
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, XXXXXXXX 20XX 1

Monte-Carlo Tree Search
for the Hide-and-Seek Game Scotland Yard

J. (Pim) A.M. Nijssen and Mark H.M. Winands

Abstract—This article describes how Monte-Carlo Tree Search
(MCTS) can be applied to play the hide-and-seek game Scotland
Yard. This game is essentially a two-player game in which the
players are moving on a graph-based map. First, we discuss how
determinization is applied to handle the imperfect information
in the game. We show how using determinization in a single
tree performs better than using separate trees for each deter-
minization. We also propose a new technique, called Location
Categorization, that biases the possible locations of the hider.
The experimental results reveal that Location Categorization is
a robust technique, and significantly increases the performance
of the seekers. Next, we describe how to handle the coalition
of the seekers by using Coalition Reduction. This technique
balances each seeker’s participation in the coalition. Coalition
Reduction improves the performance of the seekers significantly.
Furthermore, we explain how domain knowledge is incorporated
by applying ǫ-greedy playouts and move filtering. Finally, we
compare the MCTS players to minimax-based players and we
test the performance of our MCTS player against a commercial
Scotland Yard program on the Nintendo DS. Based on the results
we may conclude that the MCTS-based hider and seekers play
at a strong level.

Index Terms—Monte-Carlo Tree Search, Imperfect informa-
tion, Cooperation in games, Scotland Yard

I. I NTRODUCTION

OVER the last few years, Monte-Carlo Tree Search
(MCTS) [1], [2] has become increasingly popular for

letting computers play a wide variety of games [3]. MCTS is
a best-first search technique which, in its basic form, does
not rely on heuristic domain knowledge, contrary to more
traditional search algorithms likeαβ-search [4], maxn [5] and
paranoid [6]. Instead of using a heuristic evaluation function,
it applies Monte-Carlo simulations to guide the search. Bandit-
based reinforcement learning algorithms [2], [7], [8] are ap-
plied to recursively build the search tree. MCTS has proven
its strength in two-player games such as Go [9], Lines of
Action [10], Hex [11] and Amazons [12], multi-player games
such as Chinese Checkers [13] and one-player games such as
SameGame [14]. MCTS is also widely used for General Game
Playing [15].

A challenging domain is the class of games with imperfect
information. In these games, information is hidden from the
players. In the past, Monte-Carlo-based approaches have al-
ready been successfully applied to this class of games, suchas
Bridge [16], Poker [17], Scrabble [18], and Klondike Solitaire

J. (Pim) A. M. Nijssen and Mark H. M. Winands are members of the
Games and AI group at the Department of Knowledge Engineering,Faculty of
Humanities and Sciences, Maastricht University, Maastricht, The Netherlands.
E-mail: {pim.nijssen,m.winands}@maastrichtuniversity.nl

[19]. Recently, MCTS has been applied in imperfect informa-
tion games as well. Ciancarini and Favini [20] showed that
MCTS is able to deal with imperfect information in the game
of Kriegspiel, a variant of chess. However, their techniques are
domain specific and cannot directly be applied to other typesof
games with imperfect information. MCTS variants have also
been applied in poker to handle the intricacies of the game
[21], [22]. Imperfect information games can also be played by
using the expectimax framework [23]. Billingset al. [24] used
variations of expectimax, MIXIMAX and its generalization
M IXIMIX , to play poker. Schaddet al. [25] applied expectimax
for playing the game Stratego. They enhanced the search with
CHANCEPROBCUT, which allows forward pruning in chance
nodes.

A subclass of games with imperfect information is the class
of hide-and-seek games. Hide-and-seek games are played by
two or more players in two teams: the hiders and the seekers.
The goal of the seekers is to capture the hiders. The goal of
the hiders is to avoid the seekers for as long as possible. Most
research in hide-and-seek games focuses on mathematical
approaches for finding optimal strategies for the seekers (also
called pursuers) that guarantees finding one or multiple hiders
(also called evaders) in finite time [26], [27]. In this article, a
computational intelligence approach in playing hide-and-seek
games is investigated. The hide-and-seek game we focus on
in this article is Scotland Yard.

Scotland Yard is a popular modern board game with a hide-
and-seek mechanism, which won the prestigiousSpiel des
Jahres award in 1983. The seekers, called detectives, have
to determine the location of a mobile hider, called Mister X,
based on a limited amount of information. The seekers should
cooperate in a coalition to capture the hider. Scotland Yardhas
three properties that makes it a challenging and interesting
domain for applying and improving tree search techniques.
1) It has imperfect information for some of the players. The
seekers perform public moves, while the hider performs both
public and private moves. 2) It contains a fixed coalition
between 5 of the players, and 3) the game is asymmetric in
its goals.

In this article we describe how MCTS can be applied to
tackle these challenges. We first show how to handle imperfect
information using different determinization techniques.We
also propose a new technique, called Location Categorization.
This technique allows the seekers to make a more reliable
prediction for the current location of the hider. Next, we
propose Coalition Reduction to handle the cooperation of the
seekers, which can be used to let the seekers participate in
the coalition more effectively. Furthermore, we explain how

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, XXXXXXXX 20XX 2

to incorporate domain knowledge in MCTS. We discuss how
to useǫ-greedy playouts for the seekers and the hider, and
move filtering for the hider. Subsequently, a comparison is
made between the MCTS players and minimax-based players.
Finally, we evaluate the performance of our program against
a commercial Scotland Yard program for the Nintendo DS.

This article is an extension of [28]. It contains additional
experiments and the inclusion of minimax-based search tech-
niques. Furthermore, an improved version of the MCTS pro-
gram is used for the experiments. This improvement includes
more accurate domain knowledge and optimizations to speed
up the program.

The article is organized as follows. In Section II we briefly
introduce the game Scotland Yard. In Section III we give
an overview of the search techniques used in this article:
MCTS, paranoid search and expectimax. In Section IV we
explain how MCTS can be applied in Scotland Yard and which
enhancements are proposed. In Section V we explain how
paranoid search and expectimax are applied in Scotland Yard
and how these techniques can be enhanced to improve the
playing strength. The experiments and results are described in
Section VI. Finally, in Section VII we present the conclusions
based on the results, and some possible future research topics.

II. SCOTLAND YARD

This section provides an introduction to the game of
Scotland Yard. Subsection II-A gives a brief background on
Scotland Yard and in Subsection II-B the rules are described.

A. Background

The game of Scotland Yard was introduced in 1983. It
was developed by Manfred Burggraf, Dorothy Garrels, Wolf
Hörmann, Fritz Ifland, Werner Scheerer and Werner Schlegel.
The original version was published by Ravensburger, but the
game was also distributed for the English-language market by
Milton Bradley [29].

In 1998, Ravensburger Interactive Media GmbH developed
a Scotland Yard program for Microsoft Windows, which was
published by Cryo Interactive Entertainment. It did not only
feature the original game, but also a computer enhanced
version which introduced some role-playing game elements.
Another Scotland Yard program was developed in 2008. It was
developed by Sproing Interactive Media GmbH and published
by DTP Young Entertainment GmbH & Co. KG and was
released for the Nintendo DS. The AI of this program is
regarded as quite strong [30].

Only a limited amount of research has been performed in
Scotland Yard so far. Doberkatet al. [31] applied prototype
evaluation for cooperative planning and conflict resolution.
Some of their proposed strategies are used in our MCTS
program (see Subsection IV-A). Furthermore, Sevenster [32]
performed a complexity analysis on Scotland Yard and proved
that the generalized version of the game is PSPACE-complete.

B. Rules

Scotland Yard is played by 6 players: 5 seekers, called
detectives, and 1 hider, called Mister X. Essentially, Scotland

Fig. 1. A subgraph of the Scotland Yard map.

Yard is a two-player game, because the seekers work together
in one team with one common goal. The game is played on a
graph consisting of numbered vertices from 1 to 199. The ver-
tices are connected by 4 different types of edges representing
different transportation types: taxi, bus, underground and boat.
A subgraph is displayed in Fig. 1. Each player occupies one
vertex and a vertex can hold at most one player. The vertex
currently occupied by a player is called thelocation of that
player.

All players start at one of the 18 possible pre-defined
starting vertices. Each player starts at a different vertex, which
is chosen randomly. Each detective receives 10 taxi, 8 bus, and
4 underground tickets. Mister X receives 4 taxi, 3 bus, and 3
underground tickets.

The players move alternately, starting with Mister X. A
sequence of 6 moves by Mister X and the 5 detectives is
called oneround. When performing a move, a player moves
along an edge to an unoccupied adjacent vertex, and plays the
ticket corresponding to the chosen edge. Mister X receives the
tickets paid by the detectives. When Mister X plays a ticket,
it is removed from the game.

Additionally, Mister X receives 5 black-fare tickets and 2
double-move tickets. A black-fare ticket allows him to move
along any edge, including the boat. Along with a regular ticket,
Mister X may also play one of his double-move tickets. All
detectives then skip their turn for that round.

During the game, Mister X keeps his location secret. Only
after moving on rounds 3, 8, 13, 18 and 24 he has to announce
his location. When Mister X moves, the detectives always get
informed which ticket he used.

The goal for the detectives is to capture Mister X by moving
to the vertex occupied by Mister X. The goal for Mister X is
to avoid being captured until no detective can perform a move
anymore. A detective cannot move if he does not own a ticket
which allows him to leave his current location. The maximum
number of rounds in Scotland Yard is 24.

III. SEARCH TECHNIQUES

This Section gives an overview of the search techniques
used in this article. Subsection III-A describes MCTS and
Subsection III-B briefly discusses the minimax variants.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, XXXXXXXX 20XX 3

Fig. 2. MCTS scheme (slightly adapted from Chaslotet al. [33]).

A. Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) [1], [2] is a best-first
search technique that gradually builds up a search tree, guided
by Monte-Carlo simulations. In contrast to classic search
techniques such asαβ-search [4], it does not require a heuristic
evaluation function. In the MCTS tree, the nodes represent
board positions and the edges represent possible moves. When
the search process is started, the root node is created which
represents the current game position. The MCTS algorithm
consists of four phases [33]: selection, expansion, playout and
backpropagation (see Fig. 2). By repeating these four phases
iteratively, the search tree is constructed gradually. These four
phases are explained in more detail below.

Selection: In the selection phase, the search tree is
traversed, starting from the root, using theUCT selection
strategy[2]. In this article, UCT is enhanced with Progressive
History [34]. This is a combination of Progressive Bias [33]
and the history heuristic [35]. The childi with the highest
scorevi in Formula 1 is selected.

vi = x̄i + C

√

ln(np)

ni

+W
x̄a

ni(1− x̄i) + 1
(1)

Here, x̄i denotes the average score of nodei. ni and np

denote the total number of times childi and parentp have
been visited, respectively.C is a constant, which balances
exploration and exploitation.̄xa represents the average score
of move a, i.e. the average score over all playouts in which
movea was played.W is a positive constant that determines
the influence of Progressive History. The larger the value of
W , the longer Progressive History affects the selection of a
node. This selection strategy is applied until a node is reached
that is not fully expanded, i.e. not all of its children have been
added to the tree yet.

Expansion:In the expansion phase, one node is added to
the tree [1]. At the last selected node in the selection phase,
this node is chosen randomly from the subset of children that
are not added to the tree yet.

Playout: During the playout phase, moves are played,
starting from the position represented by the newly added
node, until the game is finished. They may be random moves.
However, game knowledge can be incorporated to make the
playouts more realistic. This knowledge is incorporated ina
simulation strategy[36], [37]. Though including knowledge
in the playouts decreases the number of playouts per second,

the more realistic playouts lead to more reliable results which
improve the playing strength (see Subsection VI-B).

Another strategy to improve the quality of the playouts
is by applying domain-independent techniques, such as the
Last-Good-Reply policy [38]–[40], N-grams [40] and Pool-
Rave [41]. These techniques are useful if domain-dependent
knowledge is not available, computationally expensive, or
ineffective.

In this article we only use domain-dependent knowledge
(see Subsection IV-A). Combining domain-dependent and
domain-independent techniques is beyond the scope of this
article and is a possible direction of future research.

Backpropagation:In the backpropagation phase, the re-
sult of the playout is propagated back along the previously tra-
versed path up to the root node. The result is backpropagatedin
a negamax-like fashion [4], similar to MCTS implementations
in Go [1].

These four phases are repeated either a fixed number of
times or until the time runs out. After the search is finished,
we select the robust max child, i.e. the child of the root with
the highest number of visits, as the best move [1].

B. Minimax-based technqiues

Minimax search [42] is a classic depth-first search technique
used to play many two-player games with perfect information,
most notably Chess [43]. Minimax is usually enhanced with
αβ-pruning [4], which reduces the size of the search tree from
O(bd) to O(b

d
2) in the best case. The amount of pruning can

be increased with move ordering, such as the killer move
heuristic [44]. This heuristic uses the assumption that when
a move is the best one in a certain position, it is also the
best one in similar positions. For each ply, two killer moves
are stored. A generalization of the killer move heuristic isthe
history heuristic [35]. The history heuristic is a move ordering
technique based on the value of the moves in the past. These
move ordering techniques work well when combined with
iterative deepening [45]. The search starts with a tree with
depthd = 1 and when a search is finished, a new search is
performed with an increment ofd as long as there is time left.

An extension of minimax search is paranoid search [6]. This
technique is used in multi-player games. It assumes that all
other players are cooperating against the root player. Using this
assumption, the game can be reduced to a two-player game. A
paranoid search tree contains MAX nodes for the root player
and MIN nodes for all other players.

Expectimax [23] is an extension of minimax search to
incorporate chance events in the search tree. This is done by
adding chance nodes to the tree. The value of a chance node
is computed by using Formula 2.

vi =
∑

c

P (c)× vc (2)

In this formula,vi is the value of nodei, P (c) is the probability
of child c being reached fromi, andvc is the value of child
c.

In Section V we discuss how paranoid search and expecti-
max are applied for playing Scotland Yard.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, XXXXXXXX 20XX 4

IV. MCTS FOR SCOTLAND YARD

In this section we discuss how MCTS can incorporate the
domain knowledge, imperfect information and cooperating
players for Scotland Yard. This section is stuctured as follows.
First, Subsection IV-A discusses howǫ-greedy playouts are
used to incorporate knowledge in the playout phase. Sub-
section IV-B explains how determinization can be applied to
handle imperfect information. Next, Subsection IV-C discusses
how to keep track of the possible locations of the hider.
In Subsection IV-D we propose Location Categorization to
bias the remaining possible locations. Subsection IV-E shows
how to handle the fixed coalition of the seekers by using the
backpropagation strategy called Coalition Reduction. Finally,
Subsection IV-F describes move filtering that lets the hideruse
his tickets more efficiently.

A. ǫ-greedy playouts

In the MCTS algorithm, we applyǫ-greedy playouts to
incorporate domain knowledge [13], [46]. When selecting a
move in the playouts, the move is chosen randomly with a
probability of ǫ. Otherwise, a heuristic is used to determine
the best move. Because Scotland Yard is an asymmetric game,
different heuristics have to be defined for the hider and the
seekers. Furthermore, separate values forǫ can be determined
for the hider and the seekers in the playout. For the hider, we
have defined one heuristic to determine the best move. This
heuristic, Maximize Closest Distance (MCD), maximizes the
number of moves the closest seeker should make to arrive at
the target vertex of the move. For the seekers, we have defined
two different heuristics. The first, Minimize Total Distance
(MTD), minimizes the sum of the number of moves the seeker
should make to arrive at each possible location [31]. The
second, Chase Actual Location or Chase Assumed Location
(CAL), minimizes the number of moves the seeker should
make from the target location to the location of the seeker.
If this strategy is used by a seeker, the assumed location
of the hider is used, because he does not know the actual
location of the hider. This assumed location corresponds to
the determinization selected at the start of the playout (see
Subsection IV-B). Each player should use one heuristic for
the hider and one for the seekers. This means that the hider’s
heuristic has to be combined with one of the two seeker’s
heuristics. These combinations are named MM (MCD and
MTD) and MC (MCD and CAL).

B. Determinization

In order to deal with imperfect information, determinization
can be used. This technique is also known as Perfect Informa-
tion Monte Carlo [47]. The principle behind determinization is
that the hidden information is filled in, while being consistent
with the history of the game. Despite its theoretical shortcom-
ings [48], [49], it has produced strong results in the past, for
example in the trick-based card game bridge [16]. Ginsberg’s
bridge program, called GIB, uses determinization by dealing
the cards that have not been played yet among the players
while being consistent with the cards played in the previous

Fig. 3. Example of a determinization with a single tree. In thisexample,
L = {35, 37, 49} and the selected determinization is 37.

Fig. 4. Example of a determinization with separate trees. In this example,
L = {35, 37, 49} and the selected determinization is 37.

tricks. Russell and Norvig [49] call this method ‘averaging
over clairvoyancy’, however GIB can play bridge at an expert
level.

Other examples of games where determinization is applied
to handle imperfect information include Phantom Go [50]
and Kriegspiel [20]. Cazenave [50] applied determinization in
Phantom Go, creating a Monte-Carlo program that was able to
defeat strong human Go players. In Kriegspiel, the application
of determinization did not work well; the MCTS-based player
with determinization only played slightly better than a random
player. Ciancarini and Favini [20] provided three reasons
why this technique did not work: 1) the positions of the
opponent’s pieces were unrealistic, 2) the underestimation
of the opponent’s ability to coordinate an attack, and 3) in
Kriegspiel there is no built-in notion of progress, contrary to
games such as Go, Scrabble and Poker.

In Scotland Yard, the hidden information consists of the
location of the hider. Based on the last surface location and
the tickets the hider played since then, the seekers can deduce a
list of possible locations of the hider, calledL (see Subsection
IV-C).

At the start of each iteration, an assumption is made about
the location of the hider. This assumption is used throughout
the whole iteration. There are two ways to build and traverse
the search tree. The first approach is using single-tree deter-
minization [28]. When generating the tree, at the hider’s ply,
all possible moves from all possible locations are generated.
When traversing the tree, only the moves consistent with the
assumption are considered. An example is given in Fig. 3.

The second approach is by generating a separate tree for
each determinization [51]. In each tree, only the hider’s moves
that are consistent with the corresponding determinization are
generated. An example is given in Fig. 4. After selecting a
determinization at the root node, the corresponding tree is
traversed. In the end, there are two approaches to select the
best move. The first is majority voting [52]. Each candidate

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, XXXXXXXX 20XX 5

Algorithm 1 Computation of the list of possible locations of
the hider.
K ← L
L← ∅
if currentRound∈ S then
L← location(hider)

else
for all p ∈ K do
T ← targets(p, t)
L← L ∪ (T\∆)

end for
end if
return L

move receives one vote from each tree where it is the move that
was played most often. The candidate move with the highest
number of votes is selected as the best move. If more moves
are tied, the move with the highest number of plays over all
trees is selected. The second is averaging over all search trees
[53]. The move with the highest average score over all trees
is selected as the best move.

C. Limiting the possible locations

It is possible for the seekers to limit the list of possible
locations by removing the vertices where the hider cannot be
located. The list of possible locations,L, is updated every
move. When the hider plays a ticket, the new list of possible
locations is calculated, based on the old list of possible
locations, the current locations of the seekers∆, and the ticket
t played by the hider, using Algorithm 1.S is the set of
rounds when the hider surfaces. At the start of the game,L
is initialized with the 18 possible starting locations, excluding
the 5 starting locations of the seekers. In this algorithm, the
methodtargets(p, t) returns the list of locations reachable
from location p using ticket t. When the hider surfaces,
location(hider) is the vertex he surfaced at. When a
seeker makes a move, the target vertex of this move is excluded
from L, provided this vertex was a possible location and the
hider was not captured.

D. Location Categorization

Some of the possible locations calculated in Algorithm 1 are
more probable than others. The performance of the seekers can
be improved by biasing the possible locations of the hider. This
technique is called Location Categorization [28]. The possible
locations inL are divided into categories that are numbered
from 1 to c, wherec is the number of categories. The type
of categorization is game dependent. For Scotland Yard, we
investigate three different types of categorization:

Minimum-distance:A categorization is made based on
the distance of the possible location to the nearest seeker.The
category number equals the number of moves this seeker has to
perform to reach the possible location. For this categorization,
we setc to 5. To accomodate for locations with a minimum
distance larger than 5, all locations with a minimum distance
of 5 or more are grouped into the same category. The idea

TABLE I
EXAMPLE OF A GENERAL TABLE WITH THE MINIMUM -DISTANCE

CATEGORIZATION AFTER PLAYING 1000GAMES.

Category 1 2 3 4 5
a 2454 9735 4047 1109 344
n 12523 14502 7491 2890 1756

TABLE II
EXAMPLE OF A DETAILED TABLE WITH THE MINIMUM -DISTANCE

CATEGORIZATION AFTER PLAYING 1000GAMES.

Category 1 2 3 4 5
Combination
1 1542 - - - -
2 - 2801 - - -
1,2 666 4776 - - -
3 - - 977 - -
1,3 14 - 252 - -
2,3 - 67 208 - -
1,2,3 210 1558 1642 - -
4 - - - 262 -
2,3,4 - 23 39 90 -
1,2,3,4 18 224 263 179 -
2,3,4,5 - 57 191 183 88
1,2,3,4,5 2 210 448 307 164

behind this categorization is that the possible locations near
the seekers are investigated less often. The hider could tryto
exploit this behavior, though it is risky, offsetting a possible
benefit.

Average-distance:A categorization is made based on
the average distance of all seekers to the possible location.
This number is rounded down. The category number equals
the average number of moves the seekers have to travel to
reach the possible location. Similar to the minimum-distance
categorization, we setc to 5. This means that all locations with
an average distance of 5 or more are grouped into category 5.

Station: A categorization is made based on the trans-
portation types connected to the possible location. We dis-
tinguish 4 different station types, which means thatc = 4.
Locations with only taxi edges belong to category 1, locations
with taxi and bus edges belong to category 2, locations with
taxi, bus and underground edges belong to category 3, and all
locations with at least one boat edge belong to category 4.

After the hider performs a move the possible locations are
divided into the different categories, based on the preselected
categorization.

For each category, a weight has to be determined to indi-
cate the probability that a location of a certain category is
chosen. This statistic may be obtained from game records of
matches played by expert players. In this article the statistics
are gathered by a large number of self-play matches. These
statistics can later be used by the seekers to determine the
weights of the categories. This approach is useful when the
opponent is unknown and there are not sufficient games to
gather a sufficient amount of information.

There are two different ways to store the statistics about
the possible categories. In thegeneral table, we store for
each category both the number of times one or more possible
locations belonged to the category,n, and the number of times
the actual location of the hider belonged to the category,
a. This way of storing and using statistics is similar to the
transition probabilities used in Realization ProbabilitySearch,

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, XXXXXXXX 20XX 6

which was successful in Shogi [54], Lines of Action [55], and
Amazons [56]. An example of the general table is given in
Table I. In thedetailed table, for each possible combination
of categories, i.e. the union of all categories overL, we store
how many times the actual location of the hider belonged to
each category. An example is given in Table II. This table only
shows the category combinations (i.e. rows) that occurred at
least 100 times. For instance, category combination (2,3,4),
whereL contains locations in categories 2, 3 and 4, but not in
1 and 5, occured 152 times, where the hider was 23 times on
a location of category 2, 39 times on a location of category
3, and 90 times on a location of category 4.

The seekers use a vector of lengthc to select a location
for the hider at the start of each MCTS iteration. The values
in this vector represent the weights of the categories. When
using the general table, this vector consists of the values
[a1

n1

, a2

n2

, · · · , ac

nc
]. When using the detailed table, the vector

corresponding to the combination of categories is directly
extracted from the table. If the total number of occurrences
of this combination of categories is smaller than a certain
threshold, in our MCTS program 100, the table is not used and
the possible locations are randomly chosen. This only occurs
on rare occasions.

There are two different ways the vector can be used to
select a possible location. When usingone-stepselection, each
possible location gets a probability to be selected. Roulette-
wheel selection is used to select a possible location. The size
of each possible location on the wheel is corresponding to the
value of its category in the vector. The probability to choose
location l is calculated by using Formula 3.

P (l) =
wcl

∑

m∈L

wcm

(3)

In this formula,wcl and wcm represent the weights of the
category to which locationsl andm belong, respectively.

When usingtwo-stepselection, each location category gets
a probability to be selected. We use roulette-wheel selection
to select a category. The size of each category on the wheel
is corresponding to its value in the vector. After selectinga
category, one of the possible locations from this category is
randomly chosen. The probability of choosing locationl using
two-step selection is calculated by using Formula 4.

P (l) =
wcl

|cl|
c
∑

j=1

wj

(4)

In this formula,|cl| represents the number of possible locations
that belong to the category of locationl and wj represent
weight of categoryj.

We remark that Location Categorization uses a ‘big-data’
approach to set the weights. Such an approach has been
successful in Shogi [54], Lines Of Action [55], Amazons
[56] and Othello [57]. Of course, machine-learning techniques,
though less trivial, could also be used to tune them.

E. Coalition Reduction

Scotland Yard is a cooperative multi-player game. There-
fore, the seekers can be considered as one player, making the

game essentially a two-player game. If in a playout one seeker
captures the hider, the playout is considered a win for all
seekers and the result is backpropagated accordingly. However,
when using this backpropagation rule we observed that seekers
during game play sometimes relied too much on the other
seekers and did not make any efforts to capture the hider. For
solving this problem, we propose Coalition Reduction [28].If
the seeker who is the root player captures the hider, a score of
1 is returned. If another seeker captures the hider, a smaller
score,1− r, is returned, wherer ∈ [0, 1]. If the value ofr is
too small, seekers have the tendency to become less involved.
If their own position is not good, i.e. they are far away from
the possible locations of the hider, they tend to rely on the
other seekers too much. If the value ofr is too large, the
seekers become too selfish and do not cooperate anymore. In
Subsection VI-F we experimentally fine-tune this parameter.

F. Move Filtering

The hider only has a limited number of black-fare and
double-move tickets, so he should use them wisely. Black-
fare tickets should only be used by the hider to increase the
uncertainty about his location or to travel by boat, and double-
move tickets are mostly used for escaping from dire positions.

We implemented some straightforward game-specific
knowledge rules regarding the use of black-fare tickets to
prevent the hider from squandering them [28]. The hider is
not allowed to use black-fare tickets in the following three
situations: 1) during the first two rounds, 2) during a round
when he has to surface, or 3) when all possible locations
only have taxi edges. In the first situation, there is already
a large uncertainty about the hider’s location. In the second
and third situation, using a black-fare ticket does not increase
the uncertainty about the hider’s location compared to using a
‘normal’ ticket. An exception is when the hider is located on
a vertex with a boat connection. In this case, the hider may
always use a black-fare ticket.

Double-move tickets are only used when the hider can be
captued by one of the seekers. If all possible moves in the
root node lead to a vertex which can be reached by one of the
detectives in the next round, a double move ticket is added to
the moves. If there is at least one ‘safe’ move, then double-
move tickets are not added. If the search algorithm still selects
a move which allows one of the seekers to capture the hider in
the next round, a double-move ticket is added to the selected
move. Of course, a double-move ticket can only be added if
the hider has at least one of these tickets left.

In [28] we showed that move filtering is a considerable
improvement for the hider, increasing the win rate of an
MCTS hider from 19.4%± 1.6 to 34.0%± 1.9 against MCTS
seekers.

V. M INIMAX -BASED TECHNIQUES FORSCOTLAND YARD

In this section, an overview is given how paranoid search
and expectimax are used for playing Scotland Yard as the hider
and the seekers respectively. In Subsections V-A and V-B we
explain how paranoid search and expectimax are implemented
for the hider and the seekers, respectively. In Subsection V-C

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, XXXXXXXX 20XX 7

Fig. 5. Structure of the paranoid tree for the hider.

a description of the evaluation functions is given. Finally,
Subsection V-D explains how Location Categorization can be
used with expectimax.

A. Paranoid search for the hider

Fig. 5 shows the general structure of the search tree built
by the hider. The hider is the MAX player, while the seekers
are the MIN players. The structure of the tree is similar to a
paranoid search tree used in multi-player games [6]. However,
in this case the paranoid assumption is correct because the
opponents do have a coalition against the current player. With
a paranoid search tree, pruning is possible. However, the tree
can only be reduced toO(b

p−1

p
d) in the best case [13], where

p is the number of players. In two-playerαβ-search, the tree
can be reduced toO(b

d
2) [4], but for Scotland Yard the tree

can only be reduced toO(b
5

6
d) in the best case.

B. Expectimax for the seekers

Fig. 6 shows the structure of the expectimax search tree
built by the seekers. At the second ply, the chance nodes are
located. The edges leaving these nodes represent the possible
locations of the hider. Each possible location is weighted
equally, though it is possible to bias the weights to give more
reliable results (see Subsection V-D). Another notable feature
is that the seeker does not incorporate the other seekers in
the search tree, i.e. the other seekers do not move. This has
three advantages. 1) More pruning is possible. The size of
the tree can be reduced toO(|L| × b

d
2), where |L| is the

number of possible locations. 2) The seeker keeps participating
in the game, instead of relying on other seekers. 3) The seeker
achieves more long-term planning by investigating more MAX
nodes. This is analogous to Best-Reply Search [58] for multi-
player games, where the moves of all subsequent opponents
are reduced to one ply. A disadvantage of this reduction is that
the seekers do not consider the other seekers and thus there is
no cooperation. Experiments with 1 second of thinking time
per move revealed that reducing the tree produced a win rate
of 40.6%± 3.0 (see Table VII) against an MCTS hider, while
without this reduction the win rate is 5.2%± 1.4.

This tree reduction technique can also be applied to MCTS.
However, experiments with 10 000 playouts per move showed
that it decreases the win rate considerably, from 63.6%± 3.0
(see Table V) to 34.3%± 2.9 against an MCTS hider. This is

Fig. 6. Structure of the expectimax tree for the seekers.

because the advantages in expectimax do not apply in MCTS.
1) MCTS is a best-first search technique for whichαβ-like
pruning is not applicable. 2) Reliance on other detectives is
already smaller due to the random moves in theǫ-greedy
playouts. Coalition Reduction reduces this reliance even more.
3) Playouts already cause that the seekers look further ahead.

C. Evaluation Function

For both the hider and the seekers, an evaluation function is
necessary to evaluate the leaf nodes of the search tree. For the
hider, we use an evaluation function that is based on the MCD
playout strategy. First, the hider should stay as far away from
the nearest detective as possible. Second, the hider shouldsave
black-fare tickets, unless he can increase the uncertaintyabout
his location. The leaf nodes of the paranoid search tree for the
hider receive a score by using Formula 5.

shider = 100×min
i∈D

(dhider,i)+ 10× thider,BF + |L|+ ρ (5)

Here,dhider,i is the distance from the location of the hider to
the location of seekeri. thider,BF represents the number of
black fare tickets the hider has left.ρ is a small random value
between 0 and 1.

For the seekers, we use an evaluation function that is similar
to the MTD playout strategy used in MCTS. The seekers try
to minimize the sum of the distances to all possible locations.
The leaf nodes of the expectimax search tree of seekeri are
evaluated by using Formula 6.

si = −
∑

l∈L

di,l + ρ (6)

Here, di,l is the distance from the location of seekeri to
possible locationl. Again, ρ is a random value between 0
and 1.

D. Location Categorization

Similarly to MCTS, Location Categorization can be used in
the expectimax framework to bias the algorithm towards more
likely locations. Usually, in the chance level of the search
tree for Scotland Yard, each location has an equal weight.
By applying Location Categorization, more likely locations
receive a larger weight than unlikely ones. The weightP (i) of

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, XXXXXXXX 20XX 8

the node representing locationi is calculated by using Formula
7.

P (i) = wci/
∑

l∈L

wcl (7)

In this formula, wci and wcl represent the weights of the
category to which locationsi and l belong, respectively. This
formula is similar to Formula 3, which is used for one-step
selection.

VI. EXPERIMENTS

In this section we first provide an overview of the exper-
imental setup in Subsection VI-A. In Subsection VI-B we
present the results of the experiments withǫ-greedy playouts
for the MCTS players. The determinization techniques for
MCTS are compared in Subsection VI-C. In Subsection VI-D
we give an overview of the performance of the MCTS seekers
with Location Categorization. Next, in Subsection VI-E we
show how Location Categorization influences the performance
of the expectimax seekers. In Subsection VI-F we present
how the MCTS seekers with Coalition Reduction perform.
In Subsection VI-G, a comparison between the MCTS and
minimax-based players is provided. Finally, in Subsection
VI-H we give an overview of how MCTS performs against
the Scotland Yard program on the Nintendo DS.

A. Setup

The engines for Scotland Yard and the AI players are
written in Java. For the MCTS-based hider and seekers,C
is set to 0.5. Progressive History [34] is used for both the
hider and the seekers, with the value ofW set to 5 for
both player types. These values were achieved by systematic
testing. For the hider we use move filtering and for the
seekers we use determinization with a single tree. All MCTS
players use 10 000 playouts for selecting the best move, except
when stated otherwise. The expectimax and paranoid players
receive 1 second of thinking time for each move. In all
experiments, 1000 games are played to determine the win
rate. The win rates are given with a 95% confidence interval.
The experiments are run on a cluster consisting of AMD64
Opteron 2.4 GHz processors. Depending on the settings, one
game takes approximately 2–4 minutes to finish.

B. ǫ-greedy playouts

In the first set of experiments we determine the influence of
ǫ-greedy playouts on the playing strength of the hider and the
seekers. Because the different playout strategies have different
influences on the number of playouts per second, we limit
the thinking time of the players on time instead of samples.
Due to the asymmetric nature of Scotland Yard, we also can
use different values ofǫ for the hider and the seekers in the
playouts. Systematic testing showed that the best results are
achieved withǫ = 0.1 for the hider andǫ = 0.2 for the seekers.
Furthermore, we found that the MM strategy combination
works best for the hider and the MC combination works best
for the seekers.

TABLE III
WIN RATES OF THEMCTS SEEKERS AGAINST THEMCTS HIDER WITH

AND WITHOUT ǫ-GREEDY PLAYOUTS FOR DIFFERENT TIME SETTINGS.

Thinking time: 1 second
hider

seekers MM R
MC 73.5%± 2.7 78.1%± 2.6
R 39.7%± 3.0 49.0%± 3.1

Thinking time: 2.5 seconds
hider

seekers MM R
MC 74.9%± 2.7 79.9%± 2.5
R 55.8%± 3.1 59.2%± 3.0

Thinking time: 5 seconds
hider

seekers MM R
MC 74.0%± 2.7 79.5%± 2.5
R 41.8%± 3.1 59.8%± 3.0

In Table III, we present the win rates for the seekers with
ǫ-greedy playouts and with random playouts (R) for different
time settings (1 second, 2.5 seconds and 5 seconds). The
results show thatǫ-greedy playouts are a major improvement
for both the hider and the seekers. For example, with a thinking
time of 5 seconds, the win rate of the seekers increases
from 59.8%± 3.0 to 79.5%± 2.5 against the hider with
random playouts. For the hider, the win rate increases from
40.2%± 3.0 to 58.2%± 3.1 against seekers with random
playouts. Similar results are achieved with 2.5 and 5 seconds
thinking time. The results also reveal that the seekers havea
considerable advantage over the hider, which may be explained
by the asymmetric nature of the game.

For the remainder of the experiments, we use the MC
strategies for the seekers and the MM strategies for the hider.

C. Determinization

In the previous experiments we applied determinization with
a single tree. In this set of experiments, we validate that this
technique works better than using a separate tree for each
determinization. We perform these experiments in such a way
that both player types use eitherǫ-greedy playouts or ran-
dom playouts when competing against each other. Systematic
testing showed that for separate trees the same values for
C and ǫ are also optimal for the single tree. The results
are summarized in Table IV. The upper part of the table
shows that single-tree determinization gives the highest win
rate with a fixed number of playouts. Especially when using
ǫ-greedy playouts, this technique performs considerably better
than separate trees. When using separate trees, majority voting
performs significantly better than using the average score.
We remark that using a single tree generates more overhead,
because at the hider’s ply, the moves have to be checked
whether they are consistent with the selected determinization.
This overhead, however, is relatively small. When taking
this overhead into account, the difference between single-tree
determinization and separate trees hardly changes. This may
be concluded from the results presented in the lower part of
the table, where the thinking time is limited to 1 second per
move, instead of providing a fixed number of playouts.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, XXXXXXXX 20XX 9

TABLE IV
WIN RATES OF THEMCTS SEEKERS WITH DIFFERENT

DETERMINIZATIONS AGAINST THE MCTS HIDER. BOTH PLAYER TYPES

USE EITHERǫ-GREEDY OR RANDOM PLAYOUTS.

10 000 playouts per move
Playouts

Determinization ǫ-greedy Random
Single tree 63.6%± 3.0 51.8%± 3.1
Separate trees + average score 31.3%± 2.9 31.2%± 2.9
Separate trees + majority voting 35.1%± 3.0 37.5%± 3.0

1 second per move
Playouts

Determinization ǫ-greedy Random
Single tree 73.5%± 2.7 54.7%± 3.1
Separate trees + average score 37.1%± 3.0 38.5%± 3.0
Separate trees + majority voting 39.9%± 3.0 40.1%± 3.0

TABLE V
WIN RATES OF THEMCTS SEEKERS WITHLOCATION CATEGORIZATION

AGAINST THE MCTS HIDER.

Categorization Table Steps Win rate
Minimum-distance General 1 67.7%± 2.9
Minimum-distance General 2 66.3%± 2.9
Minimum-distance Detail 1 63.5%± 3.0
Minimum-distance Detail 2 65.6%± 2.9
Average-distance General 1 61.7%± 3.0
Average-distance General 2 59.6%± 3.0
Average-distance Detail 1 63.9%± 3.0
Average-distance Detail 2 63.6%± 3.0

Station General 1 58.6%± 3.1
Station General 2 58.0%± 3.1
Station Detail 1 57.9%± 3.1
Station Detail 2 58.5%± 3.1

Default win rate: 63.6%± 3.0

D. Location Categorization for MCTS

In the next set of experiments we check which combination
of categorization, table type and number of selection steps
works best when using Location Categorization. The statistics
for the general and detailed table are gathered by letting MCTS
seekers play 1000 games against an MCTS hider. The results
are summarized in Table V. We let MCTS seekers with Loca-
tion Categorization play against an MCTS hider. For reference,
the seekers without Location Categorization win 63.6%± 3.0
of the games against the hider. The win rate of the seekers
without Location Categorization is denoted as the default win
rate. The results in Table V show that the minimum-distance
categorization works best. For this categorization, thereis no
large difference between the table types and the number of
selection steps.

To test the robustness of this technique, we let the MCTS
seekers with Location Categorization play against a different
type of hider, namely the paranoid hider. We use the same
weights that we used against the MCTS hider. Because in the
previous set of experiments, it turned out that the minimum-
distance categorization works best, we only use this catego-
rization in this set of experiments. The results are given in
Table VI. The results show that Location Categorization also
significantly improves the performance of the seekers against
a different type of opponent. With all settings a significantly
better performance is achieved.

TABLE VI
WIN RATES OF THEMCTS SEEKERS WITHLOCATION CATEGORIZATION

AGAINST THE PARANOID HIDER.

Categorization Table Steps Win rate
Minimum-distance General 1 86.4%± 2.1
Minimum-distance General 2 86.3%± 2.1
Minimum-distance Detail 1 87.5%± 2.0
Minimum-distance Detail 2 86.6%± 2.1

Default win rate: 83.4%± 2.3

TABLE VII
WIN RATES OF THE EXPECTIMAX SEEKERS WITHLOCATION

CATEGORIZATION AGAINST THE MCTS HIDER.

Categorization Table Win rate
Minimum-distance General 50.2%± 3.1
Minimum-distance Detail 44.2%± 3.1
Average-distance General 41.4%± 3.1
Average-distance Detail 40.3%± 3.0

Station General 38.2%± 3.0
Station Detail 39.9%± 3.0

Default win rate: 40.6%± 3.0

E. Location Categorization for expectimax

We also test how Location Categorization increases the
performance of the detectives in the expectimax framework.
We test this enhancement with the same three categorizations
as in the MCTS experiments, including the same weights for
the categories. We first let expectimax seekers play againstan
MCTS hider. The results are given in Table VII. Both player
types received 1 second of thinking time. The results show
that Location Categorization also works in the expectimax
framework. Similar to the MCTS version, the minimum-
distance categorization performs best, increasing the winrate
against the MCTS hider from 40.6%± 3.0 to 50.2%± 3.1
when using the general table.

We also test the robustness of Location Categorization in
the expectimax framework by testing against a paranoid hider.
We remark that the weights of the categories are trained with
a different type of seekers against a different type of hider.
The results of this set of experiments are displayed in Table
VIII. It appears that the detailed table gives better results than
the general table. The minimum-distance categorization isstill
the best categorization.

F. Coalition Reduction

To test the performance of the MCTS seekers with Coalition
Reduction, we let seekers play against different hiders with
different values ofr. For the seekers, we test the performance
of Coalition Reduction with and without Location Categoriza-
tion enabled. We also test against a paranoid hider to verify
that this enhancement also works against another type of hider.
Finally, we test the performance of the seekers with Coalition
Reduction with different time settings. We remark that for
r = 0, Coalition Reduction is disabled. Forr = 1, there is no
coalition, and all seekers only work for themselves. The results
are presented in Table IX and Fig. 7. The seekers achieve the
highest win rate withr = 0.1. The win rate increases from
63.6%± 3.0 to 70.1%± 2.8. With Location Categorization,
the win rate even increases further, from 67.7%± 2.9 to
76.2% ± 2.6. Also with r = 0.2 andr = 0.3 the seekers

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, XXXXXXXX 20XX 10

TABLE VIII
WIN RATES OF THE EXPECTIMAX SEEKERS WITHLOCATION

CATEGORIZATION AGAINST THE PARANOID HIDER.

Categorization Table Win rate
Minimum-distance General 76.3%± 2.6
Minimum-distance Detail 79.1%± 2.5
Average-distance General 71.5%± 2.8
Average-distance Detail 77.3%± 2.6

Station General 69.3%± 2.9
Station Detail 65.1%± 3.0

Default win rate: 74.1%± 2.7

TABLE IX
WIN RATES OFMCTS SEEKERS WITHCOALITION REDUCTION FOR

DIFFERENT VALUES OFr AGAINST DIFFERENT HIDERS.

Seekers: MCTS + LC MCTS MCTS + LC MCTS
Hider: MCTS MCTS Paranoid Paranoid

0 67.7%± 2.9 63.6%± 3.0 87.9%± 2.0 85.1%± 2.2
0.1 76.2%± 2.6 70.1%± 2.8 92.9%± 1.6 90.2%± 1.8
0.2 74.2%± 2.7 65.3%± 3.0 92.5%± 1.6 88.0%± 2.0
0.3 72.1%± 2.8 64.3%± 3.0 91.0%± 1.8 84.3%± 2.3
0.4 64.9%± 3.0 54.9%± 3.1 88.9%± 1.9 82.1%± 2.4

r 0.5 65.0%± 3.0 51.0%± 3.1 86.0%± 2.2 79.1%± 2.5
0.6 52.9%± 3.1 43.5%± 3.1 83.0%± 2.3 72.9%± 2.8
0.7 47.5%± 3.1 42.6%± 3.1 74.9%± 2.7 70.4%± 2.8
0.8 39.7%± 3.0 34.4%± 2.9 69.4%± 2.9 63.9%± 3.0
0.9 32.3%± 2.9 30.7%± 2.9 63.2%± 3.0 57.2%± 3.1
1 23.1%± 2.6 22.6%± 2.6 50.7%± 3.1 49.7%± 3.1

play at least as strong with Coalition Reduction than without
this enhancement. Ifr is increased further, the performance
of the seekers drops significantly. With these settings, the
detectives no longer cooperate well to strategically closein
on the hider, allowing the hider to escape rather easily. If
there is no cooperation, the win rate of the detectives dropsto
22.6%± 2.6. To validate these numbers, we also test Coalition
Reduction against the paranoid hider. Again, the best results
are achieved withr = 0.1, so it turns out that this is a good
value that works well against different hiders.

Finally, we test Coalition Reduction with different time
settings. Additionally, we give the MCTS seekers with Lo-
cation Categorization and the MCTS hider 1000, 2500 and
100 000 samples per move. The results are given in Table
X and Fig. 8. With 1000 samples per move for the hider
and the seekers, better results are achieved with a higher
value of r. With r = 0.5, a win rate of 55.6%± 3.1 is
achieved. When providing 2500 samples, the seekers achieve
the highest win rate withr = 0.2 andr = 0.3. With these
time settings they win 64.5%± 3.0 and 64.1%± 3.0 of the
games, respectively. If 100 000 samples per move are provided
for both player types, Coalition Reduction is still a significant
improvement withr = 0.1. The results are similar to 10 000
samples per move. In conclusion, these numbers show that
Coalition Reduction increases the performance of the seekers
significantly. However, cooperation is still important as the
performance decreases ifr becomes larger than 0.3. If less
time is provided, the value ofr should be increased.

G. MCTS vs. minimax-based techniques

In this set of experiments, we compare the MCTS players
to the minimax-based players and determine which technique
performs best. For the MCTS hider, we use UCT with Pro-
gressive History,ǫ-greedy playouts and move filtering. For the

Fig. 7. Graphical representation of Table IX.

TABLE X
WIN RATES OFMCTS SEEKERS WITHCOALITION REDUCTION FOR

DIFFERENT VALUES OFr WITH DIFFERENT TIME SETTINGS.

Playouts: 1000 2500 10 000 100 000
0 34.5%± 3.0 48.3%± 3.1 67.7%± 2.9 77.4%± 2.6
0.1 43.0%± 3.1 59.7%± 3.0 76.2%± 2.6 83.4%± 2.3
0.2 49.6%± 3.1 64.5%± 3.0 74.2%± 2.7 75.3%± 2.7
0.3 49.9%± 3.1 64.1%± 3.0 72.1%± 2.8 72.8%± 2.8
0.4 55.6%± 3.1 58.7%± 3.1 64.9%± 3.0 68.6%± 2.9

r 0.5 51.6%± 3.1 58.5%± 3.1 65.0%± 3.0 60.1%± 3.0
0.6 48.7%± 3.1 52.4%± 3.1 52.9%± 3.1 56.4%± 3.1
0.7 44.1%± 3.1 50.1%± 3.1 47.5%± 3.1 45.8%± 3.1
0.8 40.2%± 3.0 39.7%± 3.0 39.7%± 3.0 41.0%± 3.1
0.9 35.0%± 3.0 37.0%± 3.0 32.3%± 2.9 32.7%± 2.9
1 26.0%± 2.7 24.3%± 2.7 23.1%± 2.6 27.6%± 2.8

MCTS seekers, we use UCT with Progressive History, single-
tree determinization,ǫ-greedy playouts, Coalition Reduction
with r = 0.1 and Location Categorization with the minimum-
distance general table and 1-step selection. For the paranoid
hider, we use killer moves, the history heuristic and move
filtering. For the expectimax seekers, we use killer moves,
the history heuristic and Location Categorization with the
minimum-distance general table. All players receive 1 second
of thinking time per move. Against the paranoid hider, the
expectimax seekers won 76.2%± 2.6 of the games and the
MCTS seekers won 94.9%± 1.4. Against the MCTS hider,
the expectimax seekers managed to win 45.0%± 3.1 and the
MCTS seekers 81.2%± 2.4 of the games. Consequently, the
paranoid hider won 23.8%± 2.6 of the games against the
expectimax seekers, while the MCTS hider won 55.0%± 3.1
of the games. Against the MCTS seekers, the paranoid hider
won only 5.1%± 1.4 of the games, while the MCTS hider
won 18.8%± 2.4. The results are summarized in Table XI.
These results show that for both the hider and the seekers,
MCTS works far better than the minimax-based players.

H. Performance against the Nintendo DS program

To test the strength of the MCTS-based program, it is
matched against the Scotland Yard program on the Nintendo
DS. The AI of this program is considered to be rather strong
[30].

For the hider and the seekers, we use the same settings
and enhancements as described in Subsection VI-G. It is not

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, XXXXXXXX 20XX 11

Fig. 8. Graphical representation of Table X.

TABLE XI
WIN RATES OF THE DIFFERENT SEEKERS AGAINST DIFFERENT HIDERS.

hider
seekers MCTS Paranoid
MCTS 81.2%± 2.4 94.9%± 1.4
Expectimax 45.0%± 3.1 76.2%± 2.6

possible to set the thinking time of the Nintendo DS player. It
often plays immediately, but it sometimes takes 5–10 seconds
to find a move. To have a fair comparison, we set the thinking
time of the MCTS program to 2 seconds.

Because these games have to be played manually, only 50
games are played, where each program plays 25 times as the
seekers and 25 times as the hider. Out of these 50 games, 34
games are won by our program. 23 of these games are won
as the seekers and 11 as the hider. The Nintendo DS program
wins 16 games, of which 14 as the seekers and 2 as the hider.
These results show that the MCTS program plays stronger than
the Nintendo DS program.

VII. C ONCLUSIONS ANDFUTURE RESEARCH

In this article we investigated how MCTS can be applied
to play the hide-and-seek game Scotland Yard, how it can be
enhanced to improve its performance, and how it compares to
minimax-based search techniques.

Using ǫ-greedy playouts to incorporate some basic knowl-
edge into the MCTS algorithm considerably improves the
performance of both the seekers and the hider. We observed
that using differentǫ values and different playout strategies
for the different players in the playouts performs siginificantly
better than random playouts.

For handling the imperfect information, we investigated
two different determinization techniques, namely single-tree
determinization and separate-tree determinization. When using
separate trees, majority voting for selecting the best move
produces a higher win rate than calculating the average over
all trees. Single-tree determinization has a slight overhead, but
even when taking this into account, it performs significantly
better than using separate trees.

Furthermore, we proposed Location Categorization, a tech-
nique that can be used by both the MCTS and the expectimax
seekers in Scotland Yard to give a better prediction for the

location of the hider. We introduced three types of categoriza-
tion: minimum-distance, average-distanceandstation. The ex-
periments revealed that the minimum-distance categorization
performs best. It significantly increases the playing strength
of both the MCTS and the expectimax seekers. Location
Categorization proved to be a robust technique, as the learned
weights work for both players types against two different types
of hider.

We also observed that the performance of the MCTS seek-
ers can be improved by applying Coalition Reduction. This
technique allows the seekers to cooperate more effectivelyin
the coalition, by preventing them from becoming too lazy or
too selfish. It also became clear that cooperation is important,
because the performance of the seekers drops significantly
when the reduction becomes too large. Furthermore, if less
playouts per move are provided, better results are achieved
with a higher value ofr.

In a direct comparison, it turned out that MCTS performs
considerably better than paranoid search for the hider and
expectimax for the seeker. A comparison between MCTS and
minimax-based techniques is not easy because each technique
can be enhanced in different ways and the efficiency of the
implementations may differ. However, the results do give an
idea of the playing strength of the different search techniques
and we can also conclude that MCTS is easier to define and
optimize than the minimax-based search techniques. Finally,
we showed that MCTS, a technique which uses only basic
domain knowledge, was able to play Scotland Yard on a
higher level than the Nintendo DS program, which is generally
considered to be a strong player.

We define three possible directions for future research.
The first is to improve Location Categorization. New types
of categorization may be tested or different categorizations
may be combined. This can de done by introducing three-step
selection. The first two steps are used to select two categories
using two different categorizations. In the third step, a possible
location is selected which belongs to both selected categories.
Another way of combining two categorizations is by taking the
Cartesian product of the categories of both categorizations. It
can also be interesting to test Location Categorization in other
hide-and-seek games, for instance Battleship, a two-player
game where both players act both as an immobile hider and
seeker. A similar technique may also be applied for Stratego
to guess the ranks of the opponent’s unknown pieces.

The second future research direction is to continue the
recent work of Silver and Veness [59], who extended MCTS to
Partially Observable Markov Decision Processes (POMDPs).
Their technique, Partially Observable Monte-Carlo Planning
(POMCP), was successfully applied to Battleship and a par-
tially observable variant of PacMan. Their technique could
be applied to Scotland Yard as well. With POMDPs, the
theoretical shortcomings of determinization can be avoided.
However, Scotland Yard may be too complex to model as a
POMDP and use it for planning in a reasonable amount of
time.

The third possible future research topic is modeling Scot-
land Yard as a Bounded Horizon Hidden Information Game
(BHHIG) [60]. This technique does not have the theoretical

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, XXXXXXXX 20XX 12

shortcomings of determinization, but it is also slower. A
BHHIG can be used for modeling partially observable games
in which information is regularly revealed. Teytaud and Flory
showed that each BHHIG can be represented as a Game with
Simultaneous Actions (GSA) and that the UCT algorithm can
be adapted to such games. However, similar to POMDPs,
Scotland Yard may be too complex to model as a BHHIG
because the maximum number of moves between two fully
observable nodes is 30, which may be too large.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers of this
article and the reviewers of our previous contributions at the
CIG [28] and the BNAIC [61] for their useful suggestions
and constructive criticism. This research is funded by the
transnational University Limburg (tUL).

REFERENCES

[1] R. Coulom, “Efficient Selectivity and Backup Operators inMonte-Carlo
Tree Search,” inComputers and Games (CG 2006), ser. LNCS, H. J.
van den Herik, P. Ciancarini, and H. H. L. M. Donkers, Eds., vol. 4630.
Berlin, Germany: Springer-Verlag, 2007, pp. 72–83.

[2] L. Kocsis and C. Szepesvári, “Bandit Based Monte-Carlo Planning,” in
Machine Learning: ECML 2006, ser. LNCS, J. F̈urnkranz, T. Scheffer,
and M. Spiliopoulou, Eds., vol. 4212. Berlin, Germany: Springer-
Verlag, 2006, pp. 282–293.

[3] C. B. Browne, E. J. Powley, D. Whitehouse, S. M. Lucas, P. I.Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A
Survey of Monte Carlo Tree Search Methods,”IEEE Transactions on
Computational Intelligence and AI in Games, vol. 4, no. 1, pp. 1–43,
2012.

[4] D. E. Knuth and R. W. Moore, “An Analysis of Alpha-Beta Pruning,”
Artificial Intelligence, vol. 6, no. 4, pp. 293–326, 1975.

[5] C. Luckhart and K. Irani, “An Algorithmic Solution of N-Person
Games,” inProceedings of the 5th National Conference on Artificial
Intelligence (AAAI), vol. 1, 1986, pp. 158–162.

[6] N. R. Sturtevant and R. E. Korf, “On Pruning Techniques for Multi-
Player Games,” inProceedings of the Seventeenth National Conference
on Artificial Intelligence and Twelfth Conference on Innovative Appli-
cations of Artificial Intelligence. AAAI Press / The MIT Press, 2000,
pp. 201–207.

[7] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time Analysis of the
Multiarmed Bandit Problem,”Machine Learning, vol. 47, no. 2, pp.
235–256, 2002.

[8] S. Gelly and Y. Wang, “Exploration Exploitation in Go: UCT for Monte-
Carlo Go,” in Neural Information Processing Systems Conference On-
line trading of Exploration and Exploitation Workshop, Whistler, BC,
Canada, 2006.

[9] S. Gelly and D. Silver, “Combining Online and Offline Knowledge in
UCT,” in ICML ’07: Proceedings of the 24th International Conference
on Machine Learning. New York, NY, USA: ACM, 2007, pp. 273–280.

[10] M. H. M. Winands, Y. Bj̈ornsson, and J.-T. Saito, “Monte Carlo Tree
Search in Lines of Action,”IEEE Transactions on Computational
Intelligence and AI in Games, vol. 2, no. 4, pp. 239–250, 2010.

[11] B. Arneson, R. B. Hayward, and P. Henderson, “Monte-Carlo Tree
Search in Hex,”IEEE Transactions on Computational Intelligence and
AI in Games, vol. 2, no. 4, pp. 251–258, 2010.

[12] R. J. Lorentz, “Amazons Discover Monte-Carlo,” inComputers and
Games (CG 2008), ser. LNCS, H. J. van den Herik, X. Xu, Z. Ma, and
M. H. M. Winands, Eds., vol. 5131. Berlin, Germany: Springer-Verlag,
2008, pp. 13–24.

[13] N. R. Sturtevant, “An Analysis of UCT in Multi-player Games,” ICGA
Journal, vol. 31, no. 4, pp. 195–208, 2008.

[14] M. P. D. Schadd, M. H. M. Winands, H. J. van den Herik, G. M.J.-B.
Chaslot, and J. W. H. M. Uiterwijk, “Single-Player Monte-Carlo Tree
Search,” inComputers and Games (CG 2008), ser. LNCS, H. J. van den
Herik, X. Xu, Z. Ma, and M. H. M. Winands, Eds., vol. 5131. Berlin,
Germany: Springer-Verlag, 2008, pp. 1–12.

[15] Y. Björnsson and H. Finnsson, “CADIA PLAYER: A Simulation-Based
General Game Player,”IEEE Transactions on Computational Intelli-
gence and AI in Games, vol. 1, no. 1, pp. 4–15, 2009.

[16] M. L. Ginsberg, “GIB: Steps Toward an Expert-Level Bridge-Playing
Program,” in In Proceedings of the Sixteenth International Joint Con-
ference on Artificial Intelligence (IJCAI-99), 1999, pp. 584–589.

[17] D. Billings, L. Pena, J. Schaeffer, and D. Szafron, “Using Probabilistic
Knowledge and Simulation to Play Poker,” inProceedings of the
Sixteenth National Conference on Artificial Intelligence. AAAI press,
1999, pp. 697–703.

[18] B. Sheppard, “Towards Perfect Play of Scrabble,” Ph.D.dissertation,
Department of Computer Science, Universiteit Maastricht, Maastricht,
The Netherlands, 2002.

[19] R. Bjarnason, A. Fern, and P. Tadepalli, “Lower Bounding Klondike
Solitaire with Monte-Carlo Planning,” inInternational Conference on
Automated Planning and Scheduling/Artificial Intelligence Planning
Systems, A. Gerevini, A. Howe, A. Cesta, and I. Refanidis, Eds., 2009,
pp. 26–33.

[20] P. Ciancarini and G. P. Favini, “Monte Carlo Tree SearchTechniques
in the Game of Kriegspiel,” inProceedings of the 21st International
Joint Conference on Artificial Intelligence (IJCAI-09), C. Boutilier, Ed.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2009, pp.
474–479.

[21] G. Van den Broeck, K. Driessens, and J. Ramon, “Monte-Carlo Tree
Search in Poker using Expected Reward Distributions,” inAdvances in
Machine Learning, ser. LNAI, Z.-H. Zhou and T. Washio, Eds., vol.
5828. Berlin, Germany: Springer-Verlag, 2009, pp. 72–83.

[22] M. Ponsen, G. Gerritsen, and G. M. J.-B. Chaslot, “Integrating Opponent
Models with Monte-Carlo Tree Search in Poker,” inInteractive Decision
Theory and Game Theory Workshop at AAAI, vol. 10, 2010, pp. 37–42.

[23] D. Michie, “Game-Playing and Game-Learning Automata,”Advances in
Programming and Non-Numerical Computation, pp. 183–200, 1966.

[24] D. Billings, A. Davidson, T. Schauenberg, N. Burch, M. Bowling,
R. Holte, J. Schaeffer, and D. Szafron, “Game-Tree Search with Adap-
tation in Stochastic Imperfect-Information Games,” inComputers and
Games (CG 2004), ser. LNCS, H. J. van den Herik, Y. Björnsson, and
N. S. Netanyahu, Eds., vol. 3846. Berlin, Germany: Springer-Verlag,
2006, pp. 21–34.

[25] M. P. D. Schadd, M. H. M. Winands, and J. W. H. M. Uiterwijk,
“CHANCEPROBCUT: Forward Pruning in Chance Nodes,” inIEEE
Symposium on Computational Intelligence and Games (CIG 2009), P. L.
Lanzi, Ed. IEEE, 2009, pp. 178–185.

[26] M. Adler, H. Räcke, N. Sivadasan, C. Sohler, and B. Vöcking, “Ran-
domized Pursuit-Evasion in Graphs,”Combinatorics, Probability &
Computing, vol. 12, no. 03, pp. 225–244, 2003.

[27] N. Megiddo, S. Hakimi, M. Garey, D. Johnson, and C. Papadimitriou,
“The Complexity of Searching a Graph,”Journal of the Association for
Computing Machinery, vol. 35, no. 1, pp. 18–44, 1988.

[28] J. A. M. Nijssen and M. H. M. Winands, “Monte-Carlo Tree Search
for the Game of Scotland Yard,” inIEEE Conference on Computational
Intelligence and Games. IEEE, 2011, pp. 158–165.

[29] “Scotland Yard | Board Game | BoardGameGeek,”
http://www.boardgamegeek.com/boardgame/438/scotland-yard,
retrieved April 2011.

[30] A. Frackowski, “[NDS Review] Scotland Yard DS - Hold.Start.Select,”
2011, http://holdstartselect.com/nds-review-scotland-yard-ds/.

[31] E.-E. Doberkat, W. Hasselbring, and C. Pahl, “Investigating Strategies
for Cooperative Planning of Independent Agents through Prototype
Evaluation,” inCoordination Models and Languages (COORDINATION
’96), ser. LNCS, P. Ciancarini and C. Hankin, Eds., vol. 1061. Berlin,
Germany: Springer-Verlag, 1996, pp. 416–419.

[32] M. Sevenster, “The Complexity of Scotland Yard,” inInteractive Logic,
J. van Benthem, B. L̈owe, and D. Gabbay, Eds. Amsterdam, The
Netherlands: Amsterdam University Press, 2008, pp. 209–246.

[33] G. M. J.-B. Chaslot, M. H. M. Winands, J. W. H. M. Uiterwijk, H. J.
van den Herik, and B. Bouzy, “Progressive Strategies for Monte-Carlo
Tree Search,”New Mathematics and Natural Computation, vol. 4, no. 3,
pp. 343–357, 2008.

[34] J. A. M. Nijssen and M. H. M. Winands, “Enhancements for Multi-
Player Monte-Carlo Tree Search,” inComputers and Games (CG 2010),
ser. LNCS, H. J. van den Herik, H. Iida, and A. Plaat, Eds., vol. 6515.
Berlin, Germany: Springer-Verlag, 2011, pp. 238–249.

[35] J. Schaeffer, “The history heuristic,”ICCA Journal, vol. 6, no. 3, pp.
16–19, 1983.

[36] B. Bouzy, “Associating Domain-Dependent Knowledge andMonte Carlo
Approaches within a Go Program,”Information Sciences, vol. 175, no. 4,
pp. 247–257, 2005.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, XXXXXXXX 20XX 13

[37] S. Gelly, Y. Wang, R. Munos, and O. Teytaud, “Modifications of UCT
with Patterns in Monte-Carlo Go,” INRIA, Paris, France, Tech. Rep.,
2006.

[38] P. Drake, “The Last-Good-Reply Policy for Monte-CarloGo,” Interna-
tional Computer Games Association Journal, vol. 32, no. 4, pp. 221–227,
2009.

[39] H. Baier and P. D. Drake, “The Power of Forgetting: Improving the Last-
Good-Reply Policy in Monte Carlo Go,”Computational Intelligence and
AI in Games, IEEE Transactions on, vol. 2, no. 4, pp. 303–309, 2010.

[40] M. J. W. Tak, M. H. M. Winands, and Y. Bjornsson, “N-Grams
and the Last-Good-Reply Policy Applied in General Game Playing,”
Transactions on Computational Intelligence and AI in Games, vol. 4,
no. 2, pp. 73–83, 2012.

[41] A. Rimmel, F. Teytaud, and O. Teytaud, “Biasing Monte-Carlo Simu-
lations through RAVE Values,” inComputers and Games (CG 2010),
ser. LNCS, H. J. van den Herik, H. Iida, and A. Plaat, Eds., vol. 6515.
Berlin, Germany: Springer-Verlag, 2011, pp. 59–68.

[42] J. von Neumann and O. Morgenstern,Theory of Games and Economic
Behavior. Princeton, NJ, USA: Princeton University Press, 1944.

[43] F.-H. Hsu,Behind Deep Blue: Building the Computer that Defeated the
World Chess Champion. Princeton, NJ, USA: Princeton University
Press, 2002.

[44] S. G. Akl and M. M. Newborn, “The Principal Continuationand the
Killer Heuristic,” in 1977 ACM Annual Conference Proceedings. ACM
Press, New York, NY, USA, 1977, pp. 466–473.

[45] D. Slate and L. Atkin,Chess Skill in Man and Machine. Berlin,
Germany: Springer-Verlag, 1977, ch. 4. CHESS 4.5 – Northwestern
University Chess Program, pp. 82–118.

[46] R. S. Sutton and A. G. Barto,Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, USA, 1998.

[47] J. R. Long, N. R. Sturtevant, M. Buro, and T. Furtak, “Understanding
the Success of Perfect Information Monte Carlo Sampling in GameTree
Search,” inProceedings of the Twenty-Fourth Conference on Artificial
Intelligence, M. Fox and D. Poole, Eds. AAAI press, 2010, pp. 134–
140.

[48] I. Frank and D. Basin, “Search in Games with Incomplete Information:
A Case Study using Bridge Card Play,”Artificial Intelligence, vol. 100,
no. 1-2, pp. 87–123, 1998.

[49] S. J. Russell and P. Norvig,Artificial Intelligence, A Modern Approach.
Englewood Cliffs, NJ, USA: Prentice-Hall, 2002.

[50] T. Cazenave, “A phantom go program,” inAdvances in Computer Games
(ACG11), ser. LNCS, H. J. van den Herik, S.-C. Hsu, T.-S. Hsu, and
H. H. L. M. Donkers, Eds., vol. 4250. Berlin, Germany: Springer-
Verlag, 2006, pp. 120–125.

[51] D. Whitehouse, E. J. Powley, and P. I. Cowling, “Determinization and
Information Set Monte Carlo Tree Search for the Card Game Dou Di
Zhu,” in IEEE Conference on Computational Intelligence and Games.
IEEE, 2011, pp. 87–94.

[52] Y. Soejima, A. Kishimoto, and O. Watanabe, “Evaluating Root Paral-
lelization in Go,” IEEE Transactions on Computational Intelligence and
AI in Games, vol. 2, no. 4, pp. 278–287, 2010.

[53] T. Cazenave and N. Jouandeau, “On the Parallelization of UCT,” in
Proceedings of the Computer Games Workshop, H. J. van den Herik,
J. W. H. M. Uiterwijk, M. H. M. Winands, and M. P. D. Schadd, Eds.,
2007, pp. 93–101.

[54] Y. Tsuruoka, D. Yokoyama, and T. Chikayama, “Game-Tree Search
Algorithm Based on Realization Probability,”ICGA Journal, vol. 25,
no. 3, pp. 132–144, 2002.

[55] M. H. M. Winands and Y. Bj̈ornsson, “Enhanced Realization Probability
Search,”New Mathematics and Natural Computation, vol. 4, no. 3, pp.
329–342, 2008.

[56] Y. Higashiuchi and R. Grimbergen, “Enhancing Search Efficiency by
Using Move Categorization Based on Game Progress in Amazons,”in
Advances in Computer Games (ACG 2005), ser. LNCS, H. J. van den
Herik, S.-C. Hsu, T.-S. Hsu, and H. H. L. M. Donkers, Eds., vol. 4250.
Berlin, Germany: Springer-Verlag, 2006, pp. 73–87.

[57] M. Buro, “Experiments with Multi-ProbCut and a New High-Quality
Evaluation Function for Othello,” inGames in AI Research, H. J. van den
Herik and H. Iida, Eds., Maastricht, The Netherlands, 2000,pp. 77–96.

[58] M. P. D. Schadd and M. H. M. Winands, “Best Reply Search for
Multiplayer Games,”Transactions on Computational Intelligence and
AI in Games, vol. 3, no. 1, pp. 57–66, 2011.

[59] D. Silver and J. Veness, “Monte-Carlo Planning in LargePOMDPs,”
in Advances in Neural Information Processing Systems 23, J. Lafferty,
C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta,Eds.,
2010, pp. 2164–2172.

[60] O. Teytaud and S. Flory, “Upper Confidence Trees with Short Term
Partial Information,” inApplications of Evolutionary Computation, ser.
LNCS, C. Chio, S. Cagnoni, C. Cotta, M. Ebner, A. Ekrt, A. Esparcia-
Alczar, J. Merelo, F. Neri, M. Preuss, H. Richter, J. Togelius, and
G. Yannakakis, Eds. Berlin, Germany: Springer-Verlag, 2011, vol. 6624,
pp. 153–162.

[61] J. A. M. Nijssen and M. H. M. Winands, “Monte-Carlo Tree Search
for the Game of Scotland Yard,” inProceedings of the 23rd Benelux
Conference on Artificial Intelligence, P. de Causmaecker, J. Maervoet,
T. Messelis, K. Verbeeck, and T. Vermeulen, Eds., Ghent, Belgium,
2011, pp. 417–418, extended abstract.

J. (Pim) A. M. Nijssen received the M.Sc. de-
gree in Artificial Intelligence from the Department
of Knowledge Engineering, Maastricht University,
Maastricht, The Netherlands, in 2009. Currently, he
is working on his Ph.D. degree in Artificial Intelli-
gence at the Department of Knowledge Engineering,
Maastricht University, Maastricht, The Netherlands.
His research covers the use of Monte-Carlo Tree
Search in multi-player games and hide-and-seek
games.

Mark H. M. Winands received the Ph.D. de-
gree in Artificial Intelligence from the Department
of Computer Science, Maastricht University, Maas-
tricht, The Netherlands, in 2004. Currently, he is an
Assistant Professor at the Department of Knowledge
Engineering, Maastricht University. His research in-
terests include heuristic search, machine learning
and games. Dr. Winands serves as a section editor of
the ICGA Journal and as an associate editor of IEEE
Transactions on Computational Intelligence and AI
in Games.

