
Resource-Gathering Algorithms
in the Game of StarCraft

Martin L.M. Rooijackers and Mark H.M. Winands
Games & AI Group, Department of Data Science and Knowledge Engineering

Maastricht University, Maastricht, The Netherlands
Email: mlm.rooijackers@student.maastrichtuniversity.nl, m.winands@maastrichtuniversity.nl

Abstract—StarCraft is a real-time strategy game, which has a
large state space, and commonly features two opposing players,
capable of acting simultaneously. One of the aspects of the
game is resource gathering. Each agent playing StarCraft has to
gather minerals from nearby mineral field in order to produce
more units. The more resources can be gathered, the larger the
army is to attack the opponent and win the game. We present
five algorithms that can be used for resource gathering for an
intelligent agent playing the game of StarCraft: Brood War. The
results reveal that improving the scheduling or the pathfinding
improve the resource gathering considerably.

I. INTRODUCTION

StarCraft is a popular real-time strategy (RTS) game for
testing AI. One of the aspects of StarCraft is resource gath-
ering. Christensen et al. [1] showed that there is a correlation
between spending resources and winning the game. Therefore,
to increase the chance of a StarCraft agent winning the game, it
is useful to increase its resource-gathering rate. Since the field
of RTS AI is still relatively new [2], there has not been much
study on the factors involved in the resource-gathering rate.
Previous work by Wintermute et al. [3] has studied the effects
of collision avoidance on the resource gathering rate in RTS
games. Christensen et al. [1] showed that using a scheduling
algorithm can also improve the resource-gathering rate.

In StarCraft, worker units gather the mineral resources
[4]. The built-in resource-gathering algorithm used for mineral
gathering in the game StarCraft is not optimal [1]. In this paper
we look at several different resource-gathering algorithms and
evaluate them based on how many minerals are gathered in an
experimental setup.

This paper is structured as follows. First, Section II gives
the problem definition of the resource-gathering task. Next,
Section III describes five resource-gathering algorithms. Sub-
sequently, Section IV presents the experimental results. Finally,
Section V draws conclusions from the results and outlines
future research.

II. PROBLEM DEFINITION

This section follows closely the problem definition that
Christensen et al. [1] used for their resource-gathering algo-
rithm.

As input, there is a set of worker units A = {ai|i =
1, . . . , n} and a set of mineral fields M = {mj |j = 1, . . . , l}
in a two-dimensional Euclidean space [1]. Each mineral field
mj has a certain amount of minerals rj ∈ Z+. The goal of

each resource-gathering algorithm presented in this paper is to
gather as many minerals within a given time. We define T to
be the total time that is required to perform every gathering.
A resource-gathering algorithm selects a subset S ⊆ G of
gathering tasks G = A ×M for each worker unit such that
the total amount of minerals R =

∑l
j=1 rj is gathered in a

minimal time T .

The worker units have a fixed maximum capacity for
carrying mineral rk. They collect ra = min(rk, rj) from a
mineral field before returning to a resource depot D to unload
their minerals [1]. The time required for the actual gathering
is a constant C. For each mineral field mj there is exactly
one mineral-field queue Qj . It consists of a set of worker
units that collect minerals from this mineral field. A mineral-
field queue is defined as a totally ordered set of worker units
Qj = {ah ∈ A|h = 1, . . . , zj}, ∀ah

∈ Qj =⇒ ah /∈ Qk

where j 6= k such that each worker unit is assigned to at
most one mineral-field queue at a time. When a worker unit
has finished collecting minerals, it is removed from the queue.
The first element a1 ∈ Qj is the worker unit that can use
the mineral field first. A gathering task si,j is completed in a
round-trip time ti,j after worker unit ai travels from D to a
mineral field mj , possibly waits there, collects resources and
goes back to D. Formula 1 gives the calculation of the round-
trip time [1],

ti,j = ttiD,j +max[0, rtj − ttiD,j] + C + ttij,D (1)

where ttiD,j is the time required for the worker unit ai to
travel from depot D to the mineral field mj . Variable rtj is
the remaining time for mineral field mj to become available
after all preceding worker units have finished their work in
queue Qj . Therefore, the waiting time of a worker unit ai is
equal to the remaining time for the queue to become empty,
rtj , minus the time that has already been spent traveling. The
constant collecting time C is added along with the travel time
ttij,D for returning to the deposit.

By using mineral-field queues, it is possible to determine
the best mineral field to send worker units in order to minimize
the time required for the worker unit to return to D with an
amount of minerals [1]. Formula 2 defines the remaining time
for a worker unit h in queue Qj to finish gathering a mineral
field mj . Variable c refers to the remaining collection time of
the first worker unit in the queue, a1 ∈ Qj where 0 ≤ c ≤ C.

rthj =

{
tthD,j + ch for h = 1
rth−1j +max[0, tthD,j − rth−1j] + C for h 6= 0

(2)

The required time for worker units ahead of a given worker
unit for finishing the collection of minerals from a field is
included in the recursive definition of rthj . The total time of
Qj is therefore rtj = rt

zj
j , meaning the time required for the

last worker unit in Qj to finish gathering the resource. The time
required for a worker unit to finish its gathering is dependent
on the time required for the preceding worker unit, as gathering
cannot occur before the preceding worker unit has finished its
gathering. The time required for the first worker unit in the
queue, rt1j , does not depend on any preceding worker unit as
there are none.

In StarCraft a worker unit starts gathering when it sends
an action to the game engine that gives a gather command for
a particular mineral field. In order for a worker unit to stay at
that field it has to continuously send that action.

III. RESOURCE GATHERING

Whenever a worker unit is created or has returned mineral
to a resource depot, it uses a resource-gathering algorithm to
determine the next resource location to gather resources from.
By default, the StarCraft engine tells the worker unit to go to
the previous mineral field location. The idea of a resource-
gathering algorithm is that it calculates the next resource
location that the worker should go to in order to maximize
the total amount of resources gathered.

We discuss five different resource-gathering algorithms1

in this section: Built-in (III-A), Mineral-lock (III-B), Queue
Based Scheduling (III-C), Co-operative pathfinding (III-D),
and Co-operative pathfinding + Queue (III-E).

A. Built-in

The first algorithm called Built-in uses the default way that
StarCraft handles worker units. The algorithm is only used
for worker units that are not assigned to a mineral field. If
upon arrival the mineral field is blocked, the worker unit is
unassigned from that mineral field and the Built-in is called.
If all mineral fields are blocked, then the worker unit waits at
the closest mineral field.

The pseudocode can be found in Algorithm 1. This al-
gorithm makes use of a function dist(worker,mineral) that
gives the Euclidean distance between a worker and a mineral.

Strong points:

• Low CPU requirements.

• Low number of actions needed.

For each worker unit a, one only has to iterate over all
mineral fields M twice in the worst case, when assigning
a worker unit. Since the total number of worker units is
usually between double or triple the number of mineral fields
(2M ≤ A ≤ 3M), the total running time is low. Compared
to other algorithms whose running time is linearly affected by
the total number of other worker units, Built-in has the lowest
CPU requirement of all algorithms tested.

1The implementation of each algorithm can be found at:
github.com/MartinRooijackers/LetaBot/tree/master/
Research/MineralGatheringAlgorithm

Algorithm 1 Built-in
procedure BUILT-IN(Q,M)

Input: Q1, . . . , Q|M |: resource site queues
Input: M : resource sites
for all ai /∈

⋃|M |
j=0 Qj do

best ← 0
distance ←∞
for all x ∈ 1 . . . |M | do

if |Qx| = 0 then
if dist(ai,Mx) < distance then

distance ← dist(ai,Mx)
best ← x

end if
end if

end for
if best 6= 0 then

Qbest ← Qbest ∪ {ai}
else

for all x ∈ 1 . . . |M | do
if |Qx| 6= 0 then

if dist(ai,Mx) < distance then
distance ← dist(ai,Mx)
best ← x

end if
end if

end for
Qbest ← Qbest ∪ {ai}

end if
end for

end procedure

Because Built-in only has to send one action to start the
gathering process, the total number of actions performed by
this algorithm is also low. This is useful since the game
StarCraft does not allow unlimited actions when playing multi-
player (it stops processing commands when the network buffer
is full).

Weak points:

• Sub-optimal resource assignment. Resulting in a low
amount of resources gathered.

Built-in does not gather many minerals due to the fact that
the worker units do not (directly) take the actions of other
worker units into account. This is because of that a mineral
field only allows one worker unit to gather minerals from it
at a time. An example of a sub-optimal schedule would be
the case where two worker units go to the same mineral field
even though another mineral field will become available soon
to allow both worker units to gather at different mineral fields.

B. Mineral-lock
The second algorithm (Mineral-lock) is implemented in

several StarCraft agents (e.g., UALBERTABOT, ORIKATA).
This algorithm evenly distributes the worker units over all the
mineral fields part of the base.

The pseudocode can be found in Algorithm 2. This
algorithm also stores for each worker which mineral field it
is assigned to in ai,mineral. By default, ai,mineral is equal to
0 to indicate that no mineral field has been selected yet.

Algorithm 2 Mineral-lock
1: procedure MINERAL-LOCK(Q,M,D)
2: Input: Q1, . . . , Ql: resource site queues
3: Input: M : resource sites
4: Input: D: resource depot
5: for all ai /∈

⋃|M |
j=0 Qj do

6: minWorker ←∞
7: for all x ∈ 1 . . . |M | do
8: if |Qx| < minWorker then
9: minWorker ← |Qx|

10: end if
11: end for
12: minTravelT ime ←∞
13: choice ← 0
14: for all x ∈ 1 . . . |M | do
15: if (ttix,D+ttiD,x) < minTravelT ime∧|Qx| =

minWorker then
16: minTravelT ime ← (ttix,D + ttiD,x)
17: choice ← x
18: end if
19: end for
20: ai,mineral ← choice
21: Qchoice ← Qchoice ∪ {ai}
22: end for
23: for all ai ∈ A do
24: if ai,mineral 6= 0 then
25: gather(ai, ai,mineral)
26: end if
27: end for
28: end procedure

Strong points:

• Low CPU requirements.

For each worker unit, one only has to iterate over all mineral
fields twice. Once to check how many workers are already
assigned to it, and the second time to calculate which of the
potential mineral fields is closest to the resource depot. This
brings the running time for each worker unit to 2|M | + |A|.
Since the total number of worker units is usually between
double or triple the number of mineral fields (2|M | ≤ |A| ≤
3|M |), there is in practice not much more CPU required than
the Built-in algorithm.

Weak points:

• High number of actions required.

• Not an optimal resource setup (but still better than
Build in). Resulting in a low number of resources
gathered.

Since Mineral-lock has to send an action every time that the
worker unit moves away from its assigned mineral field (i.e.,
when it has to wait for other worker units), the total number of
actions performed by this algorithm tends to be high. This is
a problem since the game StarCraft does not allow unlimited
actions when playing multi-player, because it stops processing
commands when the network buffer is full.

The worker assignment is not optimal since there is a
possibility that a worker unit would have been better off going

to a different mineral field for one round since that mineral
field would be available earlier. This is caused by the fact that
this algorithm does not take the schedule of other worker units
into account.

C. Queue Based Scheduling

The third algorithm called Queue Based Scheduling is an
approach proposed by Christensen et al. [1]. It attaches queues
to each mineral field. After a worker unit has delivered its
resources to the depot, the algorithm determines the queue that
allows the worker unit to start harvesting as fast as possible
[1]. It is a greedy approach, as it does not take into account
other worker units arriving after the current worker unit.

The algorithm relies on two functions. The main function
is in Algorithm 4. This function checks for each worker unit
if it is assigned to a queue. If not, then it will pick the queue
where the worker unit gets to mine the fastest. Calculating how
long it will take for the worker unit to be able to start gathering
minerals is done in Algorithm 3. This algorithm, called Work,
checks at what position a worker unit is in the queue. It uses
that to determine how much work needs to be done before the
worker unit can gather from the mineral field associated with
queue Q.

Algorithm 3 Work
1: procedure WORK(Q, a)
2: w ← 0 . workload of the queue
3: p ← position of a in Q
4: if p = 0 then
5: return ttiD,j + C
6: end if
7: w ← w+Work(Q, ap−1)
8: if w > ttiD,j then
9: return w + C

10: else
11: return ttiD,j + C
12: end if
13: end procedure

Algorithm 4 Queue
1: procedure QUEUE(Q,M,D)
2: Input: Q1, . . . , Q|M |: resource site queues
3: Input: M : resource sites
4: Input: D: resource depot
5: for all ai /∈

⋃|M |
j=0 Qj do

6: time ←∞
7: for all x ∈ 1 . . . |M | do
8: A← Qx ∪ {ai}
9: if Work(A, ai) + ttix,D < time then

10: time ← Work(A, ai) + ttix,D
11: best ← x
12: end if
13: end for
14: Qbest ← Qbest ∪ {ai}
15: end for
16: end procedure

Strong points:

• Good approximation of the optimal resource setup.

Because Algorithm 4 takes into account the schedule of other
worker units, it produces schedules that are closer to being
optimal than the Mineral-lock and the Built-in algorithm.
The scheduling is performed greedy, so it still remains an
approximation, and thus is not the optimal schedule.

Weak points:

• Medium CPU requirements.

• Not always an optimal resource setup. Total number
of resources gathered could be improved.

• Medium number of actions needed.

When calculating the next mineral field assignment, this al-
gorithm has to calculate the total amount of work needed
for each mineral field, which is related to the total number
of worker units already assigned to the mineral field. Unlike
the Mineral-lock algorithm, which only takes into account the
distance from the resource depot to the mineral field, the queue
algorithm has to calculate the distance for each worker unit.

This queue based approach is also greedy due to the fact
that it only looks at the present situation when assigning a
worker unit. It does not take into account any other worker
units that are about to return their resource. Therefore it can
be the case that the next worker unit will receive a sub-
optimal mineral assignment due to the greedy scheduling of
the worker unit that was scheduled before it. The pathfinding to
the mineral field is also not optimal in this algorithm, because
this queue algorithm uses the default pathfinding to get the
worker units to the minerals.

Since this algorithm needs to send an action every time
that the worker unit moves away from its assigned mineral
field (i.e., when it has to wait for other worker units), the total
number of actions performed by this algorithm tends to be
high. However, since it has a more optimal schedule than the
Mineral-lock, this occurs less often.

D. Co-operative Pathfinding

In StarCraft Brood War, the path that the worker units take
to the mineral field is not optimal. In this section we propose
two techniques to improve the pathfinding of worker units. The
goal of both techniques is to reduce the time that it takes to
travel to a mineral field. Reducing the time to travel from the
mineral field to the resource depot is left as future research.

Both techniques are based on the fact that worker units
slow down when they approach the mineral field that they are
assigned to. Instead of going directly to the mineral fields, both
techniques send the worker unit to a position slightly beyond
the mineral field and change direction when the worker unit
is close enough to its assigned mineral field. Both techniques
rely on knowing the mineral orientation, which is explained in
Subsection III-D1.

The first technique is called MineralPath and uses a mineral
field further away as the intermediate position. This has the
advantage of the worker unit not needing extra collision

avoidance, because worker units that go to any mineral field
will have their collision detection temporarily disabled. This
technique is described in Subsection III-D2.

The second technique is CalculatePath and uses empty
space beyond the mineral field as the intermediate position.
Since the worker is now no longer moving towards a mineral
field, we also use a method for collision avoidance. This
technique is described in Subsection III-D3.

In the following subsections we describe how to determine
what orientation each mineral field has in relation to the
resource depot. We also explain each technique individually.

1) Mineral Orientation: Determining how the minerals are
positioned in relation to the resource depot is important for
both techniques. Algorithm 5 determines how the worker units
approach a mineral field. The algorithm uses the maximum
distance of a mineral field belonging to a command center (i.e.,
10 tiles of 32 pixels). There are four orientations for a mineral
field: left(W), right(E), up(N), down(S) (see also Figure 1).

Fig. 1. Example of a Mineral Orientation calculation. The minerals are
divided into four sections. The red circles indicate the mineral fields that
are used to perform the MineralPath technique with the help of the nearby
mineral field with a yellow circle. The purple circles indicate the location of
the empty-path trick.

2) MineralPath: The mineral-path technique relies on the
fact that a worker unit usually slows down when approaching
the mineral field it wants to harvest. Instead of going to that
mineral field, the worker unit first moves to a mineral field
further away, then changes direction once it is close to the
mineral field it wants to harvest. This is shown in Figure 1,
with the red circles indicating the mineral fields where the
mineral-path technique can be performed using the yellow
mineral fields as way points.

Algorithm 6 is called on each mineral field to determine if
it has a mineral-path technique. If so, the algorithm returns the
mineral field that can be used for the mineral-path technique.

3) CalculatePath: Besides the previous path technique that
uses another mineral field, the CalculatePath technique uses
the empty space beyond the mineral field. This is called the

Algorithm 5 MineralOrientation
1: procedure ISLEFT(a, b, c) . Check if a point in a 2d

plane is left of the line ab
2: return ((bx−ax)·(cy−ay)−(by−ay)·(cx−ax)) ≥ 0
3: end procedure
4: procedure MINERALORIENTATION(D,mineral)
5: Input: D: resource depot
6: Input: mineral: mineral field to calculate a path for
7: TopLeft ← (Dx − 320, Dy − 320)
8: BottomRight ← (Dx + 320, Dy + 320)
9: BottomLeft ← (Dx − 320, Dy + 320)

10: TopRight ← (Dx + 320, Dy − 320)
11: isUpLeft ← false
12: isBotLeft ← false . Short for bottom left
13: if isLeft(TopLeft,BottomRight,mineral) then
14: isBotLeft ← true
15: end if
16: if isLeft(BottomLeft, TopRight,mineral) then
17: isUpLeft ← true
18: end if
19: if isBotLeft = true ∧ isUpLeft = false then
20: return down . below the resource depot
21: end if
22: if isBotLeft = true ∧ isUpLeft = true then
23: return left . to the left of the resource depot
24: end if
25: if isBotLeft = false ∧ isUpLeft = true then
26: return up . to the above of resource depot
27: end if
28: if isBotLeft = false ∧ isUpLeft = false then
29: return right . right the resource depot
30: end if
31: end procedure

“empty space trick”. Algorithm 7 describes this technique. An
example is given in Figure 1.

For this the worker units do have to take into account other
worker units, since a move command causes the worker unit
to lose its ability to float over other units. Therefore, it avoids
collisions. This is done by mapping all the tiles that are 3 tiles
away from a worker unit as inaccessible. If a worker unit wants
to perform this trick, it will only try to do so when it is not
on an inaccessible tile (see also Algorithm 8, lines 30-36).

4) CoopPath: With the mineral path and empty space
known for each mineral, the algorithm CoopPath can improve
the path for each worker unit assigned to a mineral field where
that is possible (see also Figure 2). In terms of scheduling,
this pathfinding algorithm uses the same approach as Mineral-
lock. In case the mineral field can both use the mineral-path
technique and the empty space trick, the worker unit will prefer
the former. This algorithm uses the function TileDist(a, b)
(from the BWAPI), which gives the distance in tiles between
a and b.

Strong points:

• Reduced travel time.

The main advantage to using Co-operative Pathfinding is that
it reduces the travel time to a mineral field. Because of the

Algorithm 6 MineralPath
1: procedure MINERALPATH(D,M,mineral)
2: Input: D: resource depot
3: Input: M : resource sites
4: Input: mineral: mineral field to calculate a path for
5: Orientation ← MineralOrientation(D,mineral)
6: for all m ∈M \ {mineral} do
7: if dist(m,mineral) < 64 then
8: if Orientation = left then
9: if mineralx > mx then

10: return m
11: end if
12: end if
13: if Orientation = right then
14: if mineralx < mx then
15: return m
16: end if
17: end if
18: if Orientation = up then
19: if mineraly > my then
20: return m
21: end if
22: end if
23: if Orientation = down then
24: if mineraly < my then
25: return m
26: end if
27: end if
28: end if
29: end for
30: return NULL . no mineral field found for trick
31: end procedure

lower time spend traveling, the worker units can deliver more
minerals per minute compared to Built-in.

Weak points:

• High CPU requirements.

• Not always an optimal resource setup. Total number
of resources gathered could be improved.

• Large number of actions needed.

Because of the need to calculate the path, and the posi-
tion of other worker units to avoid collisions, this algorithm
requires more CPU than Built-in and Mineral-lock. This is
mainly due to the collision avoidance for CalculatePath. How-
ever, the results of the path calculations can be stored, and
since most StarCraft maps have only 2 minerals where the
empty space trick is possible, the collision avoidance will only
need to be called once each frame.

Although the travel time is reduced, the scheduling is still
not optimal. Therefore the total amount of minerals gathered
from this technique is not optimal.

Since Co-operative Pathfinding has to send an action every
time that the worker unit moves away from its assigned mineral
field or its generated path, the total number of performed
actions tends to be high. However, if the technique is not
possible for the given mineral field, the algorithm will behave
like Mineral-lock in terms of actions needed.

Algorithm 7 CalculatePath
1: procedure CALCULATEPATH(D,M,mineral)
2: Input: D: resource depot
3: Input: M : resource sites
4: Input: mineral: mineral field to calculate a path for
5: Orientation ← MineralOrientation(D,mineral)
6: OuterLeft ← false . check if the other mineral field

blocks the outer left or right
7: TotalAdjacent ← 0 . the technique only works with at

most one mineral field adjacent
8: for all m ∈M \ {mineral} do
9: if dist(m,mineral) < 64 then

10: TotalAdjacent ← TotalAdjacent+ 1
11: if Orientation = left then
12: if mineraly > my then
13: OuterLeft ← true
14: end if
15: end if
16: if Orientation = right then
17: if mineraly < my then
18: OuterLeft ← true
19: end if
20: end if
21: if Orientation = up then
22: if mineralx < mx then
23: OuterLeft ← true
24: end if
25: end if
26: if Orientation = down then
27: if mineralx < mx then
28: OuterLeft ← true
29: end if
30: end if
31: end if
32: end for
33: if TotalAdjacent > 1 then
34: return NULL . This technique is not possible for the

given mineral field
35: end if
36: if Orientation = left then
37: if OuterLeft = false then
38: return (mineralx − 32,mineraly − 32)
39: else
40: return (mineralx − 32,mineraly + 32)
41: end if
42: end if
43: if Orientation = right then
44: if OuterLeft = false then
45: return (mineralx + 32,mineraly + 32)
46: else
47: return (mineralx + 32,mineraly − 32)
48: end if
49: end if
50: if Orientation = up then
51: if OuterLeft = false then
52: return (mineralx + 32,mineraly − 32)
53: else
54: return (mineralx − 32,mineraly − 32)
55: end if
56: end if
57: if Orientation = down then
58: if OuterLeft = false then
59: return (mineralx + 32,mineraly + 32)
60: else
61: return (mineralx − 32,mineraly + 32)
62: end if
63: end if
64: end procedure

Algorithm 8 CoopPath
1: procedure COOPPATH(Q,M,D)
2: Input: Q1, . . . , Q|M |: resource site queues
3: Input: M : resource sites
4: Input: D: resource depot
5: for all ai /∈

⋃|M |
j=0 Qj do

6: minWorker ←∞
7: for all x ∈ 1 . . . |M | do
8: if |Qx| < minWorker then
9: minWorker ← |Qx|

10: end if
11: end for
12: minTravelT ime ←∞
13: choice ← 0
14: for all x ∈ 1 . . . |M | do
15: if (ttix,D+ttiD,x) < minTravelT ime∧|Qx| =

minWorker then
16: minTravelT ime ← (ttix,D + ttiD,x)
17: choice ← x
18: end if
19: end for
20: aimineral

← choice
21: Qchoice ← Qchoice ∪ {ai}
22: if MineralPath(D,M, choice) 6= NULL then
23: Qchoice,mp ← MineralPath(D,M, choice)
24: else
25: if CalculatePath(D,M, choice) 6= NULL

then
26: Qchoice,sp ← CalculatePath(D,M, choice)
27: end if
28: end if
29: end for
30: for all ai ∈

⋃|M |
j=0 Qj do

31: for all a ∈ A \ {ai} do
32: if TileDist(a, ai) < 3 then
33: Qj,sp ← NULL
34: end if
35: end for
36: end for
37: end procedure

E. Co-operative Pathfinding + Queue

The final algorithm is the combination of the Co-operative
Pathfinding and Queue Based Scheduling. Queue Based
Scheduling is used for the scheduling, and the Co-operative
Pathfinding is used for moving the worker units towards the
mineral fields. The pseudocode is given in Algorithm 9.

Strong points:

• Reduced travel time.

• Good approximation of the optimal resource setup.

• High resource gathering rate.

The combination of the Co-operative Pathfinding and the
Queue Based Scheduling ensures that both the travel time
and the scheduling can be improved. This is because of the
scheduling and the pathfinding are executed independent of
each other. Therefore the combination of both algorithms does
not have a negative effect on the overall minerals gathered.

Fig. 2. Example of co-operative pathfinding with collision avoidance
indicated by the red dots. The numbers on the mineral fields indicate travel
time. The purple circle indicates the location of the empty space trick.

Although both the scheduling and the pathfinding are not
optimal, combined they increase the gather rate more than all
the other algorithms discussed. It is possible to improve a
mineral gathering algorithm in terms of both pathfinding and
scheduling. Regarding pathfinding, it is sometimes the case
that the path from the mineral field to the resource depot can
be improved. Regarding scheduling, the queue based algorithm
uses a greedy scheduling that does not plan ahead.

Weak points:

• High CPU requirements.

• Large number of actions needed.

This algorithm requires both the CPU time for the Co-operative
pathfinding and the queue based algorithm. Therefore, it has
the highest CPU requirement of all the algorithms discussed.

Since this combined algorithm has to send an action every
time that the worker unit moves away from its assigned
mineral field or its generated path, the total number of actions
performed by this algorithm tends to be high. Although the
greedy scheduling might schedule less (or more) worker units
to mineral fields that use one of the path techniques, in practice
the actions needed are roughly the same as the Co-operative
Pathfinding since two worker units can usually saturate a
mineral field that uses a path technique. Thus both the standard
co-operative pathfinding and the version with a queue based
scheduler have not much difference in actions required.

IV. EXPERIMENTS

In the experiments of this paper, we use the top right part
of the map “Astral Balance” as the initial setup. This setup
includes the resource depot, four worker units, eight mineral
fields and a gas geyser. At the start of the experiment, each
worker unit is assigned a mineral field based on the current
algorithm that is evaluated in this experiment. After a worker
unit has returned its mineral back to the resource depot, it is
reassigned to a mineral field using the same algorithm. During
this process the resource depot should constantly build new
worker units until it has 18 worker units. Since the initial setup

Algorithm 9 QueueAndCoopPath
1: procedure QUEUEANDCOOPPATH(Q,M,D)
2: Input: Q1, . . . , Q|M |: resource site queues
3: Input: M : resource sites
4: Input: D: resource depot
5: for all x ∈ 1 . . . |M | do
6: m← Qx,mineral

7: if MineralPath(D,M,m) 6= NULL then
8: Qx,mp ←MineralPath(D,M,m)
9: else

10: if CalculatePath(D,M,m) 6= NULL then
11: Qx,sp ← CalculatePath(D,M,m)
12: end if
13: end if
14: end for
15: time ←∞
16: for all ai /∈

⋃|M |
j=0 Qj do . Every worker not

assigned to a mineral
17: for all x ∈ 1 . . . |M | do
18: A← Qx ∪ {ai}
19: if Work(A, ai) + ttix,D < time then
20: time ← Work(A, ai) + ttix,D . Function

Work from Algorithm 3
21: best ← x
22: end if
23: end for
24: Qbest ← Qbest ∪ {ai}
25: end for
26: for all ai ∈

⋃|M |
j=0 Qj do

27: for all a ∈ A \ {ai} do
28: if TileDist(a, ai) < 3 then
29: Qj,sp ← NULL
30: end if
31: end for
32: end for
33: end procedure

only allows a supply of 10 worker units, a worker unit has to
be pulled away from gathering minerals to build a supply depot
at a certain moment. In the experiments, we pull one worker
away from minerals when we have exactly nine worker units.
Once this worker unit has finished building a supply depot,
it is reassigned to gathering minerals using the algorithm that
is evaluated. The experiment ends when 8000 frames have
passed. In each frame, we record how many minerals have
been gathered by the worker units. In the case of the queue
based algorithms, we first pre-calculate the travel time to each
mineral field before we start the experiment. This experimental
setup is almost like the one used in Christensen et al. [1]. The
difference is that we run the experiment where the algorithm
builds the supply depot once there are nine worker units, since
this is a more common occurrence in most build orders.

The results of the total minerals gathered can be found
in Table I, their standard deviations are given in Table II.
The time an algorithm took each 1000 frame steps is given
in Table III. The tables reveal that the more computationally
expensive algorithms appear to gather more minerals. The
high computation time from the Co-operative Pathfinding is
due to checking collisions for all worker units. Tests with

TABLE I. TOTAL NUMBER OF MINERALS GATHERED IN TOTAL PER 1000 FRAMES. AVERAGE OF 20 RUNS.

Algorithm/Frames 1000 2000 3000 4000 5000 6000 7000 8000

Built-in 250 570 1010 1550 2158 2776 3398 4016
Mineral-lock 250 594 1066 1687 2408 3131 3860 4571
Queue 253 584 1066 1678 2405 3153 3904 4659
Co-op path 258 601 1084 1711 2444 3187 3927 4666
Co-op path + Queue 255 597 1090 1710 2431 3180 3931 4678

MineralPath 258 601 1086 1707 2443 3172 3909 4641

TABLE II. STANDARD DEVIATION IN MINERALS GATHERED PER 1000 FRAME STEP. STANDARD DEVIATION OF 20 RUNS.

Algorithm/Frames 1000 2000 3000 4000 5000 6000 7000 8000

Built-in 0.0 0.0 7.3 18.3 24.6 32.3 35.3 32.3
Mineral-lock 0.0 0.0 3.6 3.8 11.3 8.7 8.3 11.2
Queue 4.0 7.7 7.3 9.5 10.2 19.4 27.3 33.7
Co-op path 0.0 1.8 3.9 7.0 7.0 8.7 14.0 10.7
Co-op path + Queue 5.9 9.2 9.7 12.3 13.8 16.7 24.1 21.5

MineralPath 0 1.8 4.0 2.9 7.0 12.5 11.7 14.3

TABLE III. COMPUTATION TIME (MS.) PER 1000 FRAME STEP. AVERAGE OF 20 RUNS.

Algorithm/Frames 1000 2000 3000 4000 5000 6000 7000 8000

Built-in 1 2 3 3 5 5 6 7
Mineral-lock 2 5 9 14 20 25 31 39
Queue 7 22 45 81 132 197 275 367
Co-op path 2372 4784 7184 9571 11993 14390 16823 19271
Co-op path + Queue 2682 5436 8376 11471 14725 17972 21261 24494

MineralPath 7 16 31 46 64 80 97 114

only using the MineralPath part of the algorithm confirm
this (see last row Table III). In practice it would only be
necessary to check collisions with other worker units using
the CalculatePath, since other worker units rarely enter the
path given by this algorithm. We also observe that Built-in
has a high variance. This is because a worker unit goes to
a nearby mineral field if the current one is occupied, which
may differ. Letting the worker units wait as is done in Mineral-
lock gathers more than 14% than Built-in. Finally, it should be
noted that applying scheduling or using better pathfinding can
improve the resource gathering rate significantly. Combining
both techniques appears to give a small edge.

A. Discussion

In bot tournaments (like the CIG StarCraft AI tournament),
most bots use the Built-in algorithm. In general, the top bots
(e.g., UALBERTABOT) use the Mineral-lock algorithm. For
our bot LETABOT, winner of SCCAI 2014-2016, we use
only the MineralPath part of the Co-operative algorithm. The
tables reveal that this variant has a nice trade-off between
CPU time and mineral gathered. Queue Based Scheduling
is not incorporated in the LETABOT because it relies on a
good approximation of the travel time to a mineral field. The
Euclidean distance usually is not a good approximation for
this. Storing travel data is an alternative, which was used in
the experiment, but it relies on many runs. Pre-calculating the
map is only possible if the map pool is known beforehand.

V. CONCLUSIONS & FUTURE RESEARCH

In this paper, we have presented five algorithms, which
can be used for gathering resources in StarCraft. Improving
the pathfinding has the most increase in minerals gathered, but
using scheduling increases the minerals gathered significantly
as well. In general, the more CPU intensive algorithms can
gather more minerals, indicating a trade-off between CPU time
and the mineral gathering rate.

For future research, one possibility to increase the mineral
gathering rate even more is to use (limited) depth-first search
instead of a greedy algorithm for scheduling. By looking
ahead, it is possible to schedule the worker units better at the
expense of more CPU. In terms of the pathfinding, the route
back to the resource depot can be optimized as well. When a
worker unit goes back to the resource depot, it tends to slow
down as well when approaching the resource depot.

REFERENCES

[1] D. Christensen, H. O. Hansen, J. P. C. Hernandez, L. Juul-Jensen,
K. Kastaniegaard, and Y. Zeng, “A data-driven approach for resource
gathering in real-time strategy games,” in Agents and Data Mining
Interaction, ser. Lecture Notes in Computer Science, L. Cao, A. L. C.
Bazzan, A. L. Symeonidis, V. I. Gorodetsky, G. Weiss, and P. S. Yu,
Eds., vol. 7103. Springer, 2012, pp. 304–315.

[2] M. Buro, “ORTS A Hack-Free RTS Game Environment,” in Computers
and Games (CG 2002), ser. Lecture Notes in Computer Science, J. Scha-
effer, M. Müller, and Y. Björnsson, Eds., vol. 2883. Springer Berlin
Heidelberg, 2003, pp. 280–291.

[3] S. Wintermute, J. Xu, and J. E. Laird, “SORTS: A human-level approach
to real-time strategy AI,” in The Third AIIDE Conference, 2007, pp. 55–
60.

[4] S. Ontañón, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and
M. Preuss, “A Survey of Real-Time Strategy Game AI Research and
Competition in StarCraft,” Computation Intelligence and AI in Games,
IEEE Transactions on, vol. 5, no. 4, pp. 293–311, 2013.

