
Grouping Nodes for Monte-Carlo Tree Search

Jahn-Takeshi Saito, Mark H.M. Winands,
Jos W.H.M. Uiterwijk, and H. Jaap van den Herik

MICC-IKAT
Universiteit Maastricht

P.O. Box 616, 6200 MD Maastricht
The Netherlands

{j.saito,m.winands,uiterwijk,herik}@micc.unimaas.nl

Abstract. Recently, Monte-Carlo Tree Search (MCTS) has substan-
tially contributed to the field of computer Go. So far, in standard MCTS
there is only one type of node: every node of the tree represents a sin-
gle move. Instead of maintaining only this type of node, we propose a
second type of node representing groups of moves. Thus, the tree may
contain move nodes and group nodes. This article documents how such
group nodes can be utilized for including domain knowledge to MCTS.
Furthermore, we present a technique, called Alternating-Layer UCT, for
managing move nodes and group nodes in a tree with alternating layers
of move nodes and group nodes. A self-play experiment demonstrates
that group nodes can improve the playing strength of a MCTS program.

1 Introduction

In the last fifteen years, Monte-Carlo methods have led to strong computer Go
programs. The short history of Monte-Carlo based Go programs underwent two
phases. In the first phase, Monte-Carlo was introduced [2, 3] as an evaluation
function. A Monte-Carlo evaluation simply estimates the value of a game state
S by statistically analyzing random games starting from S. In the second phase
the focus of research shifted to Monte-Carlo Tree Search (MCTS, [4, 7, 8]).

Until now, all existing work on MCTS employs tree nodes to represent only
a single move. The contribution of this work is to introduce nodes representing
groups of moves to MCTS. This article presents a technique extending MCTS
for managing group nodes. It enables the application of domain knowledge in
MCTS in a natural way.

The remainder of this article is organized as follows. Section 2 explains MCTS
and a specific move-selection function for MCTS called UCT. Section 3 intro-
duces the concept of group nodes for MCTS and Alternating-Layer UCT. Section
4 describes an experiment comparing standard UCT and Alternating-Layer UCT
and discusses the results. Finally, Section 5 gives a conclusion and an outlook to
future research.

125



2 Monte-Carlo Tree Search

This section first describes Monte-Carlo Tree Search (MCTS) in general (Subsec-
tion 2.1). In Subsection 2.2 a specific move-selection function for MCTS, called
UCT, is explained.

2.1 The Monte-Carlo Tree Search Framework

MCTS constitutes a further development of the Monte-Carlo evaluation. It pro-
vides a tree-search framework for employing Monte-Carlo evaluations at the leaf
nodes of a particular search tree.

MCTS constitutes a family of tree-search algorithms applicable to the domain
of board games [4, 7, 8]. In general, MCTS repeatedly applies a best-first search
at the top level. Monte-Carlo sampling is used as an evaluation function at leaf
nodes. The results of previous Monte-Carlo evaluations are used for developing
the search tree. MCTS consists of four stages [5]. During each iteration, four
stages are consecutively applied:

(1) move-selection;
(2) expansion;
(3) leaf-node evaluation;
(4) back-propagation.

Each node N in the tree contains at least three different tokens of information:
(i) a move representing the game-state transition associated with this node, (ii)
the number t(Ni) of times the node has been played during all previous iterations,
and (iii) a value v(N) representing an estimate of the node’s game value. The
search tree is held in memory. Before the first iteration, the tree consists only of
the root node. While applying the four stages successively in each iteration, the
tree grows gradually. The four stages of the iteration work as follows.

(1) The move selection determines a path from the root to a leaf node. This
path is gradually developed. At each node, starting with the root node, the
best successor node is selected by applying a move-selection function to all
child nodes. Then, the same procedure is applied to the selected child node.
This procedure is repeated until a leaf node is reached.

(2) After the leaf node is reached, it is decided whether this node will be ex-
panded by storing some of its children in memory. The simplest rule, pro-
posed by Coulom [7], is to expand one node per evaluation. The node ex-
panded corresponds to the first position encountered that was not stored
yet.

(3) A Monte-Carlo evaluation (also called playout or simulation) is applied to
the leaf node. Monte-Carlo evaluation is the strategic task that selects moves
in self-play until the end of the game. This task might consist of playing
plain random moves or – better – pseudo-random moves. The main idea is
to play more reasonable moves by using patterns, capture considerations,
and proximity to the last move.

126



(4) During the back-propagation stage, the result of the leaf node is back-
propagated through the path created in the move-selection stage. For each
node in the path back to the root, the node’s game values are updated ac-
cording to the updating function.1 After the root node has been updated,
this stage and the iteration are completed.

As a consequence of altering the values of the nodes on the path, the move
selection of the next iteration is influenced. The various MCTS algorithms pro-
posed in the literature differ in their move-selection functions and update func-
tions. The following subsection briefly describes a specific move-selection func-
tion called UCT.

2.2 UCT

Kocsis and Szepesvári [8] introduced the move-selection function UCT. It was
fruitfully applied in top-level Go programs such as Crazy Stone, Mogo, and
Mango. These programs entered in the loop of various KGS tournaments suc-
cessfully.

Given a node N with children Ni, the move-selection function of UCT chooses
the child node Ni which maximizes2 the following criterion.

Xi + C

√
ln t(N)
t(N)i

. (1)

This criterion takes into account the number of times t(N) that node N was
played in previous iterations, the number of times t(Ni) the child Ni was selected
in previous iterations, and the average evaluation Xi of the child node Ni.

The weighted square-root term in Equation 1 describes an upper confidence
bound for the average game value. This value is assumed to be normally dis-
tributed among the evaluations selected during all iterations. Each iteration
passing through N represents a random experiment influencing the estimate of
the mean parameter X of this distribution.

The constant C controls the balance between exploration and exploitation [5].
It prescribes how often a move represented by child node Ni with high confidence
(large t(Ni)) and good average game value (large Xi) is preferred to a move with
lower confidence or lower average game value.

The update function used together with UCT sets the value X of a node N
to the average of all the values of the previously selected children including the
latest selected child’s value Xi.

3 Grouping Nodes

We describe the concept of group nodes in this section. Subsection 3.1 outlines
related work in which domain knowledge is applied to form groups of moves.
1 Coulom [7] refers to update function as back-propagation operator.
2 In Min nodes the roles are reversed and the criterion is minimized.

127



Subsection 3.2 provides a detailed account of the features of group nodes. Sub-
section 3.3 presents an extension of the UCT which is able to manage group
nodes.

3.1 Related Work

The idea of categorizing moves in games is not new. The work of Tsuruoka et al.
[10], to name only one example, applies domain knowledge in the game of Shogi to
categorize follow-up moves for a given game state according to simple features.
Depending on which categories the move falls into, the amount of resources
(mainly search depth) allocated to searching this particular move is fixed. In
the domain of computer Go, simple features have been applied for various tasks
related to search. Features have been used to assign probabilities to playing
certain moves in random games or to eliminate unpromising moves.

The concept of Metapositions was established by Sakuta [9] to represent
sets of possible game states. Metapositions are employed as nodes in game-tree
search. Moreover, Metapositions were found to be suitable to represent sets of
game states consistent with observations made in the imperfect information game
Kriegspiel [6].

Set Pruning, introduced by Bouzy [1], is a technique, first developed for
computer Go. It brings together two items: first, the idea of grouping moves
according features, and second, the aspect using sets of moves in a search tree as
found in Metapositions. In Set Pruning two categories of moves are maintained:
moves labelled as Good moves and moves labelled as Bad moves. Then, Monte-
Carlo evaluation is applied to moves in both sets and a common statistic is
maintained for all moves belonging to the same category. The technique proposed
here can be viewed as a twofold extension of this technique. The first extension
effects the number of move groups which we suggest to generalize to more than
only two. The second extension this article proposes to go beyond Set Pruning
concerns the framework groups are used in: instead of considering only Monte-
Carlo evaluation, we propose to apply groups to MCTS. This second extension
implies that the statistics are no longer kept in only one place (a node to be
evaluated). Instead, the statistics alter many nodes in the search tree. Thus,
a mechanism is required to adopt the idea of groups of moves to MCTS. This
mechanism is facilitated by group nodes which are the subject of the following
subsection.

3.2 Group Nodes

In plain MCTS, all nodes of the tree represent simple moves. We call them move
nodes. To facilitate the use of domain knowledge we introduce the concept of
group nodes. A group node represents a group of moves. Domain knowledge in
the form of features is used to group the nodes.

Given a move represented by a node N, we suggest to partition the set of its
child nodes Ni. We call each partition a group. The partitioning is achieved by

128



assigning each Ni to exactly one group according to whether they meet certain
pairwise exclusive features.

Group nodes can function in a MCTS framework only if they provide the
basic features MCTS requires a node to have (cf. Subsection 2.1). Thus, for each
group node G three features are recorded: (i) a move representing the game state
transition associated with this move, (ii) the number t(G) of times it was visited
in previous iterations, and (iii) a game value XG. Since a group node does not
represent a single move, the game state is not altered whenever a group node is
met during an iteration. The game value of a group node is set to represent the
average game value of all nodes belonging to the group.

3.3 Alternating-Layer UCT

Alternating-Layer UCT is a technique which manages group nodes in the UCT
framework [8]. The Alternating-Layer UCT maintains two types of nodes in the
MCTS tree in parallel: (1) move nodes, and (2) group nodes.

When a move node N is expanded, it is expanded in two steps. First, N is
expanded into group nodes (first layer). Second, each of the newly expanded
group nodes is expanded into move nodes (second layer).

In the first step, all successor nodes are grouped according to features (cf.
Subsection 3.1). Each group is represented by a group node Gi. These newly
created group nodes become the new children of N. In the second step, each Gi

is expanded. For each member move of Gi a new move node Gij is created as
child node of Gi.

After completing the two steps of expanding a move node, all new leaf nodes
are move nodes. Because the root is a move node, all leaf nodes are move nodes
at the end of each iteration. Furthermore, the structure of the search tree is
such that move nodes and group nodes form alternating layers (leading to the
proposed naming).

In standard implementations of the UCT algorithm, all follow-up moves of a
leaf node L are chosen randomly until L has been played a critical number x of
times (t(L) > x). Analogously, we suggest choosing the follow-up move of a leaf
node L among its succeeding groups with equal probability while t(L) > x. This
equidistribution results in an implicit weighting of moves, because the number
of members may vary between the groups. We consider, e.g., that two groups
G1 and G2 are given with n1 or n2 moves, respectively. Furthermore, n1 � n2.
If both groups are selected equally often, a move which is member of G1 is less
likely to be selected than a move which is member of G2.

4 Experiment

In this section, we test the increase of playing strength gained by Alternating-
Layer UCT. Subsection 4.1 describes the setup of a self-play experiment. Sub-
section 4.2 presents and comments the results obtained.

129



4.1 Set-up

Standard UCT and the Alternating-Layer UCT were implemented for the do-
main of computer Go. We refer to the resulting programs as STD and AL,
respectively.

Both implementations were compared in a series of 1,000 games of direct
play on 9× 9 boards with 5.5 points Komi (500 games for each program playing
Black, respectively). The time setting was one second per move. The Monte-
Carlo sampling used in both implementations is based on small hand-tuned
patterns and reaches a speed of about 22,000 sampled games per second on the
given hardware (cf. below). The C parameter (cf. Equation 1) was set to 1.9,
determined by trial-and-error, for STD and AL. The x parameter (cf. 3.3) for
describing the threshold for expanding moves was set to the number of children
of the node to be expanded.

The number of iterations available per move for STD is 30,000. To compen-
sate for the grouping overhead of alternating-layer UCT, AL was allowed only
10,000 iterations per move.

Two features were used for grouping in AL resulting in three types of group
nodes. The first feature is proximity to the last move. The proximity chosen is
the Manhattan distance of 2. (For the empty board, the last move is set to be
the center.) The second feature determines whether a move is a border move.
The three resulting groups are the following.

Group 1 All legal moves in the proximity of the last move.
Group 2 All legal moves on the border of the game board which do not

belong to group 1.
Group 3 All legal moves which do not belong to either group 1 or group 2.

The experiment was conducted on a Quad-Opteron server with 3.4 GHz
Opteron processors and 32 GB of memory running a well-known Linux distribu-
tion. Both algorithms are implemented in C++.

4.2 Results

Playing the 1,000 games required a total playing time of ca. 30 hours. Of these,
about two thirds were required by STD and the remainder by AL. Of 1,000
games AL won 838 and STD won 162.

A qualitative analysis of several dozen sample games shows that AL plays
more consistently than STD. The program seems to beat STD because of its
tactical superiority. This suggests that AL takes advantage of focusing samples
on local positions more often than STD. In contrast, AL seems to shift the focus
and play non-local moves with a better timing than STD. AL never plays border
moves and does not seem to invest much effort on testing such moves during the
first 50 moves, whereas STD occasionally plays border moves.

The result of the experiment clearly shows that Alternating-Layer UCT out-
performs palin UCT. We may conclude that group nodes can serve to integrate

130



domain knowledge in the MCTS framework successfully. Moreover, it may be in-
ferred that the UCT framework is sufficiently flexible to choose the right group
nodes, and that providing group nodes significantly improves the ability of the
program to focus on promising branches more quickly.

The computational overhead for grouping nodes is outweighed by the benefits
of narrowing down the search space in the experiment. While this is true for the
three computationally cheap feature groups tested in the experiment, it remains
to be seen how well this approach scales to a larger number of groups.

5 Conclusion and Future Research

In this article we introduced the concept of group nodes for MCTS. Alternating-
Layer UCT was proposed as a technique for adopting group nodes for MCTS. A
self-play experiment showed that Alternating-Layer UCT outperformed standard
UCT. Based on the outcome of the experiment we may tentatively conclude that
the proposed approach can incorporate domain-specific knowledge in MCTS
successfully.

Future work will address the following six items. First, in order to examine
whether the results found in this work generalize to deeper search, the pro-
grams will be tested with a more generous time setting. Second, the number
of groups will be increased using more refined features, e.g., by using a move
predictor. Third, the weighting of the probabilities assigned to group nodes will
be examined more closely. Fourth, other algorithms for including group nodes
in the MCTS framework could be devised. Whereas the Alternating-Level UCT
straightforwardly adds group nodes after every node expansion, it might prove
more useful to expand group nodes only for certain move nodes. This might re-
duce the computational cost required for grouping nodes. Similarly, group nodes
could be allowed to have group nodes as their child nodes. Fifth, the grouping
techniques will be compared to other means of incorporating domain knowledge
in UCT. Sixth, the new technique will be implemented in a tournament program,
e.g., Mango.

Acknowledgements

We are indepted to Ulaş Türkmen and Guillaume Chaslot for their valuable feed-
back. This work is financed by the Dutch Organization for Scientific Research,
NWO, as part of the project Go for Go, grant number 612.066.409.

References

1. Bouzy, B.: Move Pruning Techniques for Monte-Carlo Go. In van den Herik, H.J.,
Hsu, S.C., sheng Hsu, T., Donkers, J.H., eds.: Advances in Computer Games (ACG
11). Volume 4250 of LNCS., Springer-Verlag, Berlin (2006) 104–119

131



2. Bouzy, B., Helmstetter, B.: Monte Carlo Developments. In van den Herik, H.J.,
Iida, H., Heinz, E.A., eds.: Proceedings of the Advances in Computer Games Con-
ference (ACG 10), Kluwer Academic (2003) 159–174

3. Brügmann, B.: Monte Carlo Go. White paper (1993)
http://www.ideanest.com/vegos/MonteCarloGo.pdf.

4. Chaslot, G., Saito, J.T., Bouzy, B., Uiterwijk, J.W.H.M., van den Herik, H.J.:
Monte-Carlo Strategies for Computer Go. In Schobbens, P.Y., Vanhoof, W., Schwa-
nen, G., eds.: Proceedings of the 18th BeNeLux Conference on Artificial Intelli-
gence, Namur, Belgium. (2006) 83–91

5. Chaslot, G., Winands, M.H.M., Bouzy, B., Uiterwijk, J.W.H.M., van den Herik,
H.J.: Progressive Strategies for Monte-Carlo Tree Search. (2007) Submitted to
JCIS 2007.

6. Ciancarini, P., Favini, G.P.: A Program to Play Kriegspiel. ICGA Journal 30(1)
(2007) 3–24

7. Coulom, R.: Efficient Selectivity and Backup Operators in Monte-Carlo Tree
Search. In Ciancarini, P., van den Herik, H.J., Donkers, J.H., eds.: Proceedings of
the Fifth Computers and Games Conference. LNCS, Springer-Verlag, Berlin (2007)
12 pages, in print.

8. Kocsis, L., Szepesvári, C.: Bandit Based Monte-Carlo Planning. In Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M., eds.: Proceedings of the EMCL 2006. Volume 4212
of LNLCS., Springer-Verlag, Berlin (2006) 282–293

9. Sakuta, M., Iida, H.: Solving Kriegspiel-like Problems: Exploiting a Transposition
Table. ICGA Journal 23(4) (2000) 218–229

10. Tsuruoka, Y., Yokoyama, D., Chikayama, T.: Game-Tree Search Algorithm Based
on Realization Probability. ICGA Journal 25(3) (2002) 145–152

132




