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Abstract—In this paper enhancements for the Monte-Carlo
Tree Search (MCTS) framework are investigated to play Ms
Pac-Man. MCTS is used to find an optimal path for an agent at
each turn, determining the move to make based on randomised
simulations. Ms Pac-Man is a real-time arcade game, in which
the protagonist has several independent goals but no conclusive
terminal state. Unlike games such as Chess or Go there is no state
in which the player wins the game. Furthermore, the Pac-Man
agent has to compete with a range of different ghost agents,
hence limited assumptions can be made about the opponent’s
behaviour. In order to expand the capabilities of existing MCTS
agents, five enhancements are discussed: 1) a variable depth
tree, 2) playout strategies for the ghost-team and Pac-Man, 3)
including long-term goals in scoring, 4) endgame tactics, and
5) a Last-Good-Reply policy for memorising rewarding moves
during playouts. An average performance gain of 40,962 points,
compared to the average score of the top scoring Pac-Man agent
during the CIG’11, is achieved by employing these methods.

I. INTRODUCTION

Ms Pac-Man is a real-time arcade game based on the
popular Pac-Man game. The player controls the main character
named Ms Pac-Man (henceforth named Pac-Man) through a
maze, eating pills and avoiding the ghosts chasing her. The
maze contains four so-called power-pills that allow the player
to eat the ghosts to obtain a higher score. When all pills in
a maze are eaten, the game progresses to the next level. Ms
Pac-Man inherited its game-mechanics from the original Pac-
Man. Moreover, it introduced four different mazes, and more
important, unpredictable ghost behaviour. This last feature
makes Ms Pac-Man an interesting subject for AI research. The
game rules are straightforward, however complex planning and
foresight are required for a player to achieve high scores.

Two competitions are held for autonomous Ms Pac-Man
agents. In the first, Ms Pac-Man Competition (screen-capture
version) [1], the original version of the game is played using
an emulator. Agents interpret a capture of the screen to
determine the game’s state. Each turn moves are passed to
the emulator running the game. The second, Ms Pac-Man
vs Ghosts Competition [2] offers a complete implementation
of the game, in which the game state is fully available.
Furthermore, Pac-Man agents compete with a variety of ghost-
team agents also entered in the competition.

Although most Pac-Man agents entering the competitions
are rule-based, research has been performed on using tech-
niques such as genetic programming [3], neural networks [4]
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and search trees [5]. Owing to the successful application of
Monte-Carlo Tree Search (MCTS) in other games [6], interest
in developing MCTS agents for Ms Pac-Man has grown.
Samothrakis et al. [7] developed an MCTS agent using a
Maxn tree with scoring for both Pac-Man and the ghosts.
Furthermore, a target location is set as a long-term goal for
Pac-Man, MCTS computes the optimal route to the target
in order to determine the next move. Other MCTS-based
agents were researched for achieving specific goals in Ms Pac-
Man, such as ghost avoidance [8] and endgame situations [9]
demonstrating the possibilities of MCTS for Pac-Man agents.
In 2011 the first MCTS agent won the Ms Pac-Man screen-
capture competition [1]. Until then rule-based agents lead the
competitions. The victorious MCTS agent, NOZOMU [10],
was designed to avoid so-called ‘pincer moves’, in which
every escape path for Pac-Man is blocked. The approach
was successful in beating the leading rule-based agent ICE
PAMBUSH [11] with a high score of 36,280. In the same
year, the first MCTS based agents entered the Ms Pac-Man
vs Ghosts Competition. Both a ghost team agent [12, 13] and
a Pac-Man agent [14] based on a combination of knowledge
rules and MCTS search entered the competition. Moreover, the
ghost team agent NQKIEN [12] won the CEC11 [15] edition
of the competition with an average score of 11,407.

A Pac-Man agent for the Ms Pac-Man vs Ghosts Competi-
tion is developed for this paper, with the goal of a generally
strong playing agent. To enhance the MCTS framework for
Pac-Man five enhancements are introduced: 1) a variable depth
tree, 2) playout strategies for the ghost-team and Pac-Man, 3)
including long-term goals in scoring, 4) endgame tactics, and
5) a Last-Good-Reply policy [16] for memorising rewarding
moves during playouts.

The paper is structured as follows. First, the Ms Pac-
Man framework is introduced. Next, MCTS and the UCT
selection policy are described, and enhancements to the MCTS
framework discussed in detail. Finally, experimental results
will be given and a conclusion drawn.

II. MS PAC-MAN

The basic rules of Ms Pac-Man are based on the classic
arcade game. Pac-Man initially has three lives, which she
loses through contact with a non-edible ghost. In this case,
the location of the ghosts and Pac-Man are reset to their
initial configuration. The game environment consists of four
different mazes, each is played once per four levels. The game
progresses every time unit, allowing Pac-Man to make a move,
however, ghosts are only allowed to make a move at a junction.
On a path between junctions ghosts can only travel forward.
When a power-pill is eaten by Pac-Man the ghosts become
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Fig. 1. Strategic steps of Monte-Carlo Tree Search [17].

edible, their movement speed decreases and they are instantly
forced to reverse their direction. When Pac-Man reaches a
score of 10,000 by eating pills and ghosts, she gains a life.
Both the ghosts and Pac-Man have one in-game time unit
of 40 ms. to compute a move at each turn. If no move is
returned, a randomly selected move is executed. Furthermore,
at each turn with a small probability of 0.0015 each ghost
is immediately forced to reverse its direction. Each maze is
played for 3,000 time units, after which the game progresses
to the next level. Remaining pills in the maze are then added
to Pac-Man’s score as a reward for surviving the maze. The
time that ghosts remain edible is decreased when the game
advances to the next level. The game ends if either the 16th

level is cleared or if Pac-Man has no lives remaining.

III. MONTE-CARLO TREE SEARCH

Monte-Carlo Tree Search (MCTS) is a best-first search
method based on random sampling by Monte-Carlo simula-
tions of the state space for a certain domain [18, 19]. In game-
play this means that decisions are made based on the results
of randomly simulated playouts. MCTS has shown promising
results when applied to various turn-based games such as Go
[20] and Hex [21]. However, the method can be applied to
other problems for which the state space can be represented
as a tree. A particular challenge for agents playing real-time
games is that they are usually characterised by uncertainty, a
large state space and open-endedness. However, MCTS copes
well when limited time is available between moves and is
possible to encapsulate uncertainty in its randomised playouts
[6]. The basic version of MCTS consists of four steps, which
are performed iteratively until a computational threshold is
reached, i.e. a set number of iterations, an upper limit on
memory usage or a time constraint. The four steps (Figure
1) at each iteration are [17]:

• Selection. Starting at the root node, children are selected
recursively according to a selection policy. When a leaf
node is reached that does not represent a terminal state
it is selected for expansion.

• Expansion. All children are added to the selected leaf
node given available moves.

• Playout. A simulated playout is run, starting from the
state of the added node. Moves are performed randomly

or according to a heuristic strategy until a terminal state
is reached.

• Backpropagation. The result of the simulated playout is
propagated immediately from the selected node back up
to the root node. Statistics are updated along the tree for
each node selected during the selection phase and visit
counts are increased.

Because results are immediately backpropagated, MCTS can
be terminated anytime to determine the decision to be made.
Moreover, no static heuristic evaluation is required when
simulations are performed. However, it is often beneficial to
add domain knowledge for choosing moves made during the
playout.

IV. MONTE-CARLO TREE SEARCH FOR MS PAC-MAN

This section discusses the enhancements to the MCTS
framework for the Pac-Man agent. The agent builds upon the
methods proposed in [10] as well as [7]. The structure of the
search tree is defined and the following subsections cover the
individual enhancements.

A. Search Tree and Variable Depth

The game’s environment is consists of four different mazes.
These can directly be represented as a graph where the
junctions are nodes, and paths between junctions are edges.
Pac-Man has the option to make a decision at any location
in the graph. At a node she has a choice between more than
two available directions, while on an edge she can choose to
maintain her course or reverse. An example of such a graph
is depicted in Figure 2. The associated search tree is shown
in Figure 3.

Decisions in the tree are the moves made at nodes, i.e.
junctions in the maze. Traversing the tree means that Pac-
Man moves along an edge until a node is reached. At this
point either the tree ends and playout starts, or a new edge is
chosen based on a child of the current node.

Within the tree, reverse moves, i.e. moves that lead back
to a parent, are not considered past the first ply. When a
node np, representing junction jp is expanded, each child ni
represents a move that leads to a different junction ji in the

Fig. 2. Graph representation of a game state.



Fig. 3. Example tree with variable tree-depth of 25. Based on the game state
in Figure 2.

maze, excluding junction jp. Reverse moves are not considered
deeper in the tree to ensure a larger difference in rewards
between available moves. If reverse moves are expanded on
every ply, more playouts per move are required in order to
have conclusive differences in rewards. Considering that: 1)
in total, more nodes are expanded, and 2) the tree contains
duplicate paths with similar or equal rewards.

Nodes store three reward values both averaged and max-
imised over all their children’s values:

1) The maximum and average ghost score Sghost .
2) The maximum and average pill-score Spill .
3) The maximum and average survival rate Ssurvival .

The values are used when determining vi during selection,
backpropagation and deciding the move to make.

Ikehata and Ito [10] used a search tree restricted in depth to
a fixed number of edges, without regard for the distance these
edges represent in-game. Although the search tree in this paper
is constructed similarly, the search path is variably determined
by a threshold path-length Tpath. A leaf is only expanded if
the length of the path to the root node does not exceed Tpath
(Figure 3). The variable-depth search prevents the agent from
choosing ‘quick fixes’ when in danger, i.e. it may be safer to
traverse a short path in the game when Pac-Man is in danger,
than a long path which could be the case when tree-depth is
limited by a fixed number of edges. Furthermore, the scoring
potential over all possible paths in the tree is normalised due
to the uniform length of each path.

B. Tactics

According to the current game state a tactic [10] for
determining the behaviour of Pac-Man is selected. Tactics are
based on the three sub-goals of Pac-Man. At any time one of
the following is active:
• The Ghost score tactic is selected if: a power-pill was

eaten in a previous turn, edible ghosts are in the range
of Pac-Man, and the maximum survival rate is above the
threshold Tsurvival .

• The Pill score tactic is the default tactic. It is applied
when Pac-Man is safe and there are no edible ghosts
in range, and the maximum survival rate is above the
threshold Tsurvival .

• The Survival tactic is used when the maximum survival
rate of the previous or current search is below the

threshold, Tsurvival .
The vi value used for selection and backpropagation is based

on the current tactic. It is either the maximum survival rate,
vi = Ssurvival , when the survival tactic is active, or the current
score multiplied by the survival rate, vi = Sghost × Ssurvival or
vi = Spill×Ssurvival , for the ghost and pill tactics, respectively.
The survival rate Ssurvival is interpreted as a predictive indicator
that the node’s reward will be achieved.

The final move to be played is determined by selecting a
child from the root node with the highest maximum vi score
over all its children, based on the current tactic. If the current
tactic provides no feasible reward i.e. all scores are 0, it is
replaced according to the order in the above list. This occurs
when, e.g. the nearest pill or edible ghost is out of the search
tree’s range. If this is the case for several consecutive moves,
the endgame tactic is applied (Subsection IV-H).

C. Selection and Expansion

During the selection step, a policy is required to explore
the tree for rewarding decisions and finally converge to the
most rewarding one. Upper Confidence bound applied to
Trees (UCT) [19] is derived from the UCB1 function [22]
for maximising the rewards of a multi-armed bandit. UCT
balances the exploitation of rewarding nodes whilst allowing
exploration of lesser visited nodes. The policy that determines
which child to select given the current node is the one that
maximises the following equation:

vi +C

√
lnnp

ni

vi is the score of the current child based on the active tactic,
defined in Subsection IV-B. In the second term, np is the
visit count of the node and ni the visit count of the current
child. C is the exploration constant to be determined by
experimentation.

UCT is applied when the visit count of a child node is
above a threshold T . When a node’s visit count is below
this threshold, a child is selected randomly. In the case of
Ms Pac-Man, the threshold used is 3, which ensures a higher
confidence on the safety of the path. An otherwise safe and/or
rewarding node may have resulted in a loss the first time it
is expanded, due to the non-deterministic nature of the game.
Using the threshold ensures that this node is explored again,
increasing the confidence on the safety of the decision.

D. Playout

During the playout, Pac-Man and the ghost team make
moves in a fully functional game state. Playout consists of
two phases: 1) the tree phase, in which moves by Pac-Man
are made according to the nodes selected during the selection
phase, and 2) the playout phase, in which moves by Pac-
Man are performed according to a randomised playout strategy
described in Subsection IV-F.

During the tree phase, the path represented by the nodes
selected during the selection phase is traversed. Moves cor-
responding to each selected node during the selection phase



are performed by Pac-Man. Meanwhile, the ghosts move
according to the playout strategy (Subsection IV-F). This
provides the basis for determining the achievable score of the
selected path while allowing for Pac-Man to be captured by the
simulated ghost team. If Pac-Man does not lose a life during
the tree phase, and the junction represented by the leaf node
is reached, the playout phase starts. Both Pac-Man and the
ghosts move according to the playout strategy.

In two cases, the tree phase can be interrupted due to a
change in the game state unpredictable by the search tree:

1) If Pac-Man loses a life during the tree phase, the playout
phase is started from the last-visited junction. Losing a
life during the tree phase is basically a suicide-move, as
Pac-Man may only travel forward. Therefore the playout
can still be run to determine whether Pac-Man could
have avoided the loss of life.

2) Pac-Man eats a ghost or a power pill, in this case the
playout phase is started immediately.

A game of Ms Pac-Man ends when either Pac-Man loses
all lives, or the 16th level is cleared. It is neither useful nor
computationally achievable within the strict time limit of 40
ms., to run a playout until one of these conditions holds.

The goal of the playouts is to determine the short- and long-
term safety and reward of a selected path. Therefore different
stopping conditions for playouts should be used. Two natural
stopping conditions can be considered, either Pac-Man loses a
life (dies), or the game progresses to the next maze. However,
to prevent lengthy playouts, additional stopping conditions are
to be introduced. Therefore during the playout phase, moves
are made until one of the following four conditions applies:

1) A pre-set number of time units Ttime have passed.
2) Pac-Man is considered dead, i.e.:

• Came into contact with a non-edible ghost.
• Is trapped at the end of the playout, every available

path is blocked by ghosts.
3) The next maze is reached.
4) Pac-Man eats a power pill while edible ghosts are

active. As penalty, this is considered as not surviving
the playout.

When the playout ends for any of the aforementioned reasons,
Pac-Man’s score is determined based on the three subgoals of
the game. Results of a playout consist of three values:
•

Rsurvival =

{
0 if Pac-Man died
1 if Pac-Man survived

• Rpill ∈ [0,1] the number of pills eaten, normalised by the
number of pills at the root.

• Rghost ∈ [0,1] the number of ghosts eaten, normalised by
the number of ghosts in the ghost team.

The goal for Pac-Man during the playout is acquiring the
highest score possible whilst avoiding a loss of life. The
ghosts have three goals: 1) ensure that Pac-Man loses a life
by trapping her, i.e. every possible path leads to a non-
edible ghost, 2) ensure the lowest ghost-reward Rghost , which

increases when Pac-Man eats edible ghosts, and 3) limit as
much as possible the number of pills Pac-Man can eat.

E. Long-Term Goals

Time is an important aspect of the game. Ghosts need to
be eaten as fast as possible, such that they do not return to
their normal state when edible. Moreover, remaining in a maze
longer than necessary increases the risk of being captured.
Furthermore, after 10,000 points, Pac-Man gains a life. These
are examples of long-term goals in the game. Any MCTS
implementation looks at short-term rewards when running
playouts. To estimate the rewards of these long-term goals,
specific results are considered for both pill and ghost rewards.

To encode the long-term goal in the playouts’ ghost reward
Rghost , for every eaten ghost its reward is tedible(g), the edible
time remaining before the ghost was eaten. This ensures
that ghosts eaten early are preferred over ghosts eaten later.
Furthermore, when Pac-Man eats a power-pill (while no edible
ghosts are active) during playout, she must achieve a ghost
score higher than 0.5 at the end of the playout. If this is not
the case, i.e. the ghosts were too far away to be eaten in time,
the pill-reward Rpill is 0. If the minimum ghost score of 0.5 is
achieved after eating a power-pill, the pill-reward is increased:
Rpill = Rpill +Rghost . This rapid change in scores enables Pac-
Man to wait for the ghosts to be close enough before eating
a power-pill.

The risk of being captured increases, the longer Pac-Man
remains in a maze. As there are only four power pills available
per maze to provide a guaranteed safe escape, eating all pills
before the game naturally progresses to the next maze is a
beneficial long-term goal. Therefore, points for eating pills are
only added to Rpill during playout when the current edge has
been cleared, i.e. the last pill on the edge is eaten. It ensures
that Pac-Man prefers to eat all pills on the edges she visits,
rather than leaving isolated pills which become hard to reach
as the game progresses.

F. Playout Strategy

During playout, Pac-Man and the ghost team’s moves are
simulated simultaneously in a fully functional game state,
using the complete ruleset of the game (Section II). Both
the ghosts and Pac-Man have the possibility to store moves
as a Last-Good-Reply (LGR) [16]. Any time the ghost team
traps Pac-Man during playout, the ghosts’ moves based on
Pac-Man’s last visited junction are remembered. Similarly,
Pac-Man’s moves at junctions are remembered each time she
survives a playout. Otherwise moves are forgotten [23] and
no longer part of the LGR move-policy. In this subsection the
playout strategies for the ghosts and Pac-Man are detailed.
The strategies were designed to ensure that any time Pac-
Man does not survive the playout (Subsection IV-D), it is due
to all possible paths being blocked by ghosts. Therefore, the
Ssurvival score stored at nodes in the tree can be considered
as an indicator of the probability of a pincer move occurring
along the path [10].



GHOST PLAYOUT STRATEGY. The goal of the ghosts is to
trap Pac-Man in such a way that every possible move leads
to a path blocked by a ghost, i.e. a pincer move. The ghosts
therefore are assigned a random target-location vector ~target
that determines whether an individual ghost is to approach the
front or rear of Pac-Man.

Ghosts move based on an ε-greedy strategy [24, 25]. With
a probability ε = 0.05 at each turn, a ghost makes a random
move. With probability 1− ε the ghosts move according to
strategic rules, derived from the rules proposed in [10]. For the
ghosts there are two exclusive cases to consider, i.e. not-edible
or edible, when selecting a move during playout. Moreover,
there is a third case which overrules a selected move in any
case.

Case 1, if ghost gi is not edible. A move is selected
according to the following rules:

1) If the ghost can make a move that can immediately trap
Pac-Man it is performed.

2) If a move, that is a Last-Good-Reply, is available based
on Pac-Man’s last junction, it is performed.

3) If the ghost is in the immediate vicinity of Pac-Man, i.e.
within 10 distance units, the ghost moves along the next
direction of the shortest path to Pac-Man.

4) If the ghost is on a junction directly connected to the
edge that Pac-Man is located on, the ghost chooses the
move that leads to this edge.

5) Otherwise, the ghost moves closer to the assigned target
location. Based on the value of ~targeti this is either the
nearest junction in front or behind Pac-Man.

Fig. 4. Ghosts chasing Pac-Man from similar distance and location.

Case 2, if ghost gi is edible, a move is chosen that
maximises the distance between him and Pac-Man.

Case 3, if a ghost is to move on an edge currently occupied
by another ghost moving in the same direction, the move is
eliminated from the ghost’s selection and a different move
is selected randomly. This policy ensures that ghosts are
spread out through the maze, increasing their possible trapping
or catching locations. It also prevents multiple ghosts from
chasing Pac-Man at the same (or similar) distance and location
shown in Figure 4.

PAC-MAN PLAYOUT STRATEGY. Moves made by Pac-Man
are prioritised based on safety and possible reward. When

more than one move has the highest priority, a random tie-
breaking rule is applied. Before discussing the strategy in
detail, the concept of a safe move has to be defined first. A
safe move is any move that leads to an edge which:
• Has no non-edible ghost on it moving in Pac-Man’s

direction.
• Next junction is safe, i.e. in any case Pac-Man will reach

the next junction before a non-edible ghost.
During the playout Pac-Man moves according to the fol-

lowing set of rules. If Pac-Man is at a junction the following
rules apply, sorted by priority:

1) If a safe move that is a Last-Good-Reply is available, it
is performed.

2) If a safe move leads to an edge that is not cleared, i.e.
contains any number of pills, it is performed.

3) If all safe edges are cleared, select a move leading to a
safe edge.

4) If no safe moves are available, a random move is
selected.

If Pac-Man is on an edge, she can either choose to maintain
her current path or reverse course. The following rules consider
the cases when Pac-Man is allowed to reverse:
• There is a non-edible ghost heading for Pac-Man on the

current path.
• A power-pill was eaten, in this case the move which leads

to the closest edible ghost is selected.
• A ghost in the edible state was eaten, the move which

leads to the next closest edible ghost is selected.
In any other case Pac-Man continues forward along the current
edge. Note that, if Pac-Man previously chose to reverse on the
current edge, she may not reverse again until she reaches a
junction.

G. Backpropagation

Results are back-propagated from the expanded leaf node
to the root based on maximum backpropagation [18]. Scores
stored at each node represent the maximum scores of its
children based on vi according to the current tactic (Subsection
IV-B). Whereas most games use average backpropagation,
maximisation is chosen since each move at a junction can have
altogether different results [10]. For example, at a junction
Pac-Man has two options to move. A decision to go left may
lead to a loss of life for Pac-Man in all playouts, whereas a
choice to go down is a determined to be safe in every playout.
When using averaged values, the resulting survival rate is 0.5,
whereas maximum backpropagation results in the true survival
rate of 1.

H. Endgame Tactics

During the final moments in a maze, or when Pac-Man is
located in an isolated area of the maze, the nearest possible
reward, i.e. an edible ghost or a pill, may be out of the search
tree’s range (Figure 5). These cases are considered as the
endgame, Pac-Man will no longer be motivated to choose one
move over another due to the lack of rewards. This leads



Fig. 5. Example of an endgame situation, maze time > 2000 and the nearest
pill is outside the search tree’s range.

to a continuous fall back to the survival tactic as defined
in Subsection IV-B. This is problematic because the survival
tactic only provides motivation when Pac-Man is in danger of
being eaten by the ghosts. In this case, the endgame tactic is
applied when one of the following criteria holds:

1) No move could be selected based on the active tactic for
5 consecutive moves, i.e. Spill = 0 or Sghost = 0.

2) The maze time > 2000, i.e. the time Ms. Pac-Man was
in the current maze is higher than 2000 time units.

When the endgame tactic is active, similar to [7] and [9] a
target location is selected based on a heuristic evaluation of
the game state. The pseudo-code for the algorithm used to
select the current target t is listed in Algorithm 1. A new
target is selected each time Pac-Man is at a junction.

When a target is set, at the end of the playout phase Rpill
(Subsection IV-D) is replaced by:

Rtarget =


0 ∆Dist ≤ 0
∆Dist ∆Dist > 0
1 Target location was reached

where ∆Dist is the normalised difference in distance to t at
the start and end of the playout.

If the endgame tactic was only applied for the first reason,
thus maze time< 2000, it is possible to terminate the endgame
tactic, returning to one of the default tactics discussed in
Subsection IV-B. This occurs when a move is selected with a
score, Spill or Sghost based on the active tactic, of at least 0.5,
implying that there is again sufficient motivation to select a
move based on one of the default tactics.

Algorithm 1 Select endgame target t
if edible ghost in range then

t← nearest edible ghost
else if power pill available then

t← nearest power pill
else

t← nearest pill
end if

V. EXPERIMENTS

In the following subsections the experimental setup will be
detailed, and experimental results discussed.

A. Experimental setup

The MCTS PAC-MAN agent was implemented using the
framework provided by the Ms Pac-Man vs Ghosts competition
[2]. Furthermore, an MCTS GHOST TEAM using enhance-
ments within the MCTS framework discussed in this paper
was developed. The MCTS GHOST TEAM uses the strategic
playout and tactics discussed in this paper. However, due to
the difference in goals and implementation between Pac-Man
and the ghost team, the MCTS GHOST TEAM uses a constant
depth tree of 5 nodes, no endgame tactics, and adjusted long-
term goals.

The version of the Ms Pac-Man game framework used
is WCCI12 1.1. It includes pre-computed distances for the
four mazes, providing a fast method for determining shortest
paths and distances. Both the framework and the agent were
developed in Java.

Results are comprised of the average, maximum and mini-
mum score, the average number of lives remaining and average
maze reached at the terminal state of the game. Average
scores are rounded to the nearest integer. Each time 100 runs
are performed, allowing the agents the official 40ms. to run
playouts and compute a move.

The following values, determined by trial-and-error, were
used for the parameters discussed in the paper: the minimum
survival rate Tsurvival = 0.7, the maximum variable tree depth
Tpath = 55, the maximum time units per playout phase Ttime =
80, and a UCT constant C = 1.5 was used.

To determine the influence of the proposed enhancements,
results are compared to agents with a single enhancement
disabled. Additional experiments are run using agents with, 1)
a fixed node depth-limit, 2) no endgame tactic, 3) a randomised
playout strategy, and 4) the Last-Good-Reply policy disabled.

B. Results

Experiments were run to evaluate the performance of the
MCTS PAC-MAN agent against the benchmarking ghost team
LEGACY2THERECKINING (LEGACY2) provided by the com-
petition framework. Furthermore, the agent’s performance is
tested against the MCTS GHOST TEAM developed using the
framework discussed in this paper.

Table I shows the resulting scores of our MCTS PAC-
MAN agent versus the benchmarking team LEGACY2 and
the MCTS GHOST TEAM. For comparison the same ghost
teams played 100 games against the STARTER PAC-MAN
agent which uses a limited rule set. From this we can conclude
that the MCTS GHOST TEAM outperforms LEGACY2 when
playing against both the MCTS PAC-MAN and STARTER
PAC-MAN agents. Moreover, it is clear that the MCTS PAC-
MAN agent outperforms the STARTER PAC-MAN by far.

Currently, no official competition results in which the
WCCI12 1.1 version of the Ms Pac-Man framework was used
exist. Past competitions used a similar framework, including



TABLE I
ACHIEVED SCORES, 100 GAMES

Pac-Man agent: MCTS PAC-MAN

Ghost Team Avg. Max. Min. 95%
agent score score score conf. int.

LEGACY2 107,561 127,945 40,495 2,791
MCTS GHOST TEAM 36,477 65,195 2,830 2,498

Pac-Man agent: STARTER PAC-MAN

Ghost Team Avg. Max. Min. 95%
agent score score score conf. int.

LEGACY2 4,260 9,050 1,460 280
MCTS GHOST TEAM 2,799 5,980 1,040 211

the benchmarking ghost team LEGACY2. However, it is not
the case that the underlying data structures provided in the
current version of the software provide an unfair advantage
to either the ghost team or Pac-Man. Moreover, since the
LEGACY2 ghost team’s rule-base has remained the same, a
rough comparison may be drawn. In Table II, the top-3 scoring
Pac-Man controllers during the CIG’11 [26] are presented
with their achieved scores versus the LEGACY2 ghost team.
Because the results of these agents differ substantially from
our MCTS PAC-MAN agent it is safe to conclude that the
performance has increased. An average performance gain of
40,962 points, based on the top scoring Pac-Man agent during
the CIG’11, is achieved by our MCTS agent.

TABLE II
CIG’11 RANKINGS, 10 GAMES

Ghost Team: LEGACY2

Pac-Man Avg. Max. Min. 95%
agent score score score conf. int.

1 SPOOKS 66,599 76,080 35,270 7,378
2 PHANTOMMENACE 56,313 88,090 30,350 13,311
3 ICEPAMBUSH CIG11 20,619 29,320 9,160 4,384
- MCTS PAC-MAN 107,561 127,945 40,495 2,791

To test the proposed enhancements for the MCTS agent, 100
games per enhancement were played against the LEGACY2
ghost team. The enhancements were individually disabled or
defaulted by the following:
• The playout strategy was replaced by a random strategy

for both the ghosts and Pac-Man. That is, Pac-Man cannot
reverse and chooses each move randomly, and the ghosts
choose the path that leads closer to Pac-Man.

• A constant tree-depth of 4 ply, determined by trial-and-
error, replaces the variable depth tree enhancement.

• The Last-Good-Reply (LGR) policy was disabled.
• The endgame tactic was disabled altogether. Only the

default strategies can be used when selecting a move.
Results of these games are shown in Table III. Note that the
Long-Term goals were not disabled in any test, as there is no
immediate default policy for scoring playouts.

The random playout has the largest impact on overall
scoring, since MCTS is dependent on the results of its playouts
to determine the best move. It is followed by the constant

tree-depth, which causes discrepancies when determining the
scoring potential and survival rate over each path in the tree.

Both the LGR policy and endgame tactic have a low
impact on the results, lives remaining, and maze reached.
However, it is likely that against more advanced ghost teams
these enhancements play a more important role. Because the
LEGACY2 ghost team was not designed to trap Pac-Man, the
increase in performance may be lower than were the agent to
perform against more intelligent ghost teams.

According to Table IV, for both the disabled random
playouts and constant tree depth, the number of remaining
lives at the end of each run, and the average maze reached
is lower. Implying increased survivability of the agent due to
these enhancements.

TABLE III
DISABLED ENHANCEMENTS, SCORES, 100 GAMES

Ghost Team: LEGACY2, Pac-Man agent: MCTS PAC-MAN

Enhancement Avg. Max. Min. 95%
disabled score score score conf. int.

Strategic playout 44,758 65,270 11,900 2,310
Var. depth tree 101,836 124,925 43,595 3,326

Last-Good-Reply 105,723 125,885 45,830 2,964
Endgame tactic 108,020 125,440 40,945 2,551

MCTS PAC-MAN 107,561 127,945 40,495 2,791

TABLE IV
DISABLED ENHANCEMENTS, STATISTICS, 100 GAMES

Ghost Team: LEGACY2, Pac-Man agent: MCTS PAC-MAN

Enhancement Avg. lives 95% Avg. level 95%
disabled remaining conf. int. reached conf. int.

Strategic playout 0.55 0.19 12.76 0.70
Var. depth tree 1.21 0.24 14.32 0.53

Last-Good-Reply 1.78 0.25 15.01 0.45
Endgame tactic 1.70 0.24 15.21 0.39

MCTS PAC-MAN 1.76 0.25 15.19 0.41

VI. CONCLUSION & FUTURE RESEARCH

The discussed enhancements for the Monte-Carlo Tree
Search (MCTS) framework have resulted in a Pac-Man
agent achieving a high score of 127,945 points versus the
LEGACY2THERECKONING ghost team. Regarding the results
of previous competitions, an average performance gain of
40,962 points, based on the top scoring Pac-Man agent during
the CIG’11, is achieved by our MCTS agent. Additional
experiments reveal that the variable depth tree and strategic
playout ensure the highest increase in performance. Although
the endgame tactics and Last-Good-Reply policy did not
increase the final scores significantly, they may be crucial to
competing with more advanced ghost teams. However, it is
possible that when the playout strategy is further improved,
LGR will have less effect on overall scores. Based on the
results we may conclude that the MCTS framework makes
strong Pac-Man agents possible.

The performance of the MCTS agent could be improved
by using Heat-maps [10] to determine the most dangerous



locations in a maze to enhance the pill-reward. Furthermore,
although the proposed ghost playout strategy is designed to
maximise the possibility of a pincer-move, ghosts do not al-
ways capture Pac-Man when possible in playouts. To improve
the playout-phase further two improvements could be made. 1)
N-Grams [27], when applied to the playout phase may improve
the possibility of Pac-Man being caught whenever possible,
increasing the confidence of the safety of moves in the search
tree. 2) The knowledge rules of fast rule-based agents from the
upcoming competitions could be used if they perform well.
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