
Monte-Carlo Tree Search for the Game of Scotland Yard

J. (Pim) A.M. Nijssen and Mark H.M. Winands

Abstract— This paper describes how Monte-Carlo Tree
Search (MCTS) can be applied to play the hide-and-seek game
Scotland Yard. It is essentially a two-player game in which
the players are moving on a graph-based map. We show how
limiting the number of possible locations of the hider by using
information about the hider’s moves increases the performance
of the seekers considerably. We also propose a new technique,
called Location Categorization, that biases the possible locations
of the hider. The experimental results show that Location Cate-
gorization is a robust technique which significantly increases the
performance of the seekers in Scotland Yard. Next, we show how
to handle the coalition of the seekers in Scotland Yard by using
Coalition Reduction. This technique balances each seeker’s
participation in the coalition by letting them seek the hider
more greedily. Coalition Reduction improves the performance of
the seekers significantly. Furthermore, we explain how domain
knowledge is incorporated by applying ε-greedy playouts for
the hider and the seekers and move filtering to improve the
performance of the hider. Finally, we test the performance
of our MCTS program against a commercial Scotland Yard
program on the Nintendo DS. The results show that the MCTS-
based program plays stronger than this program.

I. INTRODUCTION

Over the last few years, Monte-Carlo Tree Search (MCTS)
[1], [2] has become increasingly popular for letting com-
puters play a wide variety of games. MCTS is a best-first
search technique which relies less on domain knowledge than
more traditional search algorithms like αβ-search [3] and
maxn [4]. Instead of using a heuristic evaluation function, it
applies Monte-Carlo simulations to guide the search. Bandit-
based reinforcement learning algorithms [2], [5] are applied
to recursively build the search tree. MCTS has proven its
strength in two-player games such as Go [6], Lines of Action
[7], Hex [8] and Amazons [9], multi-player games such
as Chinese Checkers [10] and one-player games such as
SameGame [11]. MCTS is also widely used for General
Game Playing [12].

A challenging domain for MCTS is the class of games
with imperfect information. In these games, information is
hidden from the players. In the past, MC-based approaches
have already been successfully applied to this class of games,
such as Bridge [13], Poker [14], Scrabble [15], and Klondike
Solitaire [16]. Recently, MCTS has been applied in imper-
fect information games as well. Ciancarini and Favini [17]
showed that MCTS is able to deal with imperfect information
in the game of Kriegspiel, a variant of chess. However,
their techniques are domain specific and cannot directly be
applied to other types of games with imperfect information.
MCTS variants have also been applied in Poker to handle
the intricacies of the game [18], [19].

A subclass of games with imperfect information is the
class of hide-and-seek games. Hide-and-seek games are

played by two or more players in two teams: the hiders
and the seekers. The goal of the seekers is to capture the
hiders. The goal of the hiders is to avoid the seekers for as
long as possible. The seekers should obtain information on
the locations of the hiders throughout the game. The hide-
and-seek game we focus on in this paper is Scotland Yard.
Scotland Yard is a popular modern board game with a hide-
and-seek mechanism, which won the prestigious Spiel des
Jahres award in 1983. The seekers, called detectives, have
to determine the location of a mobile hider, called Mister X,
based on a limited amount of information. The seekers
should cooperate in a coalition to capture the hider. Because
there is only limited domain knowledge about Scotland Yard
available, it is difficult to construct an evaluation function for
an αβ- or expectimax-based algorithm. Therefore MCTS is
a promising approach to let a computer play this game.

In this paper we describe how MCTS can be applied to
handle imperfect information and fixed coalitions for Scot-
land Yard. We show how to use information about the hider’s
moves to prevent the seekers from investigating impossible
game positions. We also propose a new technique, called
Location Categorization. This technique allows the seekers
to make a more reliable prediction for the current location of
the hider. Next, we propose Coalition Reduction to handle the
cooperation of the seekers, which can be used to let the seek-
ers participate in the coalition more effectively. Furthermore,
we explain how to incorporate some rudimentary Scotland
Yard knowledge in MCTS. We discuss how to use ε-greedy
playouts for the seekers and the hider, and move filtering
for the hider. Finally, we evaluate the performance of our
MCTS-based program against a commercial Scotland Yard
program, published by DTP Young Entertainment GmbH &
Co. KG, for the Nintendo DS.

The paper is organized as follows. In Section II we give a
brief introduction to the game Scotland Yard. In Section III
we give an overview of MCTS. In Section IV we explain
how MCTS can be applied in Scotland Yard and which
enhancements are proposed. The experiments and results are
described in Section V. Finally, in Section VI we present the
conclusions based on the results, and some possible future
research topics.

II. SCOTLAND YARD

In this section we give an introduction to the game of
Scotland Yard. In Subsection II-A we give a brief background
on Scotland Yard and in Subsection II-B we explain the rules.

A. Background

The game of Scotland Yard was introduced in 1983. It
was developed by Manfred Burggraf, Dorothy Garrels, Wolf

 978-1-4577-0011-8/11/$26.00 ©2011 IEEE 158

115

102

67 68

84 85

69 53 54 55

70 71

8988

87
86

103

105

108

117116127

104

133140

126
Taxi
Bus
Underground
Boat

Fig. 1. A subgraph of the Scotland Yard map

Hörmann, Fritz Ifland, Werner Scheerer and Werner Schlegel.
The original version was published by Ravensburger, but the
game was also published for the English-language market by
Milton Bradley [20].

In 1998, Ravensburger Interactive Media GmbH developed
Scotland Yard program for Microsoft Windows, which was
published by Cryo Interactive Entertainment. It did not only
feature the original game, but also a computer enhanced
version which introduced some role-playing game elements.
Another Scotland Yard program was created in 2008. It
was developed and published by DTP Young Entertainment
GmbH & Co. KG and was released for the Nintendo DS.
The AI of this program is regarded as quite strong [21].

Only a limited amount of research has been done in
Scotland Yard so far. Doberkat et al. [22] applied prototype
evaluation for cooperative planning and conflict resolution.
Some of their proposed strategies are used in our MCTS
program. Sevenster [23] performed a complexity analysis on
Scotland Yard and proved that the generalized version of the
game is PSPACE-complete.

B. Rules

Scotland Yard is played by 6 players: 5 seekers, called
seekers, and 1 hider, called Mister X. Essentially, Scotland
Yard is a 2-player game, because the seekers work together
in one team with one common goal. The game is played on
a map consisting of numbered locations from 1 to 199. The
locations are connected by 4 different transportation types:
taxi, bus, underground and boat. A subgraph of the map is
displayed in Figure 1.

All players start with their pawn randomly placed at one
of the 18 possible pre-defined starting locations. Each player
starts at a different location. Each detective receives 10 taxi,
8 bus, and 4 underground tickets. Mister X receives 4 taxi,
3 bus, and 3 underground tickets.

The players move their pawn alternately, starting with
Mister X. A player moves his pawn along a connection
to an unoccupied adjacent location, and pays the ticket
corresponding to the chosen connection. Mister X receives
the tickets paid by the detectives. When Mister X pays a
ticket, it is removed from the game.

Additionally, Mister X receives 5 black-fare tickets and
2 double-move tickets. A black-fare ticket allows the use

Selection Expansion Playout Backpropagation

A selection
strategy is used
to traverse the
tree

One new node
is created

A simulation
strategy is
used to finish
the game

The result is
propagated
back in the
tree

Iterated N times

Fig. 2. MCTS scheme (slightly adapted from Chaslot et al. [24]).

of any transportation type, including the boat. Along with a
regular ticket, Mister X may also play one of his double-
move tickets. He can then perform two moves in a row.

During the game, Mister X keeps the location of his pawn
secret. Only on rounds 3, 8, 13, 18 and 24 he has to announce
his location. When Mister X moves, the detectives always get
informed which ticket he used.

The goal for the detectives is to capture Mister X by
moving one of their pawns to the location occupied by
Mister X. The goal for Mister X is to avoid being captured
until no detective can perform a move anymore. A detective
cannot move if he does not own a ticket which allows him to
leave his current location. The maximum number of rounds
in Scotland Yard is 24.

III. MONTE-CARLO TREE SEARCH

Monte-Carlo Tree Search (MCTS) [1], [2] is a search
technique that gradually builds up a search tree, guided
by Monte-Carlo simulations. In contrast to classic search
techniques such as αβ-search [3], it does not require a
heuristic evaluation function. In the MCTS tree, the nodes
represent board positions and the edges represent possible
moves. When the search process is started, the root node
is created which represents the current game position. The
MCTS algorithm consists of four phases [24]: selection,
expansion, playout and backpropagation (see Figure 2). By
repeating these four phases iteratively, the search tree is
constructed gradually. We explain these four phases in more
detail below.

Selection: In the selection phase, the search tree is
traversed, starting from the root, using the UCT selection
strategy [2]. The child i with the highest score vi in Formula
1 is selected.

vi = x̄i + C ×

√
ln(np)
ni

(1)

x̄i denotes the average score of node i. ni and np denote the
total number of times child i and parent p have been visited,
respectively. C is a constant, which balances exploration and
exploitation. This selection strategy is applied until a node is
reached that is not fully expanded, i.e. not all of its children
have been added to the tree yet.

Expansion: In the expansion phase, one node is added
to the tree [1]. At the last selected node in the selection phase,
this node is chosen randomly from the subset of children that
are not added to the tree yet.

159 2011 IEEE Conference on Computational Intelligence and Games (CIG’11)

Playout: During the playout phase, moves are played,
starting from the position represented by the newly added
node, until the game is finished. These may be random
moves. However, game knowledge can be incorporated to
make the playouts more realistic. This knowledge is incor-
porated in a simulation strategy [25], [26].

Backpropagation: In the backpropagation phase, the
result of the playout is propagated back along the previ-
ously traversed path up to the root node. The result is
backpropagated in a negamax-like fashion, similar to MCTS
implementations in Go [1].

These four phases are repeated either a fixed number of
times or until the time runs out. After the search is finished,
we select the robust max child, i.e. the child of the root with
the highest number of visits, as the best move [1].

IV. MCTS FOR SCOTLAND YARD

The basic MCTS algorithm is designed for two-player
games with perfect information. When using MCTS in a
game with imperfect information, the algorithm has to be
altered slightly. In Subsection IV-A we discuss how the
number of possible locations of the hider can be limited.
In Subsection IV-B we propose Location Categorization to
bias the remaining possible locations. Next, in Subsection IV-
C we explain how ε-greedy playouts are used to incorporate
knowledge in the playout phase. In Subsection IV-D we show
how to handle the fixed coalition of the seekers by using the
backpropagation strategy called Coalition Reduction. Finally,
in Subsection IV-E we describe move filtering that lets the
hider use his tickets more efficiently.

A. Limiting the possible locations

When MCTS is applied in a hide-and-seek game, at each
iteration of the algorithm a guess can be made concerning
the location of the hider. For the seekers in Scotland Yard,
this can be done by placing the hider on any of the empty
locations on the board. However, it is possible for the seekers
to limit the group of possible locations by removing the
locations where the hider cannot be located, based on the
information about the type of ticket he played.

The list of possible locations is updated every move. When
the hider plays a ticket, the new list of possible locations N
is calculated, based on the old list of possible locations M ,
the current locations of the seekers D, and the ticket t played
by the hider, using Algorithm 1. Note that at the start of the
game, M is initialized with the 18 possible starting locations,
minus the 5 starting locations of the seekers.

In this algorithm, the method targets(p, t) returns the list of
locations reachable from location p using ticket t. When the
hider surfaces, location(hider) is the location he surfaced at.
When a seeker makes a move, the target location is excluded
from the list of possible locations, provided this location was
a possible location and the hider was not captured.

An example of this computation is given in Figure 3 using
the subgraph of the map in Figure 1. Assume the hider
surfaces at location 86 in round 8 and the seekers move
to locations 85, 115, 89, 116 and 127, respectively. When

Algorithm 1 Computation of the list of possible locations of
the hider.
N ← ∅
if hider surfaces then
N ← location(hider)

else
for all p ∈M do
T ← targets(p, t)
for all q ∈ T\(N ∪D) do

add q to N
end for

end for
end if
return N

M = [86]
D = [85, 115, 89, 116, 127]

t = BLACK_FARE
N = [69, 87, 102, 103, 104]

Detectives' moves:
1: 85-T->103 (remove 103)
2: 115-T->102 (remove 102)
3: 89-T->88
4: 116-B->108
5: 127-B->116

M = [69, 87, 104]
D = [103, 102, 88, 108, 116]

t = TAXI
N = [53, 68, 86, 70]

Round 9

Round 10

Fig. 3. Example of a computation of possible locations.

the hider plays a black-fare ticket in round 9, the new list
of possible locations becomes N = [69, 87, 102, 103, 104].
Location 116 is also reachable from 86 with a black-fare
ticket, but because this location belongs to D, i.e. there is a
seeker on that location, it is not added to N . After seeker 1
moves to 103 in round 9, this location is removed from the
list of possible locations. After seeker 2 moves to 102, this
location is removed as well. In round 10, the hider plays a
taxi ticket. The locations reachable from location 69 are 53,
68 and 86 and are all added to N . The locations reachable
by taxi from 87 are 70 and 88. Because 88 belongs to D,
only 70 is added to N . The two locations reachable from
104 are 86 and 116. Because 86 already belongs to N and
116 belongs to D, neither location is added to N .

B. Location Categorization

Some of the possible locations calculated in Algorithm 1
are more probable than others. For example, when the hider
played a black-fare ticket in round 9 in the example in Figure
3, he probably did not move to 102, 103, or 104, because
he could be captured in this round by one of the seekers on
these locations. It is more likely he moved to 69 or 87.

The performance of the seekers could be improved by
biasing the possible locations of the hider. This is done
by categorizing the possible locations. These categories are
numbered from 1 to L, where L is the number of categories.
This technique is called Location Categorization. The type
of categorization is game-dependent. For Scotland Yard, we
use three different types of categorization:

2011 IEEE Conference on Computational Intelligence and Games (CIG’11) 160

Category 1 2 3 4 5
a 2454 9735 4047 1109 344
n 12523 14502 7491 2890 1756

TABLE I
EXAMPLE OF A GENERAL TABLE WITH THE MINIMUM-DISTANCE

CATEGORIZATION AFTER PLAYING 1000 GAMES.

Minimum distance: A categorization is made based on
the distance of the possible location to the nearest seeker.
The category number equals the number of moves this seeker
has to perform to reach the possible location. We assume the
seeker can use any transportation type except the boat. We
make this assumption, because it allows us to use a lookup
table to increase the speed of the program. All locations
with a minimum distance of 5 or more are grouped into
one category. The idea behind this categorization is that the
possible locations near the seekers are investigated less often.
The hider could try to exploit this behavior, though it is risky,
offsetting a possible benefit.

Average distance: A categorization is made based on
the average distance of all seekers to the possible location.
This number is rounded down. The category number equals
the average number of moves the seekers have to travel to
reach the possible location. All locations with an average
distance of 5 or more are grouped into one category.

Station type: A categorization is made based on the
transportation types connected to the possible location. Lo-
cations with only taxi connections belong to category 1,
locations with taxi- and bus connections belong to category
2, locations with taxi-, bus- and underground connections
belong to category 3, and locations with a boat connection
belong to category 4.

After the hider performs a move the possible locations are
divided into the different categories, based on the selected
categorization.

There are two different ways to store the information about
the possible categories and the category of the location of the
hider. In the General table, we store for each category both
the number of times one or more possible locations belonged
to the category, n, and the number of times the actual location
of the hider belonged to the category, a. This way of storing
and using information is similar to the transition probabilities
used in Realization Probability Search, which was successful
in Shogi [27], Lines Of Action [28], and Amazons [29].
An example of the General table is given in Table I. In the
Detailed table, for each possible combination of categories,
we store how many times the actual location of the hider
belonged to each category. An example is given in Table
II. This table only shows the category combinations which
occurred at least 100 times.

There are two different ways to gather the information
for these tables: offline and online. When using offline
information gathering, first a large number of games is played
and the information is stored in a file. This information can
later be used by the seekers. This technique is useful when
the opponent is unknown and there are not enough games
to gather a sufficient amount of information. When using

Category 1 2 3 4 5
Combination
1 1542 - - - -
2 - 2801 - - -
1,2 666 4776 - - -
3 - - 977 - -
1,3 14 - 252 - -
2,3 - 67 208 - -
1,2,3 210 1558 1642 - -
4 - - - 262 -
2,3,4 - 23 39 90 -
1,2,3,4 18 224 263 179 -
2,3,4,5 - 57 191 183 88
1,2,3,4,5 2 210 448 307 164

TABLE II
EXAMPLE OF A DETAILED TABLE WITH THE MINIMUM-DISTANCE

CATEGORIZATION AFTER PLAYING 1000 GAMES.

online information gathering, the seekers start without any
information. At the end of each game, the seekers update the
information with the statistics gathered from the last game.
The advantage of online information gathering is that the
player can adapt itself to its opponent when enough games
are played.

The seekers use a vector with length L to select a location
for the hider at the start of each MCTS iteration. These
values represent the weights of the categories. When using
the General information, this vector consists of the values
[a1
n1
, a2

n2
, · · · , aL

nL
]. When using the Detailed information, this

vector is directly taken from the table, by extracting the
vector corresponding to the combination of categories. If the
total number of occurrences of this combination of categories
is smaller than a certain threshold, in our MCTS program
100, the information is not used and the possible locations
are randomly chosen.

There are two different ways the vector can be used to se-
lect a possible location. When using one-step selection, each
possible location gets a probability to be selected. Roulette-
wheel selection is used to select a possible location. The
size of each possible location on the wheel is corresponding
to the value of its category in the vector. When using two-
step selection, each location category gets a probability to be
selected. We use roulette-wheel selection to select a category.
The size of each category on the wheel is corresponding to
its value in the vector. After selecting a category, one of the
possible locations from this category is randomly chosen.

We remark that we use a ‘big-data’ approach to set the
weights. Such an approach has been successful in Shogi
[27], Lines Of Action [28], Amazons [29] and Othello [30].
Of course, machine-learning techniques, though less trivial,
could also be used to tune them.

C. ε-greedy playouts

In the MCTS program, we apply ε-greedy playouts to
incorporate domain knowledge [10], [31]. When selecting
a move in the playouts, the move is chosen randomly with a
probability of ε. Otherwise, a heuristic is used to determine
the best move. We use the following two heuristics for the
hider and the seekers. When the hider has to move in the
playout, he tries to maximize the distance to the closest

161 2011 IEEE Conference on Computational Intelligence and Games (CIG’11)

seeker. If there are several of such moves, he selects the one
which maximizes the number of possible locations. If there
are still multiple moves tied for best move, one is chosen
randomly. When a seeker has to move in the playout, he
selects the move which minimizes the sum of the distances
to all possible locations of the hider [22]. If there are several
of such moves, one is chosen randomly.

D. Coalition Reduction

Scotland Yard is a cooperative multi-player game. There-
fore, the seekers can be considered as one player, making
the game essentially a 2-player game. If in a playout one
seeker captures the hider, the playout is considered a win
for all seekers and the result is backpropagated accordingly.
However, when using this backpropagation rule we observed
that seekers sometimes rely too much on the other seekers
and do not make any efforts to capture the hider. For solving
this problem, we propose Coalition Reduction. If the seeker
who is the root player captures the hider, a score of 1 is
returned. If another seeker captures the hider, a smaller score,
1− r, is returned, where r = [0, 1]. If the value of r is too
small, seekers have the tendency to get lazy. If their own
position is not good, i.e. they are far away from the possible
locations of the hider, they tend to rely on the other seekers
too much. If the value of r is too large, the seekers become
too selfish and do not cooperate anymore. In Subsection V-E
we experimentally fine-tune this parameter.

E. Move filtering

The hider only has a limited number of black-fare tickets,
so he should use them wisely. Black-fare tickets should only
be used by the hider to increase the uncertainty about his
location or to travel by boat. We implemented some straight-
forward game-specific knowledge rules regarding the use of
black-fare tickets to prevent the hider from squandering them.
The hider is not allowed to use black-fare tickets in the
following three situations: 1) during the first two rounds, 2)
during a round when he has to surface, or 3) when all possible
locations only have taxi connections. In the first situation,
there is already a large uncertainty about the hider’s location.
In the second and third situation, using a black-fare ticket
does not increase the uncertainty about the hider’s location
compared to using a ‘normal’ ticket.

V. EXPERIMENTS

In this section we first give an overview of the experimen-
tal setup in Subsection V-A. In Subsection V-B we show
how limiting the possible locations of the hider influences
the performance of the seekers. In Subsection V-C we give
the results of the experiments with ε-greedy playouts. In
Subsection V-D we give an overview of the performance
of the seekers with Location Categorization. In Subsection
V-E we show how the seekers with Coalition Reduction
perform. In Subsection V-F we show how the hider performs
with move filtering. Finally, in Subsection V-G we give an
overview of how our MCTS program performs against the
Scotland Yard program on the Nintendo DS.

A. Setup

The engines for Scotland Yard and the AI players are
written in Java. For the hider, we set the exploration constant
C to 0.2. For the seekers, C was set to 2.0. These values were
achieved by systematic testing. All MCTS-based players
used 10,000 playouts for selecting the best move. In all
experiments, 2,500 games were played to determine the win
rate. All results are given with a confidence level of 95%.
The experiments were run on a cluster containing of AMD64
Opteron 2.4 GHz processors. Depending on the settings, one
game takes approximately 2–4 minutes to finish.

In the experiments we use different types of players. The
Random player selects moves in a uniform random way.
The Greedy player applies a 1-ply search with the heuris-
tics explained in Subsection IV-C. The Basic-MCTS player
combines MCTS with UCT. It limits the possible locations
using information about the hider. It uses uniform random
playouts. This player acts as the basis of the Greedy-MCTS
player. The Greedy-MCTS player uses ε-greedy playouts with
ε = 0.2. This value was obtained by systematic testing. It
applies the heuristics explained in Subsection IV-C.

B. Limiting the possible locations

In the first set of experiments, we test how limiting the
number of possible locations increases the performance of
MCTS. Random, Greedy, and Basic-MCTS seekers with and
without limiting the possible moves played against a Random
and a Greedy hider. The results are given in Table III.

These results show that limiting the possible locations of
the hider using information about his moves is a substantial
improvement. Without this limitation, MCTS performs worse
than the Greedy seekers. If we limit the possible locations,
MCTS performs considerably better than the 1-ply search
based Greedy seekers.

C. ε-greedy playouts

To test the influence of ε-greedy playouts on the perfor-
mance of the seekers, we let Basic-MCTS and Greedy-MCTS
seekers play against a Basic-MCTS and a Greedy-MCTS
hider. The results are given in Table IV.

These results show that using ε-greedy playout is a con-
siderable improvement, not only for the seekers, but also for

hider
seekers Random Greedy
Random 51.4% ± 2.0 0.1% ± 0.1
Basic-MCTS (no limiting) 90.8% ± 1.1 0.1% ± 0.1
Greedy 100.0% ± 0.0 51.0% ± 2.0
Basic-MCTS 100.0% ± 0.0 82.4% ± 1.5

TABLE III
WIN RATES OF FOUR DIFFERENT PLAYERS AS SEEKERS AGAINST A

RANDOM AND A GREEDY HIDER.

hider
seekers Basic-MCTS Greedy-MCTS
Basic-MCTS 47.7% ± 2.0 33.8% ± 1.9
Greedy-MCTS 84.5% ± 1.4 72.3% ± 1.8

TABLE IV
WIN RATES OF DIFFERENT MCTS PLAYERS AS SEEKERS AGAINST

DIFFERENT MCTS PLAYERS AS THE HIDER.

2011 IEEE Conference on Computational Intelligence and Games (CIG’11) 162

Thinking time: 1 second
hider

seekers Basic-MCTS Greedy-MCTS
Basic-MCTS 61.8% ± 1.6 50.6% ± 1.6
Greedy-MCTS 82.6% ± 1.3 77.4% ± 1.4

Thinking time: 2.5 seconds
hider

seekers Basic-MCTS Greedy-MCTS
Basic-MCTS 71.4% ± 1.5 61.0% ± 1.6
Greedy-MCTS 89.2% ± 1.0 83.6% ± 1.2

Thinking time: 5 seconds
hider

seekers Basic-MCTS Greedy-MCTS
Basic-MCTS 72.3% ± 1.5 65.6% ± 1.6
Greedy-MCTS 90.6% ± 1.0 87.4% ± 1.1

TABLE V
WIN RATES OF DIFFERENT MCTS PLAYERS AS SEEKERS AGAINST

DIFFERENT MCTS PLAYERS AS THE HIDER WITH DIFFERENT TIME

SETTINGS.

the hider. Against both different types of opponents, ε-greedy
playouts cause a large improvement of the playing strength.

If ε-greedy playouts are used, the number of playouts per
second is reduced by a factor of 2.5 compared to uniform
random playouts. To test the influence of this reduction, we
repeat the previous experiment, but instead of using a fixed
number of playouts, a time limit per move is used. In Table V
we show the results with time limits of 1, 2.5, and 5 seconds.
For reference, the Basic-MCTS players can simulate 8,000–
10,000 playouts per second at the start of the game. The
Greedy-MCTS player can simulate 3,000–5,000 playouts per
second. As the game progresses, the number of playouts per
second increases, because the playouts become shorter.

The results reveal that ε-greedy playouts also improve the
performance of both the hider and the seekers significantly
when a time limit is used. When the amount of time
increases, the seekers perform relatively better than the hider.
These results show that Scotland Yard is an uneven game.
This is due to its asymmetric nature.

D. Location Categorization

In the next set of experiments we check which combina-
tion of categorization, information type, selection steps and
information gathering type works best when using Location
categorization. We let Basic-MCTS seekers with Location
Categorization play against a Basic-MCTS hider. When using
offline information, the information is gathered by letting
Basic-MCTS seekers play 2,500 games against a Basic-
MCTS hider. The results are summarized in Table VI. For
reference, Basic-MCTS seekers win 47.7% ± 2.0 of the
games against a Basic-MCTS hider.

The results in Table VI show that the Minimum-distance
categorization works best. For this categorization, there is no
large difference between the information types, the number
of selection steps, and the information gathering types.

To validate the performance of Location Categorization,
we test its performance against two other players: a Greedy-
MCTS player and a Greedy player. The results against

Cat. Info. Steps Online Offline
Min. dist. General 1 52.5% ± 2.0 51.5% ± 2.0
Min. dist. General 2 53.4% ± 2.0 52.5% ± 2.0
Min. dist. Detail 1 53.6% ± 2.0 54.1% ± 2.0
Min. dist. Detail 2 53.3% ± 2.0 53.6% ± 2.0
Avg. dist. General 1 46.5% ± 2.0 48.3% ± 2.0
Avg. dist. General 2 51.7% ± 2.0 49.4% ± 2.0
Avg. dist. Detail 1 48.8% ± 2.0 46.0% ± 2.0
Avg. dist. Detail 2 46.9% ± 2.0 49.9% ± 2.0

Station General 1 44.7% ± 1.9 43.7% ± 1.9
Station General 2 39.7% ± 1.9 39.6% ± 1.9
Station Detail 1 42.4% ± 1.9 44.1% ± 1.9
Station Detail 2 47.0% ± 2.0 47.3% ± 2.0

Default win rate: 47.7% ± 2.0

TABLE VI
WIN RATES OF BASIC-MCTS SEEKERS WITH LOCATION

CATEGORIZATION AGAINST A BASIC-MCTS HIDER.

Cat. Info. Steps Online Offline
Min. dist. General 1 37.0% ± 1.9 38.0% ± 1.9
Min. dist. General 2 37.4% ± 1.9 37.6% ± 1.9
Min. dist. Detail 1 40.2% ± 1.9 37.6% ± 1.9
Min. dist. Detail 2 37.9% ± 1.9 36.9% ± 1.9

Default win rate: 33.8% ± 1.9

TABLE VII
WIN RATES OF BASIC-MCTS SEEKERS WITH LOCATION

CATEGORIZATION AGAINST A GREEDY-MCTS HIDER.

the Greedy-MCTS hider are shown in Table VII and the
results against the Greedy hider are given in Table VIII.
For reference, the win rate of the Basic-MCTS seekers is
33.8% ± 1.9 against the Greedy-MCTS player and 82.4%
± 1.5 against the Greedy player. We use the same offline
weights as in the previous experiments. Note that they were
gathered by playing against a Basic-MCTS player, which
behaves differently than these two players.

The results show that Location Categorization improves
the performance against both players. Even when using the
offline weights the seekers win more games than without
Location Categorization.

Finally, we test whether adding Location Categorization to
the Greedy-MCTS seekers increases their performance. We
let the Greedy-MCTS seekers with Location Categorization
play against a Greedy-MCTS hider with different settings.
The offline weights are the same as the ones used in the
previous experiments. The results are given in Table IX. The
default win rate of Greedy-MCTS seekers against a Greedy-
MCTS hider is 72.1% ± 1.8.

The results in Table IX show that Location Categorization
also works combined with ε-greedy playouts for the seekers.

Cat. Info. Steps Online Offline
Min. dist. General 1 84.3% ± 1.4 84.9% ± 1.4
Min. dist. General 2 82.2% ± 1.5 84.7% ± 1.4
Min. dist. Detail 1 85.4% ± 1.4 85.0% ± 1.4
Min. dist. Detail 2 84.3% ± 1.4 83.8% ± 1.4

Default win rate: 82.4% ± 1.5

TABLE VIII
WIN RATES OF BASIC-MCTS SEEKERS WITH LOCATION

CATEGORIZATION AGAINST A GREEDY HIDER.

163 2011 IEEE Conference on Computational Intelligence and Games (CIG’11)

Cat. Info. Steps Online Offline
Min. dist. General 1 77.4% ± 1.6 75.3% ± 1.7
Min. dist. General 2 74.6% ± 1.7 74.7% ± 1.7
Min. dist. Detail 1 76.4% ± 1.7 74.3% ± 1.7
Min. dist. Detail 2 76.2% ± 1.7 74.9% ± 1.7

Default win rate: 72.1% ± 1.8

TABLE IX
WIN RATES OF GREEDY-MCTS SEEKERS WITH LOCATION

CATEGORIZATION AGAINST A GREEDY-MCTS HIDER.

r A B C
0 47.7% ± 2.0 72.1% ± 1.8 75.3% ± 1.7
0.125 49.8% ± 2.0 73.6% ± 1.7 79.3% ± 1.6
0.25 50.7% ± 2.0 71.7% ± 1.8 80.6% ± 1.6
0.375 54.0% ± 2.0 72.0% ± 1.8 78.6% ± 1.6
0.5 53.4% ± 2.0 68.2% ± 1.8 74.6% ± 1.7
0.75 51.5% ± 2.0 60.0% ± 1.9 65.8% ± 1.9
1 42.8% ± 1.9 44.7% ± 2.0 50.5% ± 2.0

TABLE X
WIN RATES OF SEEKERS WITH COALITION REDUCTION WITH

DIFFERENT VALUES OF r AGAINST THE HIDER IN 3 CONFIGURATIONS.

Using the online weights seems to work only slightly better
than using the offline weights gathered against the Basic-
MCTS player.

The experiments show that overall there is no significant
different between offline and online gathered information.
From this we may conclude that Location Categorization is a
robust technique when using offline gathered statistics, which
can be used against any type of opponent.

E. Coalition Reduction

To test the performance of seekers with Coalition Re-
duction, we let different types of seekers with Coalition
Reduction play against different types of the hider with
different values of r. We remark that for r = 0, Coalition
Reduction is disabled. For r = 1, there is no coalition,
and all seekers only work for themselves. The results are
shown in Table X. We use three different configurations:
A) Basic-MCTS seekers against a Basic-MCTS hider, B)
Greedy-MCTS seekers against a Greedy-MCTS hider, and C)
Greedy-MCTS seekers with Location Categorization using
Minimum-distance categorization, the General table, offline
gathered weights, and one-step selection against a Greedy-
MCTS hider.

These results show that Coalition Reduction with r = 0.375
improves the performance of the seekers for configuration
A. For configuration C, Coalition Reduction improves the
performance as well. The best value of r in this configuration
is 0.25. For configuration B, Coalition Reduction does not
improve the performance of the seekers significantly.

F. Move filtering

For the hider, we test how using move filtering increases
his performance. We use configuration C described in Sub-
section V-E, where the hider plays with and without move
filtering.

Without move filtering, the hider wins 19.4% ± 1.6. With
move filtering, the win rate of the hider is 34.0% ± 1.9.

These results show that the performance of the hider im-
proves considerably when he is prevented from squandering
black-fare tickets. It is important for the hider to effectively
use his limited stock of black-fare tickets.

G. Performance against the Nintendo DS

To test the performance of the MCTS program, it is
matched against the Scotland Yard program on the Nintendo
DS. The AI of this program is considered to be rather
strong [21]. We only test against this program, because other
programs are too weak or impractical to play against.

For the seekers, we use ε-greedy playouts, Location Cate-
gorization with a General table, offline gathered weights and
one-step selection, and Coalition Reduction with r = 0.25.
For the hider, ε-greedy playouts and move filtering are used.

It is not possible to set the thinking time of the Nintendo
DS player. It often plays immediately, but it sometimes takes
5–10 seconds to find a move. The thinking time of the MCTS
program is on average 1.5 seconds.

Because these games have to be played manually, only
50 games are played, where each program plays 25 times
as the seekers and 25 times as the hider. Out of these 50
games, 33 games are won by our program, i.e. 66% ± 13.1.
19 of these games are won as the seekers and 14 as the hider.
The Nintendo DS program wins 17 games, of which 11 as
the seekers and 6 as the hider. These results show that our
program plays stronger than the Nintendo DS program.

VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper we investigated how MCTS can be applied to
play the hide-and-seek game Scotland Yard and how MCTS
can be enhanced to improve its performance.

We showed how information about the moves of the
hider can be used to limit the number of possible locations.
Limiting the possible locations considerably improved the
performance of the seekers.

We proposed Location Categorization, a technique that can
be used by the seekers in Scotland Yard to give a better
prediction for the location of the hider. We introduced three
types of categorization: Minimum distance, Average distance
and Station. The experiments revealed that the Minimum-
distance categorization performs best. By playing against dif-
ferent hider players, we showed that Location Categorization
is a robust technique. By using weights that were gained
by playing against a Basic-MCTS hider, the performance
against the Greedy-MCTS hider and the Greedy hider was
improved. Also, adding Location Categorization to Greedy-
MCTS seekers increased the performance of the seekers. This
enhancement made the seekers play considerably stronger
than the strongest hider player.

Furthermore, using ε-greedy playouts to incorporate some
basic knowledge into the MCTS algorithm considerably
improved the performance of both the seekers and the hider.
Another way of incorporating game-specific knowledge we
proposed is move filtering. Even with some straightforward
rules, move filtering turned out to be a considerable improve-
ment for the hider.

2011 IEEE Conference on Computational Intelligence and Games (CIG’11) 164

We also observed that the performance of the seekers
can be improved by applying Coalition Reduction. This
technique allows the seekers to cooperate more effectively
in the coalition, by preventing them from becoming too lazy
or too selfish. We remark that it still has to be determined
whether this technique is generally applicable to games with
fixed coalitions, or whether it only works for Scotland Yard.

Finally, we showed that MCTS, a technique which uses
only basic domain knowledge, was able to play Scotland
Yard on a higher level than the Nintendo DS program, which
is generally considered to be a strong player.

There are several ways Location Categorization could be
improved in the future. New types of categorization may be
tested or different categorizations may be combined. This can
de done by introducing three-step selection. The first two
steps are used to select two categories using two different
categorizations. In the third step, a possible location is
selected which belongs to both selected categories. Another
way of combining two categorizations is by taking the
Cartesian product of the categories of both categorizations.
It can also be interesting to test the performance of Location
Categorization in other hide-and-seek games, for instance
Battleship, a two-player game where both players act both
as an immobile hider and seeker.

Another future research direction is to continue the recent
work of Silver and Veness [32], who extended MCTS to par-
tially observable environments (POMDPs). Their technique,
Partially Observable Monte-Carlo Planning (POMCP), was
successfully applied to Battleship and a partially observable
variant of PacMan. Their technique could be applied to
Scotland Yard as well.

REFERENCES

[1] R. Coulom, “Efficient Selectivity and Backup Operators in Monte-
Carlo Tree Search,” in Computers and Games (CG 2006) (H. J. van den
Herik, P. Ciancarini, and H. H. L. M. Donkers, eds.), vol. 4630 of
LNCS, (Berlin, Germany), pp. 72–83, Springer-Verlag, 2007.

[2] L. Kocsis and C. Szepesvári, “Bandit Based Monte-Carlo Planning,”
in Machine Learning: ECML 2006 (J. Fürnkranz, T. Scheffer, and
M. Spiliopoulou, eds.), vol. 4212 of LNCS, (Berlin, Germany),
pp. 282–293, Springer-Verlag, 2006.

[3] D. E. Knuth and R. W. Moore, “An analysis of alpha-beta pruning,”
Artificial Intelligence, vol. 6, no. 4, pp. 293–326, 1975.

[4] C. Luckhart and K. Irani, “An algorithmic solution of n-person games,”
in Proceedings of the 5th National Conference on Artificial Intelligence
(AAAI), vol. 1, pp. 158–162, 1986.

[5] S. Gelly and Y. Wang, “Exploration Exploitation in Go: UCT for
Monte-Carlo Go,” in Neural Information Processing Systems Confer-
ence On-line trading of Exploration and Exploitation Workshop, 2006.

[6] S. Gelly and D. Silver, “Combining Online and Offline Knowledge in
UCT,” in ICML ’07: Proceedings of the 24th International Conference
on Machine Learning, (New York, NY, USA), pp. 273–280, ACM,
2007.

[7] M. H. M. Winands, Y. Björnsson, and J.-T. Saito, “Monte Carlo Tree
Search in Lines of Action,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 2, no. 4, pp. 239–250, 2010.

[8] B. Arneson, R. B. Hayward, and P. Henderson, “Monte-Carlo Tree
Search in Hex,” IEEE Transactions on Computational Intelligence and
AI in Games, vol. 2, no. 4, pp. 251–258, 2010.

[9] R. J. Lorentz, “Amazons Discover Monte-Carlo,” in Computers and
Games (CG 2008) (H. J. van den Herik, X. Xu, Z. Ma, and M. H. M.
Winands, eds.), vol. 5131 of LNCS, (Berlin, Germany), pp. 13–24,
Springer-Verlag, 2008.

[10] N. R. Sturtevant, “An Analysis of UCT in Multi-player Games,” ICGA
Journal, vol. 31, no. 4, pp. 195–208, 2008.

[11] M. P. D. Schadd, M. H. M. Winands, H. J. van den Herik, G. M. J.-B.
Chaslot, and J. W. H. M. Uiterwijk, “Single-Player Monte-Carlo Tree
Search,” in Computers and Games (CG 2008) (H. J. van den Herik,
X. Xu, Z. Ma, and M. H. M. Winands, eds.), vol. 5131 of LNCS,
(Berlin, Germany), pp. 1–12, Springer-Verlag, 2008.

[12] Y. Björnsson and H. Finnsson, “CADIAPLAYER: A Simulation-Based
General Game Player,” IEEE Transactions on Computational Intelli-
gence and AI in Games, vol. 1, no. 1, pp. 4–15, 2009.

[13] M. L. Ginsberg, “GIB: Steps Toward an Expert-Level Bridge-Playing
Program,” in In Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence (IJCAI-99), pp. 584–589, 1999.

[14] D. Billings, L. Pena, J. Schaeffer, and D. Szafron, “Using Probabilistic
Knowledge and Simulation to Play Poker,” in AAAI, pp. 697–703,
AAAI press, 1999.

[15] B. Sheppard, Towards Perfect Play of Scrabble. PhD thesis, Univer-
siteit Maastricht, The Netherlands, 2002.

[16] R. Bjarnason, A. Fern, and P. Tadepalli, “Lower Bounding Klondike
Solitaire with Monte-Carlo Planning,” in International Conference on
Automated Planning and Scheduling/Artificial Intelligence Planning
Systems, 2009.

[17] P. Ciancarini and G. P. Favini, “Monte Carlo Tree Search Techniques
in the Game of Kriegspiel,” in Proceedings of the 21st International
Joint Conference on Artificial Intelligence (IJCAI-09) (C. Boutilier,
ed.), (San Francisco, CA, USA), pp. 474–479, Morgan Kaufmann
Publishers Inc., 2009.

[18] G. Van den Broeck, K. Driessens, and J. Ramon, “Monte-Carlo Tree
Search in Poker using Expected Reward Distributions,” in Advances
in Machine Learning (Z.-H. Zhou and T. Washio, eds.), vol. 5828 of
LNAI, (Berlin, Germany), pp. 72–83, Springer-Verlag, 2009.

[19] M. J. V. Ponsen, Strategic Decision-making in Complex Games. PhD
thesis, Maastricht University, The Netherlands, 2011.

[20] “Scotland Yard — Board Game — BoardGameGeek.”
http://www.boardgamegeek.com/boardgame/438/scotland-yard,
retrieved April 2011.

[21] A. Frackowski, “[NDS Review] Scotland Yard DS - Hold.Start.Select,”
2011. http://holdstartselect.com/nds-review-scotland-yard-ds/.

[22] E.-E. Doberkat, W. Hasselbring, and C. Pahl, “Investigating Strategies
for Cooperative Planning of Independent Agents through Prototype
Evaluation,” in Coordination Models and Languages (COORDINA-
TION ’96) (P. Ciancarini and C. Hankin, eds.), vol. 1061 of LNCS,
(Berlin, Germany), pp. 416–419, Springer-Verlag, 1996.

[23] M. Sevenster, “The Complexity of Scotland Yard,” in Interactive
Logic (J. van Benthem, B. Löwe, and D. Gabbay, eds.), pp. 209–246,
Amsterdam University Press, 2008.

[24] G. M. J.-B. Chaslot, M. H. M. Winands, J. W. H. M. Uiterwijk, H. J.
van den Herik, and B. Bouzy, “Progressive Strategies for Monte-Carlo
Tree Search,” New Mathematics and Natural Computation, vol. 4,
no. 3, pp. 343–357, 2008.

[25] B. Bouzy, “Associating Domain-Dependent Knowledge and Monte
Carlo Approaches within a Go Program,” Information Sciences,
vol. 175, no. 4, pp. 247–257, 2005.

[26] S. Gelly, Y. Wang, R. Munos, and O. Teytaud, “Modifications of UCT
with Patterns in Monte-Carlo Go,” tech. rep., INRIA, 2006.

[27] Y. Tsuruoka, D. Yokoyama, and T. Chikayama, “Game-Tree Search
Algorithm Based on Realization Probability,” ICGA Journal, vol. 25,
no. 3, pp. 132–144, 2002.

[28] M. H. M. Winands and Y. Björnsson, “Enhanced Realization Prob-
ability Search,” New Mathematics and Natural Computation, vol. 4,
no. 3, pp. 329–342, 2008.

[29] Y. Higashiuchi and R. Grimbergen, “Enhancing Search Efficiency by
Using Move Categorization Based on Game Progress in Amazons,”
in Advances in Computer Games (ACG 2005) (H. J. van den Herik,
S.-C. Hsu, T.-S. Hsu, and H. H. L. M. Donkers, eds.), vol. 4250 of
LNCS, (Berlin, Germany), pp. 73–87, Springer-Verlag, 2006.

[30] M. Buro, “Experiments with Multi-ProbCut and a New High-Quality
Evaluation Function for Othello,” in Games in AI Research (H. J.
van den Herik and H. Iida, eds.), pp. 77–96, 2000.

[31] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. MIT Press, Cambridge, MA, USA, 1998.

[32] D. Silver and J. Veness, “Monte-Carlo Planning in Large POMDPs,”
in Advances in Neural Information Processing Systems 23 (J. Lafferty,
C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, eds.),
pp. 2164–2172, Curran Associates, Inc., 2010.

165 2011 IEEE Conference on Computational Intelligence and Games (CIG’11)

