
July 21, 2007 0:43 WSPC - Proceedings Trim Size: 9in x 6in article

1

Enhanced Realization Probability Search

MARK H.M. WINANDS∗

MICC-IKAT Games and AI Group, Faculty of Humanities and Sciences,
Universiteit Maastricht,

P.O. Box 616, 6200 MD Maastricht, The Netherlands
∗E-mail: m.winands@micc.unimaas.nl

YNGVI BJÖRNSSON

Department of Computer Science, Reykjav́ık University,
Ofanleiti 2 IS-103 Reykjav́ık, Iceland

E-mail: yngvi@ru.is

In this paper we show that Realization Probability Search (RPS) significantly
improves the playing strength of a world-class LOA-playing program, even
when used in combination with existing state-of-the-art search enhancements.
Furthermore, we introduce a much improved variant of RPS, called Enhanced
Realization Probability Search (ERPS). The new algorithm addresses two
weaknesses of RPS, resulting in both more robust tactical play and reduced
search overhead. Our experiments in the domain of LOA show that ERPS of-
fers just as significant improvement over regular RPS, as the latter improves
upon regular search.

Keywords: Search; Heuristics; Games.

1. Introduction

The alpha-beta (αβ) algorithm4 is the standard search procedure for play-
ing board games such as chess and checkers (and many others). The playing
strength of programs employing the algorithm depends greatly on how deep
the search is able to explore critical lines of play. Therefore, over the years,
many techniques for augmenting alpha-beta search with a more selective
tree expansion mechanism have been developed, so called variable-depth
search techniques. Promising lines of play are explored more deeply (search
extensions), at the cost of others less interesting that are cut off prematurely
(search reductions or forward pruning).

One recent addition to the family of variable-depth search techniques
is Realization Probability Search (RPS), introduced by Tsuoroka10 in 2002.

July 21, 2007 0:43 WSPC - Proceedings Trim Size: 9in x 6in article

2

Using this method his program, Gekisashi, won the 2002 World Computer
Shogi Championship, resulting in the algorithm gaining a wide acceptance
in computer Shogi. Although researchers have experimented with the algo-
rithm in other game domains with some success,2 the question still remains
how well the RPS enhancement works in those domains when used in a
state-of-the-art game-playing program in combination with other search
enhancement schemes.

In this paper we investigate the use of RPS in the game of Lines of Ac-
tion (LOA). The contributions of this work are twofold. First, we demon-
strate the usefulness of the RPS scheme in the domain of LOA by success-
fully applying it in a world-class program, effectively raising the level of
state-of-the-art game-play in that domain. Secondly, we introduce an im-
portant enhancement to the RPS algorithm to overcome problems it has
with endgame positions. This improvement, which we label Enhanced Re-
alization Probability Search (ERPS), greatly improves the effectiveness of
RPS in our game domain.

2. Realization Probability Search

The Realization Probability Search (RPS)10 algorithm is a new way of
using fractional-ply extensions.3,5 The algorithm uses a probability based
approach to assign fractional-ply weights to move categories, and then uses
re-searches to verify selected search results.

The probability that a move belonging to a given move category will
be played is called transition probability, and can be estimated beforehand
from game records of games played between expert players as follows:

Pc =
nplayed(c)

navailable(c)
(1)

where nplayed(c) is the number of game positions in which a move belonging
to category c was played, and navailable(c) is the number of positions in
which moves belonging to category c were available.

Originally, the realization probability of a node represented the proba-
bility that the moves leading to the node will be played. By definition, the
realization probability of the root node is 1. The transition probabilities
are used to compute the realization probability of a node in a recursive
manner (by multiplying them). If the resulting realization probability be-
comes smaller than a predefined threshold, the expansion of that branch is
stopped. Since a probable move has a large transition probability while an
improbable has a small probability, the search proceeds deeper after proba-
ble moves and shallower after improbable moves. However, instead of using

July 21, 2007 0:43 WSPC - Proceedings Trim Size: 9in x 6in article

3

the transition probabilities that way, we transform them into fractional plies
as follows as suggested by Tsuoroka et al.:10

FP =
log(Pc)
log(C)

(2)

where C is a game dependent constant between 0 and 1.
One potential pitfall of this scheme is that a player may “push” un-

avoidable problems beyond the search horizon by deliberately playing an
inferior move with a high fractional-ply value, thus curtailing the look-a-
head depth prematurely. To avoid this problem, the algorithm performs a
deeper re-search for moves whose values are larger than the current best
value (i.e., the α value), using only a small reduction value, called minFP.

3. Enhanced Realization Probability Search

In this section we introduce Enhanced Realization Probability Search
(ERPS), an improved variant that is tactically much safer than regular
RPS, while still maintaining its positional benefits. We identify two prob-
lems with RPS:

(1) A move causing a fail-low will always be ignored. A tactical move be-
longing to a move category with a high reduction factor may be wrongly
pruned away because of a horizon effect. In this case there is a risk that
the best move will not be played.

(2) A move causing a fail-high will always be re-searched with minimal
FP. A weak move may be unnecessarily extended because of a horizon
effect. In this case valuable computing resources are wasted, resulting
in a shallower nominal search depth.

Our enhancements aim at overcoming the aforementioned problems with
RPS. The first one is based on an idea proposed by Björnsson et al.;1 they
suggest that pruning should take place only after the first m moves have
been searched (i.e., looking at the rank of the move in the move ordering).
This principle is applied in recent pruning techniques, such as LMR9 and
RankCut.6 Thus, to alleviate the first of the aforementioned problems of
RPS, we cap the reduce depth of the first m moves to a maximum value t.
This avoids aggressive reductions for early moves.

The second enhancement improves on how re-searches are done. Instead
of performing a re-search right away to a full depth, we first interleave a
shallower intermediate re-search (using a depth reduction that is the aver-
age of the original reduce depth and minFP). If that re-search also results

July 21, 2007 0:43 WSPC - Proceedings Trim Size: 9in x 6in article

4

in a fail-high, only then is the full-depth re-search performed. We restrict
these intermediate re-searches to cases where there is a substantial differ-
ence between the original and full re-search depths (the averaged decrease
depth is larger than a predefined threshold delta). This prevents insignifi-
cant explorations.

A pseudo-code of PVS/NegaScout alpha-beta variant7,8 enhanced with
ERPS is shown in Figure 1, providing the details of the implementation.
For clarity we show only the main loop of the algorithm and omit other
details.

ERPS(state, alpha, beta, depth){

... details omitted ...

while(next != null){

alpha = max(alpha, best);

decDepth = FP(next);

//Enhancement 1

if(decDepth > t && moveCounter <= m)

decDepth = t;

//Preliminary Search Null-Window Search Part

value = -RPS(next, -alpha-1, -alpha, depth-decDepth);

//Re-search

if(value > alpha){

//Enhancement 2

dec_depth = (minFP + dec_depth)/2;

if(dec_depth>delta)

value = -RPS(next, -alpha-1, -alpha, depth-decDepth);

if(value > alpha)

value = -RPS(next, -beta, -alpha, depth-minFP);

}

if(value > best){

best = value;

if(best >= beta) break;

}

next = nextSibling(next);

}

... details omitted ...

return best;

}

Fig. 1. ERPS: Two enhancements for Realization Probability Search.

July 21, 2007 0:43 WSPC - Proceedings Trim Size: 9in x 6in article

5

Table 1. Comparing the search algo-
rithms on 286 test positions.

Algorithm # of positions solved

Classic 186

RPS 130

ERPS 215

4. Experiments

We empirically evaluated the RPS algorithmic enhancements in the game
of Lines of Action (LOA) using the state-of-the art game-playing program
MIA, which won the LOA competition at the Computer Olympiad11 several
times. The default search engine, called “Classic”, is based on alpha-beta
search (the PVS/NegaScout variant). We augmented it with realization
probability search: RPS on the one hand and ERPS on the other, resulting
in two new versions (labelled RPS and ERPS below). For all experiments
we used parameter setting of (t=1, m=5, and delta=1.5) for EPRS.

In the first set of experiments Classic, RPS and ERPS were tested on a
test-suite of 286 forced-win LOA positions. For each problem the programs
were allowed to search maximum 50 million nodes. The result is given in
Table 1. In the first column the algorithms are mentioned and in the second
column the number of positions solved by each program version is shown.
As can be seen, the RPS version is tactically considerably weaker than the
unmodified Classic version. However, when augmented with our new en-
hancements realization probabilities do result in increase tactical strength.
This demonstrates clearly the importance of our new enhancements.

In the second set of experiment we tested the playing strength of the
programs in actual game play, using the same parameter settings as above.
The programs played 600 games against each other, switching sides halfway.
They started always from the same 100 positions, and a small random-
ness was added to avoid repeated games. The thinking time was limited
to 10 seconds per move. The results are given in Table 2. The RPS ver-
sion does perform better than Classic in game play. The added positional
understanding gained with a deeper nominal search depth (because of the
pruning) does apparently more than compensate for the tactics the program
overlooks (because of the pruning). But the new ERPS program version,
which benefits from both better positional and tactical understanding, does
outperform the other versions with a large margin. The result clearly re-

July 21, 2007 0:43 WSPC - Proceedings Trim Size: 9in x 6in article

6

Table 2. 600-game match results.

Pairings Score Winning ratio

RPS vs. Classic 375-225 1.67

ERPS vs. Classic 433-167 2.59

ERPS vs. RPS 372.5-227.5 1.63

veals that ERPS in a genuine improvement that does improve the playing
strength of MIA significantly.

5. Conclusions

In this paper we introduced a new variable-depth search scheme in the
αβ search. This scheme is called Enhanced Realization Probability Search
(ERPS). It is based on the traditional RPS method which proved to be
successful in the game of Shogi and LOA. The novelty is that it limits the
search reductions and extensions by considering the rank of the move in
the search tree and applying intermediate re-searches. ERPS handles better
problems regarding missing tactical moves and spending too much time at
bad moves. We showed that our ERPS method solved significantly more
LOA endgame positions. Moreover, it was demonstrated that the playing
strength of the LOA program MIA is significantly increased by ERPS.
Hence, we may conclude that ERPS is a valuable technique augmenting
alpha-beta with a more selective tree expansion mechanism such that it
improves the winning performance of a program.

Acknowledgments

This research was supported by grants from The Icelandic Centre for Re-
search (RANNÍS) and by a Marie Curie Fellowship of the European Com-
munity programme Structuring the ERA under contract number MIRG-
CT-2005-017284.

References

1. Y. Björnsson, T.A. Marsland, J. Schaeffer, and A. Junghans. Searching with
uncertainty cut-offs. ICCA Journal, 20(1):29–37, 1997.

2. T. Hashimoto, J. Nagashima, M. Sakuta, J. W. H. M. Uiterwijk, and H. Iida.
Automatic realization-probability search. Internal report, Dept. of Computer
Science, University of Shizuoka, Hamamatsu, Japan, 2003.

3. R. M. Hyatt. Crafty - chess program. 1996. ftp.cis.uab.edu/pub/hyatt.

July 21, 2007 0:43 WSPC - Proceedings Trim Size: 9in x 6in article

7

4. D. E. Knuth and R. W. Moore. An analysis of alpha-beta pruning. Artificial
Intelligence, 6(4):293–326, 1975.

5. D. Levy, D. Broughton, and M. Taylor. The sex algorithm in computer chess.
ICCA Journal, 12(1):10–21, 1989.

6. Y. J. Lim and W. S. Lee. Rankcut - a domain independent forward pruning
method for games. In Proceedings of the AAAI 2006, 2006.

7. T.A. Marsland. Relative efficiency of alpha-beta implementations. In Pro-
ceedings of the 8th International Joint Conference on Artificial Intelligence
(IJCAI-83), pages 763–766. Karlsruhe, Germany, 1983.

8. A. Reinefeld. An improvement to the Scout search tree algorithm. ICCA
Journal, 6(4):4–14, 1983.

9. T. Romstad. An Introduction to Late Move Reductions. http://www .glau-
rungchess.com/ lmr.html, 2006.

10. Y. Tsuruoka, D. Yokoyama, and T. Chikayama. Game-tree search algorithm
based on realization probability. ICGA Journal, 25(3):132–144, 2002.

11. M. H. M. Winands. Informed Search in Complex Games. PhD thesis, Uni-
versiteit Maastricht, Maastricht, The Netherlands, 2004.

