 17th, and 18th ICGA Computer Olympiad. It did not lose a single
game in each tournament it participated.

In this paper the αβ-search based agent SIA is discussed in detail. It presents
SIA’s variable-depth search mechanism [9] that contains quiescence search [12],
multi-cut forward pruning [2] and Realization Probability Search [13]. Also, the
features of the static evaluation function are described and assessed.

The article is organized as follows. First, in Section 2 the game of Surakarta
is briefly discussed. Next, SIA’s αβ-search engine is introduced in Section 3.
In Section 4 its variable-depth search mechanism is described. Subsequently,
the evaluation function is proposed in Section 5. The experimental results are
presented in Section 6. Finally, Section 7 gives conclusions and an outlook on
future research.

2 Surakarta

Surakarta is a board game for two players (i.e., Black and White). It is played
on a 6 × 6 board where eight loops extend out from it (see Fig. 1). The four
small loops form together the inner circuit, whereas the four large loops form
the outer circuit.
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Fig. 1. Initial Surakarta position.

Players take turns moving one of their own pieces. In non-capturing moves, a
piece travels – either orthogonally or diagonally – to a neighboring intersection.
In a capturing move, a piece travels along a line, traveling over at least one loop,
until it meets one of the opponent pieces. The captured piece is removed, and
the capturing piece takes its place. The first player to capture all opponent’s
pieces wins. Draws can occur by repetition of moves or stalemate (cf. [6]). In
this article, if a position with the same player to move occurs for the third time,
the game is drawn. Additionally, if in the last fifty moves no capture was made,
the game is scored as a draw as well.

Self-play experiments by SIA revealed that the game has an average branch-
ing factor of approximately 22 and an average game length of around 54 ply.
The game-tree complexity is estimated to be about 1072. Taking symmetry into
account, its state-space complexity is 1015.

3 SIA

SIA performs an αβ depth-first iterative-deepening search in the PVS framework
[10]. A two-deep transposition table [3] is applied to prune a subtree or to narrow
the αβ window. At all interior nodes that are more than 2 ply away from the
leaves, it generates all moves to perform Enhanced Transposition Cutoffs (ETC)
[11]. For move ordering, the move stored in the transposition table (if applicable)
is always tried first, followed by two killer moves [1]. These are the last two moves
that were best, or at least caused a cutoff, at the given depth. Thereafter follow
the capture moves. All the remaining moves are ordered decreasingly according
to the relative history heuristic [16].

4 Variable-Depth Search

The αβ algorithm [8] is still the standard search procedure for playing material-
based board games such as chess and checkers. The playing strength of programs
employing αβ search depends greatly on how deep they search critical lines
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of play. Therefore, over the years, many techniques for augmenting αβ search
with a more selective tree-expansion mechanism have been developed, so called
variable-depth search techniques [9]. Promising lines of play are explored more
deeply (search extensions), at the cost of other less interesting ones that are cut
off prematurely (search reductions or forward pruning).

In the Surakarta engine SIA the following techniques are employed: quies-
cence search [7, 12], multi-cut [2], and Realization Probability Search (RPS) [13].
They are described in Subsections 4.1, 4.2, and 4.3, respectively.

4.1 Quiescence Search

When the αβ search reaches the depth limit, a static evaluation function should
be applied in the leaf node reached. This approach can have disastrous conse-
quences because of the approximate nature of the evaluation function. Therefore
a more sophisticated cut-off may be required. The evaluation function should
only be applied to positions that are quiescent.

At the leaf nodes of the regular search, a quiescence search is performed to
get more accurate evaluations. In SIA an extended version of quiescence search
is implemented [12]. This type of a quiescence search limits the set of moves to
be considered and uses the evaluations of interior nodes as lower / upper bounds
of the resulting search value. As capture moves are responsible for swings in the
evaluation function in Surakarta, only captures are considered for this part of
the search.

4.2 Multi-Cut

Multi-cut pruning is a forward-pruning technique [2], which has been applied in
chess and Lines of Action [15]. Before examining a node to full depth, the first M
child nodes are searched to a depth reduced with a factor R. If at least C child
nodes return a value larger than or equal to β, a cutoff occurs. However, if the
pruning condition is not satisfied, the search continues as usual, re-exploring the
node under consideration to a full depth d. In general the behavior of multi-cut
is as follows. The higher M and R are and the lower C is, the higher the number
of prunings is.

An enhanced version of multi-cut [15] is used in SIA. First, when at a reduced
depth a winning value is found, the search is stopped and the winning value is
returned. Second, if the multi-cut does not succeed in causing a cutoff, the moves
causing a β-cutoff at the reduced depth are tried first in the normal search. Third,
multi-cut is used in all nodes, except in the expected principal variation (so-called
PV nodes). The idea is that it is too risky to prune forward there, because a
possible mistake causes an immediate change of the principal variation. For all
other nodes (so-called CUT and ALL nodes [9]), multi-cut is performed with the
following parameter settings: C= 3 for a CUT node, C= 2 for an ALL node, M
= 10 and R = 2 for both node types. The pseudo code in the PVS framework is
given in Fig. 2.
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...........................................................

//Forward-pruning code

if(node.node_type != PV_NODE && depth > 2){

next = firstSuccessor(node);

c = 0, m = 0;

while(next != null && m < M){

value = -PVS(next, -beta, -alpha, depth-1-R);

if(value >= beta){

c++;

//Keep track of the moves causing a cut-off at d-R

storeCutOffNode(next);

if(value >= WIN_SCORE)

return value;

else if(c >= C)

return beta;

}

m++;

next = nextSibling(next);

}

//Re-order moves

putCutOffNodesInFront();

}

...........................................................

Fig. 2. Pseudo code for multi-cut

4.3 Realization Probability Search

One successful member of the family of variable-depth search techniques is Re-
alization Probability Search (RPS), introduced by Tsuruoka et al. [13] in 2002.
Using this technique his program, Gekisashi, won the 2002 World Computer
Shogi Championship, resulting in the algorithm gaining a wide acceptance in
computer Shogi. It has been successfully applied in the Lines-of-Action engine
MIA as well [14].

The RPS algorithm is an approach of using fractional-ply extensions. The
algorithm uses a probability-based approach to assign fractional-ply weights to
move categories, and then uses re-searches to verify selected search results.

First, for each move category one must determine the probability that a move
belonging to that category will be played. This probability is called the transition
probability. This statistic is obtained from game records of matches played by
expert players. The transition probability for a move category c is calculated as
follows:

Pc ←
nplayed(c)

navailable(c)
(1)
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where nplayed(c) is the number of game positions in which a move belonging to
category c was played, and navailable(c) is the number of positions in which moves
belonging to category c were available.

Originally, the realization probability of a node represented the probability
that the moves leading to the node will be actually played. By definition, the
realization probability of the root node is 1. The transition probabilities of moves
were then used to compute the realization probability of a node in a recursive
manner (by multiplying together the transition probabilities on the path lead-
ing to the node). If the realization probability would become smaller than a
predefined threshold, the node would become a leaf. Since a probable move has
a large transition probability while an improbable has a small probability, the
search proceeds deeper along probable move sequences than improbable ones.

Instead of using the transition probabilities directly, they can be transformed
into fractional plies [13]. The fractional ply FP of a move category is calculated
by taking the logarithm of the transition probability in the following way:

FP ← logK(Pc) (2)

where K is a constant between 0 and 1. A value of 0.25 is a good setting for K in
Surakarta. Note that this setting is probably domain dependent, and a different
value could be more appropriate in a different game or even game engine.

The fractional-ply values are calculated off-line for all the different move
categories, and used on-line by the search (as shown in Fig. 3 [14]). In the
case where FP is larger than 1 it means the search is reduced while in the
case FP is smaller than 1 the search is extended. By converting the transition
probabilities to fractional plies, move weights now get added together instead of
being multiplied. This has the advantage that RPS is used alongside multi-cut,
which measures depth similarly.

However, setting the depth of the move based on its FP values runs into
difficulties because of the horizon effect. Move sequences with high FP values
(i.e., low transition probability) get terminated quickly. Thus, if a player expe-
riences a significant drop in its positional score as returned by the search, it is
eager to play a possibly inferior move with a higher FP value, simply to push
the inevitable score drop beyond its search horizon.

To avoid this problem, RPS is instructed to perform a deeper re-search for a
move whose value is larger than the current best value (i.e., the α value). Instead
of reducing the depth of the re-search by the fractional-ply value of the move
(as is generally done), the search depth is decreased only by a small predefined
FP value, called minFP. It is set equal to the lowest move category value.

Apart from how the ply depth is determined, and the re-search, the algorithm
is otherwise almost identical to PVS [10]. Fig. 4 shows a C-like pseudo-code.
Because the purpose of the preliminary search is only to check whether a move
will improve upon the current best value, a null-window may be used.

RPS is applied in SIA in the following way. First, moves are classified as
captures or non-captures. Next, moves are further subclassified based on the
origin and destination of the move’s from and to squares. The board is divided
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Fig. 3. Fractional-ply example for a nominal search depth of 3 [14].

into four different regions: the corners, the 6× 6 outer rim (except corners), the
4 × 4 inner rim, and the central 2 × 2 board. In total 20 move categories can
occur in the game according to this classification. The transition probabilities
have been collected by letting SIA play 1000 games against itself. The final FP
values of the move categories are capped between 0.5 and 4.0 (inclusive). They
are shown in Table 1.

When looking at the transition probabilities, capture moves are in general
preferred above non-capture moves. Although moving away from a corner is also
strongly encouraged. Interestingly, when a move is a non-capture it is better to
move towards the center. In case of a capture move, the opposite is true.

5 Evaluation Function

In this section the relevant features of the static evaluation function are enumer-
ated and explained. The evaluator consists of the following five features: mate-
rial, mobility, player to move, quads, and distribution. The choice of features that
fully cover the description of a position is most relevant. It is better to have all
features correct and all the initial weights wrong than to have the initial weights
correct and miss one of the (important) features. The description of the features
follows below; relevant examples and clarifications are given, adequate references
to further details are supplied. It is followed by some information about the use
of caching.

Material. Analogous to piece-square tables in chess, each piece obtains a value
dependent on its board square in SIA. Especially, pieces at the corner are eval-
uated less. The relative values are given in the following matrix:
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RPS(node, alpha, beta, depth){

//Transposition table lookup, omitted

.....................................

if(depth <= 0)

return quiescenceSearch(node, alpha, beta);

//Do not perform forward pruning in a potential principal variation

if(node.node_type != PV_NODE){

//Multi-cut code, omitted

.....................................

if(forward_pruning condition holds) return beta;

}

next = firstSuccessor(node);

while(next != null){

alpha = max(alpha, best);

decDepth = FP(next);

//Preliminary Search Null-Window Search Part

value = -RPS(next, -alpha-1, -alpha, depth-decDepth);

//Re-search

if(value > alpha)

value = -RPS(next, -beta, -alpha, depth-minFP);

if(value > best){

best = value;

if(best >= beta) goto Done;

}

next = nextSibling(next);

}

Done: //Store in Transposition table, omitted

.....................................

}

Fig. 4. Pseudo code for Realization Probability Search.


3 10 10 10 10 3
10 11 10 10 11 10
10 10 10 10 10 10
10 10 10 10 10 10
10 11 10 10 11 10
3 10 10 10 10 3


Mobility. Having more moves than the opponent may imply that you have more
“freedom” that can be correlated with success. The computational requirements
of the mobility feature are not high if only non-capture moves are considered.
For each line configuration (represented as a bit vector) the mobility can be
precomputed and stored in a table. During the search, the index scheme can be
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Table 1. Move categories together with their transition probabilities and FP values.

Capture Destination Target Transition Probability FP value

No Corner Outer Rim 30.4% 0.85

No Corner Inner Rim 48.4% 0.52

No Outer Rim Corner 1.6% 2.97

No Outer Rim Outer Rim 12.9% 1.47

No Outer Rim Inner Rim 17.0% 1.27

No Inner Rim Corner 0.8% 3.45

No Inner Rim Outer Rim 6.7% 1.94

No Inner Rim Inner Rim 6.7% 1.95

No Inner Rim Center 11.5% 1.55

No Center Inner Rim 2.7% 2.60

No Center Center 7.4% 1.88

Yes Outer Rim Outer Rim 64.3% 0.50

Yes Outer Rim Inner Rim 59.0% 0.50

Yes Outer Rim Center 51.9% 0.50

Yes Inner Rim Outer Rim 63.4% 0.50

Yes Inner Rim Inner Rim 58.6% 0.50

Yes Inner Rim Center 49.4% 0.50

Yes Center Outer Rim 50.9% 0.50

Yes Center Inner Rim 47.2% 0.54

Yes Center Center 42.7% 0.61

updated incrementally and in the evaluation function only a few table lookups
have to be done.

An advantage of this feature that it is fast to evaluate. A disadvantage of
this implementation is that capture moves are not taken into account. This is
partially mitigated by the quiescence search as only leaf nodes are evaluated that
cannot start a capture sequence anymore. Still, it could be that the non-moving
player has several possibilities to capture. Quiescence search is therefore not able
to completely assess the capturing potential of one of the players.

Player to Move. The player-to-move feature is based on the basic principle
of the initiative. It rewards the moving side. Having the initiative is mostly an
advantage in Surakarta like in many other games.

Since SIA is using variable-depth search (because of quiescence search, the
multi-cut, and RPS ) not all leaf nodes are evaluated at the same depth. There-
fore, leaf nodes in the search tree may have a different player to move, which is
compensated in the evaluation function. This is done by giving a small bonus to
the side to move.

Distribution. The distribution feature is based on the principle of spreading the
pieces over the board to increase the potential to attack pieces of the opponent.
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Q4

A quad with four 

pieces

Fig. 5. Six different quad types.

In SIA this is done in a way which is primitive but effective. First the maximum
number m of pieces of a player in a row or column is determined. The distribution
is calculated as follows:

distribution =
25× n

max(2,m)
(3)

where n is the number of pieces of a player. In such a way this feature prevents
that there are too many pieces on one line. It is connected to the following
feature, quads, that penalizes solid formations.

Quads. The quads feature prevents that pieces are cluttered together. The
heuristic is based on the use of quads, an Optical Character Recognition method.
A quad is defined as a 2×2 array of squares [5]. Taking into account rotational
equivalence, there are six different quad types, depicted in Fig. 5. The values of
each quad type is given in Table 2. Quads with 1 or 2 pieces receive a bonus,
whereas quads with 4 pieces get a penalty.

Table 2. Quad values.

Quad types Q1 Q2 Q3 Q4 Qd

Values 5 5 0 -5 10
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Caching Features. It is possible in SIA’s evaluation function to cache compu-
tations of certain features, which can be used in other positions. The material,
quads, and distribution features are independent of the position of the other side.
They are stored in an evaluation cache table. In the current evaluation function
this gives a speed-up of at least 30% in the number of nodes investigated per
second.

6 Experiments

In this section the main components of SIA are tested. Different versions of
SIA played at least 1000 games against each other, playing both colors equally.
To prevent that games were repeated, a random factor was included in the
evaluation function. Draws were considered half wins to each player to ensure the
winning percentages sum to 100%. All experiments were performed on an Intel
Xeon 5355 2.66 GHz computer. The engine has been implemented in Java. The
remainder of this section is organized as follows. First, the variable-depth search
techniques are tested in Subsection 6.1. Next, the features of the evaluation
function are assessed in Subsection 6.2. Finally, SIA’s performance on the ICGA
Computer Olympiads is briefly discussed in Subsection 6.3.

6.1 Variable-Depth Search Experiments

In the first series of experiments SIA is instantiated using the various combina-
tions of variable-depth search introduced in Section 4. A three-tuple
(RPS ,Multi -Cut ,QuiescenceSearch) is to represent the parameter setting used
in each particular player instance. E.g., for the instantiation SIA(off ,multi,quiescence),
RPS is disabled, multi-cut and quiescence search are enabled.

For these experiments, the thinking time was limited to 5 seconds per move.
The variable-depth search techniques were initially tested in an incremental way
starting first with quiescence search, adding next multi-cut, and finally incorpo-
rating RPS. The first three rows of Table 3 show the results for them. It reveals
that every search enhancement makes more or less the same contribution by
increasing the winning percentage to approximately 70% for each addition. In
the fourth row it was validated whether multi-cut does give an additional benefit
to the RPS framework. By winning 63.5% of the games multi-cut is a genuine
improvement. In the last row the results are given when SIA with all the enhance-
ments played against the default fixed-depth version. All techniques combined
lead to a 95% winning percentage. In the next experiment this combination is
used.

6.2 Evaluation Function Results

In the last series of experiments four different evaluation functions competed
with each other in a round-robin tournament. They are called Material, Mo-
bility, Distribution, and Sia. The Material evaluator consists out of the



The Surakarta Bot Revealed 11

Table 3. Winning percentage of testing various combinations of variable-depth search
techniques. 95% confidence intervals are given.

win %

SIA(off ,off ,quiescence) SIA(off ,off ,off ) 73.9 ± 1.5
SIA(off ,multi,quiescence) SIA(off ,off ,quiescence) 70.2 ±1.4
SIA(RPS,multi,quiescence) SIA(off ,multi,quiescence) 75.3 ± 2.3
SIA(RPS,multi,quiescence) SIA(RPS,off ,quiescence) 63.5 ± 1.0
SIA(RPS,multi,quiescence) SIA(off ,off ,off ) 95.2 ± 0.8

piece-square table and a small random factor. The Mobility evaluator includes
the former and incorporates the mobility and the player-to-move feature. Next,
Distribution includes the distribution feature. Last, Sia adds the quads fea-
ture and represents the evaluation function discussed in Section 5. The weights
of the features were partially tuned by TD-learning, partially manually. In these
experiments, the thinking time was limited to 1 second per move.

The results of the round-robin tournament are given in Table 4. Each match
data point represents the result of 1,000 games, with both colors played equally.
The table shows that every added feature is a genuine improvement. Spreading
the pieces over the board improves the performance of the play as the results of
the Distribution and Sia evaluators indicate.

Table 4. Winning percentage of testing different evaluation functions. 95% confidence
intervals are given. Each data point is based on a 1000-game match.

Material Mobility Distribution Sia

Material - 42.9 ± 3.1 38.2 ± 3.0 32.2 ± 2.9
Mobility 57.1 ± 3.1 - 40.6 ± 3.0 35.8 ± 3.0
Distribution 61.8 ± 3.0 59.4 ± 3.0 - 46.7 ± 3.1
Sia 67.8 ± 2.9 64.2 ± 3.0 53.3 ± 3.1 -

6.3 Computer Olympiad Results

Since 2007 SIA has participated in the Surakarta tournaments at the 12th, 13th,

15th, 17th, and 18th ICGA Computer Olympiad. In the competition each agent
receives 30 minutes of thinking time for the whole game, playing an equal number
of games for each color. In these five tournaments SIA played a grand total of
32 games against 7 different opponents, winning all of them. This achievement
is a validation of the approach to Surakarta proposed in this paper.
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7 Conclusion and Future Research

This paper discussed the main components of the Surakarta agent SIA. Results
showed that its variable-depth search mechanism improved the search consider-
ably. Besides the classic quiescence search, multi-cut forward pruning and Real-
ization Probability Search gave a boost in the game playing performance. Next,
the evaluation function was described. Beside standard features such as material
and mobility, features that helped to spread the pieces over the board gave a
genuine increase in performance.

For future research adding a feature to determine who controls a circuit would
lead potentially to an increase in playing performance. Next, endgame databases
could help to improve the strength of the agent and ultimately help to solve the
game. So far all endgame databases up to 8 pieces have been generated. Self-
play results reveal that it takes on average 40 ply to reach them, which is too
deep for a single search. If a 10-piece database or 12-piece database would be
generated, it would take 34 or 30 ply, respectively. Larger databases would need
several Terabytes of hard drive. An alternative is to use smaller databases and
distribute the search over several cores as in done in Job-Level αβ search [4].

Acknowledgments. Special thanks go to the anonymous referees whose com-
ments helped to improve this paper.
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