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Monte-Carlo Tree Search
for the Hide-and-Seek Game Scotland Yard

J. (Pim) A.M. Nijssen and Mark H.M. Winands

Abstract—This article describes how Monte-Carlo Tree Search [19]. Recently, MCTS has been applied in imperfect informa-
(MCTS) can be applied to play the hide-and-seek game Scotland tion games as well. Ciancarini and Favini [20] showed that
Yard. This game is essentially a two-player game in which the \;cTg i aple to deal with imperfect information in the game

players are moving on a graph-based map. First, we discuss how . - ) . .
determinization is applied to handle the imperfect information of Kriegspiel, a variant of chess. However, their technijare

in the game. We show how using determinization in a single domain specific and cannot directly be applied to other tgbes
tree performs better than using separate trees for each deter games with imperfect information. MCTS variants have also

minization. We also propose a new technique, called Location peen applied in poker to handle the intricacies of the game
Categorization, that biases the possible locations of the hider. [21], [22]. Imperfect information games can also be playgd b

The experimental results reveal that Location Categorization is . . -
a robust technique, and significantly increases the performance YSIN9 the expectimax framework [23]. Billings al. [24] used

of the seekers. Next, we describe how to handle the coalition Variations of expectimax, MiIMAX and its generalization
of the seekers by using Coalition Reduction. This technique MIXIMIX , to play poker. Schadeit al.[25] applied expectimax

balances each seeker’s participation in the coalition. Coalition for playing the game Stratego. They enhanced the search with

Reduction improves the performance of the seekers significantly. -~ AncEPROBCUT. which allows forward pruning in chance
Furthermore, we explain how domain knowledge is incorporated nodes '

by applying e-greedy playouts and move filtering. Finally, we L . L
compare the MCTS players to minimax-based players and we A subclass of games with imperfect information is the class
test the performance of our MCTS player against a commercial of hide-and-seek games. Hide-and-seek games are played by
Scotland Yard program on the Nintendo DS. Based on the results two or more players in two teams: the hiders and the seekers.
we may conclude that the MCTS-based hider and seekers play The goal of the seekers is to capture the hiders. The goal of
at a strong level. the hiders is to avoid the seekers for as long as possiblet Mos
_ Index Terms—Monte-Carlo Tree Search, Imperfect informa-  research in hide-and-seek games focuses on mathematical
tion, Cooperation in games, Scotland Yard approaches for finding optimal strategies for the seekéss (a
called pursuers) that guarantees finding one or multiplerkid
(also called evaders) in finite time [26], [27]. In this algica
computational intelligence approach in playing hide-aedk

VER the last few years, Monte-Carlo Tree Searchames is investigated. The hide-and-seek game we focus on

(MCTS) [1], [2] has become increasingly popular foin this article is Scotland Yard.
letting computers play a wide variety of games [3]. MCTS is Scotland Yard is a popular modern board game with a hide-
a best-first search technique which, in its basic form, dogad-seek mechanism, which won the prestigi@mel des
not rely on heuristic domain knowledge, contrary to morgahresaward in 1983. The seekers, called detectives, have
traditional search algorithms likes-search [4], ma® [5] and  to determine the location of a mobile hider, called Mister X,
paranoid [6]. Instead of using a heuristic evaluation fiomt based on a limited amount of information. The seekers should
it applies Monte-Carlo simulations to guide the search.d#an cooperate in a coalition to capture the hider. Scotland Yasi
based reinforcement learning algorithms [2], [7], [8] ame athree properties that makes it a challenging and intempstin
plied to recursively build the search tree. MCTS has provefomain for applying and improving tree search techniques.
its strength in two-player games such as Go [9], Lines af) It has imperfect information for some of the players. The
Action [10], Hex [11] and Amazons [12], multi-player gamesseekers perform public moves, while the hider performs both
such as Chinese Checkers [13] and one-player games sucpudslic and private moves. 2) It contains a fixed coalition
SameGame [14]. MCTS is also widely used for General Garpetween 5 of the players, and 3) the game is asymmetric in
Playing [15]. its goals.

A challenging domain is the class of games with imperfect In this article we describe how MCTS can be applied to
information. In these games, information is hidden from thackle these challenges. We first show how to handle imperfec
players. In the past, Monte-Carlo-based approaches haveigformation using different determinization techniquése
ready been successfully applied to this class of games,agiclalso propose a new technique, called Location Categavizati
Bridge [16], Poker [17], Scrabble [18], and Klondike Sdliga This technique allows the seekers to make a more reliable

prediction for the current location of the hider. Next, we
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I. INTRODUCTION



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND Al IN GAMES, \OL. X, NO. X, XXXXXXXX 20XX 2

to incorporate domain knowledge in MCTS. We discuss how & %)

to usee-greedy playouts for the seekers and the hider, and
move filtering for the hider. Subsequently, a comparison is
made between the MCTS players and minimax-based players.
Finally, we evaluate the performance of our program against
a commercial Scotland Yard program for the Nintendo DS.
This article is an extension of [28]. It contains additional
experiments and the inclusion of minimax-based search tech
nigues. Furthermore, an improved version of the MCTS pro-
gram is used for the experiments. This improvement includes _
more accurate domain knowledge and optimizations to speed T Ades) T e
up the program. k T pnepraround
The article is organized as follows. In Section Il we briefly - n7]
introduce the game Scotland Yard. In Section Ill we give
an overview of the search techniques used in this articfe? - A subgraph of the Scotland Yard map.
MCTS, paranoid search and expectimax. In Section IV we

explain how MCTS can be applied in Scptland Yard and _WhiGPard is a two-player game, because the seekers work together
enhancements are proposed. In Section V we explain hayone team with one common goal. The game is played on a
paranoid search and expectimax are applied in Scotland Yaid oy consisting of numbered vertices from 1 to 199. The ver-
and_how these technlques_ can be enhanced to improve -Iags are connected by 4 different types of edges repregenti
playing strength. The experiments and results are destiibe o ot transportation types: taxi, bus, underground laoat.

Section VI. Finally, in Section VIl we present the concluso A subgraph is displayed in Fig. 1. Each player occupies one
based on the results, and some possible future resear@s.toRjartex and a vertex can hold at most one player. The vertex
currently occupied by a player is called thaecation of that
player.

This section provides an introduction to the game of All players start at one of the 18 possible pre-defined
Scotland Yard. Subsection II-A gives a brief background oftarting vertices. Each player starts at a different vertgich
Scotland Yard and in Subsection II-B the rules are describgg chosen randomly. Each detective receives 10 taxi, 8 Inas, a

4 underground tickets. Mister X receives 4 taxi, 3 bus, and 3
A. Background underground tickets.

The game of Scotland Yard was introduced in 1983. It The players move alternately, starting with Mister X. A
was developed by Manfred Burggraf, Dorothy Garrels, Wofieduence of 6 moves by Mister X and the 5 detectives is
Hormann, Fritz Ifland, Werner Scheerer and Werner Schlegédlled oneround When performing a move, a player moves
The original version was published by Ravensburger, but tRNg an edge to an unoccupied adjacent vertex, and plays the
game was also distributed for the English-language market ticket corresponding to the chosen edge. Mister X recelves t
Milton Bradley [29]. tickets paid by the detectives. When Mister X plays a ticket,

In 1998, Ravensburger Interactive Media GmbH developdds removed from the game.

a Scotland Yard program for Microsoft Windows, which was Additionally, Mister X receives 5 black-fare tickets and 2
published by Cryo Interactive Entertainment. It did notwmdouble-move tickets. A black-fare ticket allows him to move
feature the original game, but also a computer enhanc@@ng any edge, including the boat. Along with a regularetck
version which introduced some role-playing game elementdister X may also play one of his double-move tickets. All
Another Scotland Yard program was developed in 2008. It wégtectives then skip their turn for that round.

developed by Sproing Interactive Media GmbH and published During the game, Mister X keeps his location secret. Only
by DTP Young Entertainment GmbH & Co. KG and wadgfter moving on rounds 3, 8, 13, 18 and 24 he has to announce
released for the Nintendo DS. The Al of this program iBis location. When Mister X moves, the detectives always get
regarded as quite strong [30] informed which ticket he used.

Only a limited amount of research has been performed inThe goal for the detectives is to capture Mister X by moving
Scotland Yard so far. Doberkat al. [31] applied prototype to0 the vertex occupied by Mister X. The goal for Mister X is
evaluation for cooperative planning and conflict resolutio t0 avoid being captured until no detective can perform a move
Some of their proposed strategies are used in our MCPRSYymore. A detective cannot move if he does not own a ticket
program (see Subsection IV-A). Furthermore, Sevenstey [3zhich allows him to leave his current location. The maximum
performed a complexity analysis on Scotland Yard and provégmber of rounds in Scotland Yard is 24.
that the generalized version of the game is PSPACE-complete

Il. SCOTLAND YARD

I1l. SEARCH TECHNIQUES

B. Rules This Section gives an overview of the search techniques
Scotland Yard is played by 6 players: 5 seekers, calleged in this article. Subsection IlI-A describes MCTS and
detectives, and 1 hider, called Mister X. Essentially, Beamt Subsection 111-B briefly discusses the minimax variants.
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‘ lterated N times ’J the more realistic playouts lead to more reliable resultiwh

‘ Selection ‘ ‘ Expansion Playout ‘ Backpropagation jmprove the playing strength (see Subsection VI-B).

Another strategy to improve the quality of the playouts
is by applying domain-independent techniques, such as the
Last-Good-Reply policy [38]-[40], N-grams [40] and Pool-
Rave [41]. These techniques are useful if domain-dependent
knowledge is not available, computationally expensive, or
ineffective.

A selection One new node A simulation The result is

strategy is used is created strategy is used. propagated
lo traverse the s the backin the tree In this article we only use domain-dependent knowledge
(see Subsection IV-A). Combining domain-dependent and
Fig. 2. MCTS scheme (slightly adapted from Chasgdogl. [33]). domain-independent techniques is beyond the scope of this

article and is a possible direction of future research.
Backpropagation:In the backpropagation phase, the re-

A. Monte-Carlo Tree Search sult of the playout is propagated back along the previously t

Monte-Carlo Tree Search (MCTS) [1], [2] is a best-firsyersed path up to the root node. The result is backpropagated
search technique that gradually builds up a search trededui @ negamax-like fashion [4], similar to MCTS implementation
by Monte-Carlo simulations. In contrast to classic seardh Go [1].
techniques such ags-search [4], it does not require a heuristic These four phases are repeated either a fixed number of
evaluation function. In the MCTS tree, the nodes represdiines or until the time runs out. After the search is finished,
board positions and the edges represent possible moves. WWerselect the robust max child, i.e. the child of the root with
the search process is started, the root node is created wtifth highest number of visits, as the best move [1].
represents the current game position. The MCTS algorithm
consists of four phases [33]: selection, expansion, ptagod g Minimax-based techngiues

backpropagation (see Fig. 2). By repeating these four ghase . . i .
iteratively, the search tree is constructed graduallysetfeur ~ Minimax search [42] is a classic depth-first search tecieiqu

phases are explained in more detail below. used to play many two-player games with perfect information
Selection: In the selection phase, the search tree [gost no'tably Chegs [43]. Minimax is usually enhanced with
traversed, starting from the root, using tRECT selection af-pruning [4], which reduces the size of the search tree from

dy - .
strategy[2]. In this article, UCT is enhanced with Progressiv@(bfl) to O(b2) in the best case. The amount of pruning can
gpe increased with move ordering, such as the killer move

History [34]. This is a combination of Progressive Bias [3 E g . - - ,
and the history heuristic [35]. The childwith the highest euristic [44]. This heuristic uses the assumption thatnwvhe
a move is the best one in a certain position, it is also the

scorev; in Formula 1 is selected. > Hie h = )
best one in similar positions. For each ply, two killer moves
\/m P are stored. A generalization of the kiII_er_m_ove heuristit_this
v =%, +C P+ w " (1) history heuristic [35]. The history heuristic is a move aidg
i ni(l =) +1 technique based on the value of the moves in the past. These
Here, z; denotes the average score of noden; and n, move ordering techniques work well when combined with
denote the total number of times childand parentp have iterative deepening [45]. The search starts with a tree with
been visited, respectivelyC' is a constant, which balancesdepthd = 1 and when a search is finished, a new search is
exploration and exploitationz,, represents the average scorgerformed with an increment ef as long as there is time left.
of movea, i.e. the average score over all playouts in which An extension of minimax search is paranoid search [6]. This
move a was played W is a positive constant that determine¢echnique is used in multi-player games. It assumes that all
the influence of Progressive History. The larger the value ofher players are cooperating against the root player.d-this
W, the longer Progressive History affects the selection ofassumption, the game can be reduced to a two-player game. A
node. This selection strategy is applied until a node ishredc paranoid search tree contains MAX nodes for the root player
that is not fully expanded, i.e. not all of its children hawveeh and MIN nodes for all other players.
added to the tree yet. Expectimax [23] is an extension of minimax search to
Expansion:In the expansion phase, one node is added itacorporate chance events in the search tree. This is done by
the tree [1]. At the last selected node in the selection phaselding chance nodes to the tree. The value of a chance node
this node is chosen randomly from the subset of children thatcomputed by using Formula 2.
are not added to the tree yet.
Playout: During the playout phase, moves are played, bi = ZP(C) X Ve @
starting from the position represented by the newly added ¢
node, until the game is finished. They may be random movés this formula,; is the value of nodé, P(c) is the probability
However, game knowledge can be incorporated to make thiechild ¢ being reached from, andv. is the value of child
playouts more realistic. This knowledge is incorporatedin c.
simulation strategy[36], [37]. Though including knowledge In Section V we discuss how paranoid search and expecti-
in the playouts decreases the number of playouts per secamdx are applied for playing Scotland Yard.
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IV. MCTS FOR SCOTLAND YARD seeker 5

In this section we discuss how MCTS can incorporate the
domain knowledge, imperfect information and cooperating hider

players for Scotland Yard. This section is stuctured agesl 35 g% 49 |

First, Subsection IV-A discusses howgreedy playouts are () () () () OO O seeker 1
used to incorporate knowledge in the playout phase. Sub=7 777/ /N7 NN
section 1V-B explains how determinization can be applied to

handle imperfect information. Next, Subsection IV-C dSSRS Fig. 3.  Example of a determinization with a single tree. In isample,
how to keep track of the possible locations of the hidek = {35,37,49} and the selected determinization is 37.

In Subsection IV-D we propose Location Categorization to

/
~
/
~
/

bias the remaining possible locations. Subsection IV-Bvsho 35 secker 5
how to handle the fixed coalition of the seekers by using the
backpropagation strategy called Coalition Reductionalyn hider
Subsection IV-F describes move filtering that lets the hicsr
his tickets more efficiently. LN
OO O O seeker 1
OWAWAWIN

A. e-greedy playouts

In the MCTS algorithm, we apply-greedy playouts to Fig. 4. Example of a determinization with separate trees. is ékample,
incorporate domain knowledge [13], [46]. When selecting 4= {35:37,49} and the selected determinization is 37.
move in the playouts, the move is chosen randomly with a

probability of e. Otherwise, a heuristic is used to determine, , . . .
the best move. Because Scotland Yard is an asymmetric gamg!@' Russell and Norvig [49] call this method ‘averaging

different heuristics have to be defined for the hider and tiQY€r clairvoyancy’, however GIB can play bridge at an expert

seekers. Furthermore, separate values fcan be determined '€Ve! S _
for the hider and the seekers in the playout. For the hider, weOther examples of games where determinization is applied

have defined one heuristic to determine the best move. THishandle imperfect information include Phantom Go [50]
heuristic, Maximize Closest Distance (MCD), maximizes th@nd Kriegspiel [20]. Cazenave [S0] applied determinizaiio
number of moves the closest seeker should make to arrivé&@@Ntom Go, creating a Monte-Carlo program that was able to
the target vertex of the move. For the seekers, we have defif&deat strong human Go players. In Kriegspiel, the appénat
two different heuristics. The first, Minimize Total Distanc ©f determinization did not work well; the MCTS-based player
(MTD), minimizes the sum of the number of moves the seek¥fith determinization only played slightly better than adeam
should make to arrive at each possible location [31]. TH¥ayer. Ciancarini and Favini [20] provided three reasons
second, Chase Actual Location or Chase Assumed Locati§fy this technique did not work: 1) the positions of the
(CAL), minimizes the number of moves the seeker shoufpPponent's pieces were unreallst_lc, 2) the underestmnatl_o
make from the target location to the location of the seek&l the opponents ability to coordinate an attack, and 3) in
If this strategy is used by a seeker, the assumed locati§H€9SPiel there is no built-in notion of progress, coryréo

of the hider is used, because he does not know the actdgMes such as Go, Scrabble and Poker. _

location of the hider. This assumed location corresponds tol? Scotland Yard, the hidden information consists of the
the determinization selected at the start of the playous (Slgcatllon of the hlder. Based. on the last surface location and
Subsection IV-B). Each player should use one heuristic g€ fickets the hider played since then, the seekers carcdedu
the hider and one for the seekers. This means that the hiddigsOf possible locations of the hider, calléd(see Subsection
heuristic has to be combined with one of the two seekef¥-C)-

heuristics. These combinations are named MM (MCD and At the start of each iteration, an assumption is made about
MTD) and MC (MCD and CAL). the location of the hider. This assumption is used throughou

the whole iteration. There are two ways to build and traverse
o the search tree. The first approach is using single-tree-dete
B. Determinization minization [28]. When generating the tree, at the hider’s ply
In order to deal with imperfect information, determinizati all possible moves from all possible locations are gendrate
can be used. This technique is also known as Perfect Inforn¥ithen traversing the tree, only the moves consistent with the
tion Monte Carlo [47]. The principle behind determinizatis assumption are considered. An example is given in Fig. 3.
that the hidden information is filled in, while being conerst The second approach is by generating a separate tree for
with the history of the game. Despite its theoretical stmrte each determinization [51]. In each tree, only the hider'veso
ings [48], [49], it has produced strong results in the past, fthat are consistent with the corresponding determininadic
example in the trick-based card game bridge [16]. Ginsbergjenerated. An example is given in Fig. 4. After selecting a
bridge program, called GIB, uses determinization by dealimeterminization at the root node, the corresponding tree is
the cards that have not been played yet among the playgeversed. In the end, there are two approaches to select the
while being consistent with the cards played in the previolmest move. The first is majority voting [52]. Each candidate
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Algorithm 1 Computation of the list of possible locations of £ TABLE |
. XAMPLE OF A GENERAL TABLE WITH THE MINIMUM -DISTANCE
the hider. CATEGORIZATION AFTER PLAYING 1000GAMES.
K<« L Category| 1 2 3 4 5
L+ 0 a 2454 9735 4047 1109 344
L < location(hider)
else TABLE II
EXAMPLE OF A DETAILED TABLE WITH THE MINIMUM -DISTANCE
for all pe K do CATEGORIZATION AFTER PLAYING 1000GAMES.
T < targetsp, t) Category 1 2 3 4 5
L« LU (T\A) Combination
end for L 1542 - -
) 2 - 2801 -
end if 1,2 666 4776 -
return L 3 - - 977
1,3 14 - 252
2,3 - 67 208
12,3 210 1558 1642
move receives one vote from each tree where it is the move that ‘2‘ a4 - ”s 0 2%%
was played most'often. The candidate move with the highest 1234 18 224 263 179 i
number of votes is selected as the best move. If more moves 2,3,4,5 - 57 191 183 88
are tied, the move with the highest number of plays over all 1,2,3.4,5 2 210 448 307 164

trees is selected. The second is averaging over all seaes tr
[53]. The move with the highest average score over all trees
is selected as the best move. behind this categorization is that the possible locatioearn
the seekers are investigated less often. The hider coultbtry
C. Limiting the possible locations E)é?]lé)fiitt this behavior, though it is risky, offsetting a piixs

It is possible for the seekers to limit the list of possible Av.erage—distance:A categorization is made based on
locations by removing the vertices where the hider cannot §g, 4erage distance of all seekers to the possible location
located. The list of possible locationg, is updated every this nymber is rounded down. The category number equals
MOove. Whgn the hider plays a ticket, the neW.I|st of poss!b{ﬁe average number of moves the seekers have to travel to
locations is calculated, based on the old list of possiblg, y, the possible location. Similar to the minimum-disean
locations, the current locations of the seekagsand the ticket . aqqrization, we setto 5. This means that all locations with

¢ played by the hider, using Algorithm 15" is the set of o, juerage distance of 5 or more are grouped into category 5.
rounds when the hider surfaces. At the start of the gane, g o0 A categorization is made based on the trans-

Lzlnglallzetq W'}h tht? 18 p?stf]'ble stsrtmglloc;ﬁjuon'ls, m tportation types connected to the possible location. We dis-
€ 5 starting locations of the Seekers. In this algoritime, tinguish 4 different station types, which means that 4.

methodt ar get S(p’. t) re_turns the list of Iocat_ions re"“Chablq_ocations; with only taxi edges belong to category 1, logatio
from location p using ticket£. When the hider Surfaces'With taxi and bus edges belong to category 2, locations with

| ocation(hider) is the vertex he surfaped at _When axi, bus and underground edges belong to category 3, and all
seeker makes a move, the target vertex of this move is extlu S ations with at least one boat edge belong to category 4.

from L, provided this vertex was a possible location and the After the hider performs a move the possible locations are

hider was not captured. divided into the different categories, based on the pretate
categorization.

D. Location Categorization For each category, a weight has to be determined to indi-
Some of the possible locations calculated in Algorithm 1 agate the probability that a location of a certain category is
more probable than others. The performance of the seekers chosen. This statistic may be obtained from game records of

be improved by biasing the possible locations of the hideis T matches played by expert players. In this article the siegis
technique is called Location Categorization [28]. The files are gathered by a large number of self-play matches. These
locations inL are divided into categories that are numberestatistics can later be used by the seekers to determine the
from 1 to ¢, wherec is the number of categories. The typaveights of the categories. This approach is useful when the
of categorization is game dependent. For Scotland Yard, weponent is unknown and there are not sufficient games to
investigate three different types of categorization: gather a sufficient amount of information.

Minimum-distance: A categorization is made based on There are two different ways to store the statistics about
the distance of the possible location to the nearest se€ker. the possible categories. In thgeneral table, we store for
category number equals the number of moves this seeker hasdoh category both the number of times one or more possible
perform to reach the possible location. For this categtidma locations belonged to the categony,and the number of times
we setc to 5. To accomodate for locations with a minimunthe actual location of the hider belonged to the category,
distance larger than 5, all locations with a minimum dis&ana. This way of storing and using statistics is similar to the
of 5 or more are grouped into the same category. The idgansition probabilities used in Realization Probabiftgarch,
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which was successful in Shogi [54], Lines of Action [55], angiame essentially a two-player game. If in a playout one seeke
Amazons [56]. An example of the general table is given icaptures the hider, the playout is considered a win for all
Table I. In thedetailedtable, for each possible combinatiorseekers and the result is backpropagated accordingly. Vowe
of categories, i.e. the union of all categories o¥gme store when using this backpropagation rule we observed that seeke
how many times the actual location of the hider belonged tluring game play sometimes relied too much on the other
each category. An example is given in Table II. This tableyonkeekers and did not make any efforts to capture the hider. For
shows the category combinations (i.e. rows) that occurtedsmlving this problem, we propose Coalition Reduction [28].
least 100 times. For instance, category combination (§,3,the seeker who is the root player captures the hider, a s€¢ore o
where L contains locations in categories 2, 3 and 4, but not this returned. If another seeker captures the hider, a smalle
1 and 5, occured 152 times, where the hider was 23 times store,1 — r, is returned, where < [0, 1]. If the value ofr is
a location of category 2, 39 times on a location of categotgo small, seekers have the tendency to become less involved
3, and 90 times on a location of category 4. If their own position is not good, i.e. they are far away from
The seekers use a vector of lengtho select a location the possible locations of the hider, they tend to rely on the
for the hider at the start of each MCTS iteration. The valuegher seekers too much. If the value ofis too large, the
in this vector represent the weights of the categories. Whseekers become too selfish and do not cooperate anymore. In
using the general table, this vector consists of the valuBsibsection VI-F we experimentally fine-tune this parameter
[%,Z—i,~-~,%}. When using the detailed table, the vector
corresponding to the combination of categories is directly p\ove Filtering
extracted from the table. If the total number of occurrences . -
of this combination of categories is smaller than a certai The hider olnly has a limited number of blagk-fare and
threshold, in our MCTS program 100, the table is not used adhuble-move tickets, so he should use them wisely. Black-

the possible locations are randomly chosen. This only accti® tickets should only be used by the hider to increase the
onh rare 0CCasions. uncertainty about his location or to travel by boat, and deub

There are two different ways the vector can be used ove tickets are mostly used for escaping from dire posstion

select a possible location. When usioige-stefselection, each W€ implemented  some straightforward = game-specific
possible location gets a probability to be selected. Rtmsetknowledge rules regarding the use of black-fare tickets to
wheel selection is used to select a possible location. Tiee sprevent the hider from squandgrlng them [28]. Thg hider is
of each possible location on the wheel is correspondingdo fot allowed to use black-fare tickets in the following three

value of its category in the vector. The probability to chmosSituations: 1) during the first two rounds, 2) during a round
location! is calculated by using Formula 3. when he has to surface, or 3) when all possible locations

w only have taxi edges. In the first situation, there is already
P(l) = —<2+— (3) a large uncertainty about the hider’s location. In the sdcon
mXE:L Wenm and third situation, using a black-fare ticket does notéase
the uncertainty about the hider’s location compared toguain
‘normal’ ticket. An exception is when the hider is located on
2 vertex with a boat connection. In this case, the hider may

In this formula, w., and w,, represent the weights of the

category to which locationsandm belong, respectively.
When usingtwo-stepselection, each location category get .

a probability to be selected. We use roulette-wheel sellsiecti‘fj\lwayS use a black-fare ticket.

to select a category. The size of each category on the WheePt0 utélel;mO\;le tIkaf;S are En:y uI?ed” Whenitt)re nr;'d\?r Cﬁ]n tge
is corresponding to its value in the vector. After selecting captued by one of the seekers. 1l al possible moves €

category, one of the possible locations from this categsrerOt node lead to a vertex which can be reached by one of the

andomly chosen, The probabiltyof chosig ocataming 1 0ves " e XL U & double e el s g (o
two-step selection is calculated by using Formula 4. o o ; i
P y g move tickets are not added. If the search algorithm stittsl

P(l) = wic‘” (4) amove which allows one of the seekers to capture the hider in
lar] > w, the next round, a double-move ticket is added to the selected
J=1 move. Of course, a double-move ticket can only be added if

In this formula,|¢;| represents the number of possible locatiori§e hider has at least one of these tickets left.

that belong to the category of locatidnand w; represent In [28] we showed that move filtering is a considerable

weight of categoryj. improvement for the hider, increasing the win rate of an
We remark that Location Categorization uses a ‘big-datMCTS hider from 19.4%:t 1.6 to 34.0%+ 1.9 against MCTS

approach to set the weights. Such an approach has bg&efkers.

successful in Shogi [54], Lines Of Action [55], Amazons

[56] and Othello [57]. Of course, machine-learning tecluets; V. MINIMAX -BASED TECHNIQUES FORSCOTLAND YARD

though less trivial, could also be used to tune them. In this section, an overview is given how paranoid search

N ) and expectimax are used for playing Scotland Yard as the hide

E. Coalition Reduction and the seekers respectively. In Subsections V-A and V-B we

Scotland Yard is a cooperative multi-player game. Therexplain how paranoid search and expectimax are implemented
fore, the seekers can be considered as one player, makingftrehe hider and the seekers, respectively. In Subsecti@h V
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MAX MAX
(hider) (seeker)
MIN chance
(seeker 1)
MIN MIN
(seeker 5) (hider)
MAX MAX
Fig. 5. Structure of the paranoid tree for the hider. Fig. 6. Structure of the expectimax tree for the seekers.

a description of the evaluation functions is given. Finallhecause the advantages in expectimax do not apply in MCTS.
Subsection V-D explains how Location Categorization can ¢ MCTS is a best-first search technique for whieh-like

used with expectimax. pruning is not applicable. 2) Reliance on other detectiges i
already smaller due to the random moves in tagreedy
A. Paranoid search for the hider playouts. Coalition Reduction reduces this reliance everem

Fig. 5 shows the general structure of the search tree le?iP'[ Playouts already cause that the seekers look furthedahea

by the hider. The hider is the MAX player, while the seekers
are the MIN players. The structure of the tree is similar to @ Eyaluation Function

paranoid search tree used in multi-player games [6]. Homyeve . . o
in this case the paranoid assumption is correct because thEor both the hider and the seekers, an evaluation function is

opponents do have a coalition against the current playeh wiecessary to evaluate the leaf nodes of the search treené-or t

a paranoid search tree, pruning is possible. However, & tpider, we use an evaluation function that is based on the MCD
can only be reduced t@(bpv;ld) in the best case [13] WhereplayOUt strategy. Eirst, the hiQer should stay as .far awagnir
p is the number of players. In two-players-search, the tree the nearest detective as possible. Second, the hider sbadd

canbe reduce 1011 ] but for Scotlend Yar the e 1251 101, Uriess e can ncrease e eyt
can only be reduced t@(bs¢) in the best case. : L . P
hider receive a score by using Formula 5.

B. Expectimax for the seekers Shider = 100 x Hél[l)l (dhider,i) +10 X thidger BF +|L| +p (5)

Fig. 6 shows the structure of the expectimax search tree . ' ] ) )
built by the seekers. At the second ply, the chance nodes B@&€: dhider,i iS the distance from the location of the hider to
located. The edges leaving these nodes represent the lposdil§ location of seeker. i4iq.- s represents the number of
locations of the hider. Each possible location is weightéﬂaCk fare tickets the hider has left.is a small random value
equally, though it is possible to bias the weights to give enoPetween 0 and 1.
reliable results (see Subsection V-D). Another notabléufea For the seekers, we use an evaluation function that is simila
is that the seeker does not incorporate the other seekerdGrihe MTD playout strategy used in MCTS. The seekers try
the search tree, i.e. the other seekers do not move. This Haglinimize the sum of the distances to all possible location
three advantages. 1) More pruning is possible. The size 0t€ leaf nodes of the expectimax search tree of seekge
the tree can be reduced O(|L| x b%), where|L| is the €valuated by using Formula 6.
number of possible locations. 2) The seeker keeps patticgpa
in the game, instead of relying on other seekers. 3) The seeke S = Z dii+p
achieves more long-term planning by investigating more MAX
nodes. This is analogous to Best-Reply Search [58] for multiere, d;; is the distance from the location of seeketo
player games, where the moves of all subsequent oppongmassible location/. Again, p is a random value between 0
are reduced to one ply. A disadvantage of this reductionais trand 1.
the seekers do not consider the other seekers and thus shere i
no cooperation. Experiments with 1 second of thinking time
per move revealed that reducing the tree produced a win rQe
of 40.6%+ 3.0 (see Table VII) against an MCTS hider, while Similarly to MCTS, Location Categorization can be used in
without this reduction the win rate is 5.2% 1.4. the expectimax framework to bias the algorithm towards more

This tree reduction technique can also be applied to MCTiely locations. Usually, in the chance level of the search
However, experiments with 10 000 playouts per move showege for Scotland Yard, each location has an equal weight.
that it decreases the win rate considerably, from 63:6%.0 By applying Location Categorization, more likely location
(see Table V) to 34.3%: 2.9 against an MCTS hider. This isreceive a larger weight than unlikely ones. The weiBii) of

(6)

leL

Location Categorization



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND Al IN GAMES, \OL. X, NO. X, XXXXXXXX 20XX 8

. L . TABLE Il
the node representing locatiofs calculated by using Formula vy rates oF THEMCTS SEEKERS AGAINST THEMCTS HIDER WITH

7. AND WITHOUT e-GREEDY PLAYOUTS FOR DIFFERENT TIME SETTINGS
P(z) = w,, / Z We, @) Thinking time: 1 second
) el hider
€ seekers MM R
In this formula, w., and w,, represent the weights of the MC 73.5%+ 2.7 | 78.1%+ 2.6
DG T ' . R 39.7%=+ 3.0 | 49.0%=+ 3.1
category to which locations and! belong, respectively. This
formula is similar to Formula 3, which is used for one-step Thinking time: 2.5 seconds
selection. hider
seekers MM R
MC 74.9%=E 2.7 | 79.9%=E 2.5
VI. EXPERIMENTS R 55.8%=+ 3.1 | 59.2%=+ 3.0
In this section we first provide an overview of the exper- Thinking time: h5_dseconds
imental setup in Subsection VI-A. In Subsection VI-B we seekersl MM TR
present the results of the experiments witgreedy playouts MC 740%E 2.7 | 795% £ 2.5
for the MCTS players. The determinization techniques for R 41.8%=+ 3.1 | 59.8%=+ 3.0

MCTS are compared in Subsection VI-C. In Subsection VI-D

we give an overview of the performance of the MCTS seekers

with Location Categorization. Next, in Subsection VI-E we In Table Ill, we present the win rates for the seekers with
show how Location Categorization influences the perforrmanegreedy playouts and with random playouts (R) for different
of the expectimax seekers. In Subsection VI-F we presdifne settings (1 second, 2.5 seconds and 5 seconds). The
how the MCTS seekers with Coalition Reduction perfornfesults show that-greedy playouts are a major improvement
In Subsection VI-G, a comparison between the MCTS arﬁgr both the hider and the seekers. For example, with a thgﬂ(l
minimax-based players is provided. Finally, in Subsectidine of 5 seconds, the win rate of the seekers increases

VI-H we give an overview of how MCTS performs againsfrom 59.8% + 3.0 to 79.5%=+ 2.5 against the hider with
the Scotland Yard program on the Nintendo DS. random playouts. For the hider, the win rate increases from

40.2% + 3.0 to 58.2%+ 3.1 against seekers with random
playouts. Similar results are achieved with 2.5 and 5 sexond

A. Setup thinking time. The results also reveal that the seekers have

The engines for Scotland Yard and the Al players am@onsiderable advantage over the hider, which may be exgalain
written in Java. For the MCTS-based hider and seekérs, by the asymmetric nature of the game.
is set to 0.5. Progressive History [34] is used for both the For the remainder of the experiments, we use the MC
hider and the seekers, with the value Wf set to 5 for strategies for the seekers and the MM strategies for the.hide
both player types. These values were achieved by systematic
testing. For the hider we use move filtering and for th
seekers we use determinization with a single tree. All MCT
players use 10000 playouts for selecting the best movepexce In the previous experiments we applied determinizatioi wit
when stated otherwise. The expectimax and paranoid playarsingle tree. In this set of experiments, we validate thiat th
receive 1 second of thinking time for each move. In afechnique works better than using a separate tree for each
experiments, 1000 games are played to determine the wigterminization. We perform these experiments in such a way
rate. The win rates are given with a 95% confidence intervéinat both player types use eithergreedy playouts or ran-
The experiments are run on a cluster consisting of AMD@#m playouts when competing against each other. Systematic
Opteron 2.4 GHz processors. Depending on the settings, d@gting showed that for separate trees the same values for
game takes approximately 2—4 minutes to finish. C and ¢ are also optimal for the single tree. The results
are summarized in Table IV. The upper part of the table
shows that single-tree determinization gives the highest w
rate with a fixed number of playouts. Especially when using

In the first set of experiments we determine the influence efgreedy playouts, this technique performs considerabtiebe
e-greedy playouts on the playing strength of the hider and thigan separate trees. When using separate trees, majotitg vot
seekers. Because the different playout strategies hafezatif performs significantly better than using the average score.
influences on the number of playouts per second, we linWle remark that using a single tree generates more overhead,
the thinking time of the players on time instead of samplebecause at the hider's ply, the moves have to be checked
Due to the asymmetric nature of Scotland Yard, we also camether they are consistent with the selected determioizat
use different values of for the hider and the seekers in theThis overhead, however, is relatively small. When taking
playouts. Systematic testing showed that the best resrdts #his overhead into account, the difference between sitrgke-
achieved withe = 0.1 for the hider and = 0.2 for the seekers. determinization and separate trees hardly changes. This ma
Furthermore, we found that the MM strategy combinatiobe concluded from the results presented in the lower part of
works best for the hider and the MC combination works besite table, where the thinking time is limited to 1 second per
for the seekers. move, instead of providing a fixed humber of playouts.

. Determinization

B. e-greedy playouts
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TABLE IV TABLE VI
WIN RATES OF THEMCTS SEEKERS WITH DIFFERENT WIN RATES OF THEMCTS SEEKERS WITHLOCATION CATEGORIZATION
DETERMINIZATIONS AGAINST THE MCTS HIDER. BOTH PLAYER TYPES AGAINST THE PARANOID HIDER.
USE EITHERe-GREEDY OR RANDOM PLAYOUTS Categorization Table Steps Win rate
10000 playouts per move Minimum-distance| General 1 86.4%+ 2.1
Playouts Minimum-distance| General 2 86.3%+ 2.1
Determinization e-greedy Random Minimum-distance| Detail 1 87.5%+ 2.0
Single tree 63.6%+ 3.0 51.8%+ 3.1 Minimum-distance| Detail 2 86.6%+ 2.1
Separate trees + average scor% 31.3%+ 2.9 31.2%+ 2.9 Default win rate: 83.4%k 2.3
Separate trees + majority voting 35.1%+ 3.0  37.5%+ 3.0
TABLE VII

1 second per move
WIN RATES OF THE EXPECTIMAX SEEKERS WITH.OCATION

Playouts
Determinization e-greedy Random CATEGORIZATION AGAINST THE MCTS HIDER.
Single tree 73.5%+ 2.7 54.7%+ 3.1 Categorization Table Win rate
Separate trees + average scor¢ 37.1%+ 3.0 38.5%+ 3.0 Minimum-distance| General|| 50.2%+ 3.1
Separate trees + majority voting 39.9%+ 3.0  40.1%+ 3.0 Minimum-distance| Detail 44.2%+ 3.1
Average-distance | General || 41.4%+ 3.1
Average-distance | Detail 40.3%+ 3.0
TABLE V Station General || 38.2%+ 3.0
WIN RATES OF THEMCTS SEEKERS WITHL OCATION CATEGORIZATION Station Detail || 39.9%+ 3.0
AGAINST THE MCTS HIDER. Default win rate: 40.6%t 3.0
Categorization Table | Steps Win rate
Minimum-distance| General 1 67.7%+ 2.9
Minimum-distance| General 2 66.3%+ 2.9 - ot :
Minimum-distance |  Detail 1 63.5% % 3.0 E. Location Categorization for expectimax
Minimum-distance| Detall | 2 || 65.6%d% 2.9 We also test how Location Categorization increases the
Average-distance | General 1 61.7%+ 3.0 f fthe d . in th . f K
Average-distance | General | 2 59.6%+ 3.0 performance o the etectlvgs in the expectimax ramework.
Average-distance | Detail 1 63.9%+ 3.0 We test this enhancement with the same three categorization
Average-distance| Detall | 2 || 63.6%% 3.0 as in the MCTS experiments, including the same weights for
Station General 1 58.6%+ 3.1 th t . We first let ti K | mst
Station General| 2 || 58.0%% 3.1 e categories. We first let expectimax seekers play agams
Station Detail 1 57.9%+ 3.1 MCTS hider. The results are given in Table VII. Both player
Station Detail 2 58.5%+ 3.1 types received 1 second of thinking time. The results show
Default win rate: 63.6%E 3.0 that Location Categorization also works in the expectimax

framework. Similar to the MCTS version, the minimum-
distance categorization performs best, increasing therati
against the MCTS hider from 40.6% 3.0 to 50.2%+ 3.1
when using the general table.

) ) ... We also test the robustness of Location Categorization in
In the next set of experiments we check which combmathﬂe expectimax framework by testing against a paranoidrhide

of le tebgoriza;ion, ta}ble type'and ”“mb?r O,f selehction ,SteWé remark that the weights of the categories are trained with
works best when using Location Categorization. The stadist ;e ren type of seekers against a different type of hider

for the general and detailed table are gathered by IGt'[ir]gjyl(:The results of this set of experiments are displayed in Table

seekers play 1?10_0 gatr)r:es againlst an MCTS hkider. T,hr? resYIR |t appears that the detailed table gives better restiian
are summarized in Table V. We let MCTS seekers with LOCge general table. The minimum-distance categorizatiatills

tion Categorization play against an MCTS hider. For refeegn
the seekers without Location Categorization win 63.698.0
of the games against the hider. The win rate of the seekers

without Location Categorization is denoted as the defaudt wF. Coalition Reduction

rate. The results in Table V show that the minimum-distance 1q test the performance of the MCTS seekers with Coalition
categor'lzatlon works best. For this categorization, thgneo Reduction, we let seekers play against different hiders wit
large difference between the table types and the number pfarent values of-. For the seekers, we test the performance
selection steps. of Coalition Reduction with and without Location Categariz

To test the robustness of this technique, we let the MCTi®n enabled. We also test against a paranoid hider to verify
seekers with Location Categorization play against a differ that this enhancement also works against another type ef.hid
type of hider, namely the paranoid hider. We use the sarRmally, we test the performance of the seekers with Caoaliti
weights that we used against the MCTS hider. Because in fReduction with different time settings. We remark that for
previous set of experiments, it turned out that the minimum-= 0, Coalition Reduction is disabled. Fer= 1, there is no
distance categorization works best, we only use this categwoalition, and all seekers only work for themselves. Theltss
rization in this set of experiments. The results are given are presented in Table IX and Fig. 7. The seekers achieve the
Table VI. The results show that Location Categorizatiom aldiighest win rate withr = 0.1. The win rate increases from
significantly improves the performance of the seekers agai$3.6% + 3.0 to 70.1%+ 2.8. With Location Categorization,
a different type of opponent. With all settings a signifidgnt the win rate even increases further, from 67.74%2.9 to
better performance is achieved. 76.2% + 2.6. Also withr = 0.2 andr = 0.3 the seekers

D. Location Categorization for MCTS

the best categorization.
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TABLE VIII 100

WIN RATES OF THE EXPECTIMAX SEEKERS WITH.OCATION
CATEGORIZATION AGAINST THE PARANOID HIDER 90
Categorization Table Win rate 80

Minimum-distance| General|| 76.3%+ 2.6

Minimum-distance| Detail 79.1%+ 2.5 7

Average-distance | General || 71.5%+ 2.8 3 60
Average-distance | Detall 77.3%+ 2.6 < 0
Station General || 69.3%+ 2.9 E
Station Detail 65.1% 4+ 3.0 g 40
Default win rate; 74.19%E 2.7 ® 30 [® mMcTStLCys. MCTS
20 - MCTS vs. MCTS
TABLE IX “¥ MCTS+LC vs. paranoid
WIN RATES OFMCTS SEEKERS WITHCOALITION REDUCTION FOR 10 & MCTS vs. paranoid
DIFFERENT VALUES OFr AGAINST DIFFERENT HIDERS 0
Seekers:| MCTS + LC MCTS MCTS + LC MCTS 0 01 02 03 04 05 06 07 08 09 1
Hider: MCTS MCTS Paranoid Paranoid r

0 67.7%+ 2.9 63.6%+ 3.0 87.9%+ 2.0 851%%* 2.2
0.1 | 76.2%4 2.6 70.1%4 2.8 92.9%4 1.6 90.2%+ 1.8 Fig. 7. Graphical representation of Table IX.
0.2 | 74.2%+ 2.7 65.3%+ 3.0 92.5%+ 1.6 88.0%%+ 2.0

0.3 | 72.1%+ 2.8 64.3%%+ 30 91.0%k 18 84.3% 2.3 TABLE X
0.4 | 64.9%+ 30 54.9%+ 31 889%+ 19 82.1%+ 24 WIN RATES OFMCTS SEEKERS WITHCOALITION REDUCTION FOR

T 82 ggng’i gg iéggj"i gi gggzjoi gg ;gét’fi %g DIFFERENT VALUES OFr WITH DIFFERENT TIME SETTINGS

. . 0 . .70 . . 0 . . 0 .

0.7 | 47.5%+ 31 426%+ 31 74.9%k 2.7 70.4%% 2.8 P'ayg“ts- e s g 00000
0.8 | 39.7%+ 3.0 34.4%+ 2.9 69.4%+ 29 63.9%+ 3.0 270 : 270L 3. 7L £ A70L 2.
09 | 32.3%4 2.9 30.7%+ 2.9 63.2%+ 3.0 57.2%+ 3.1 0.1 43.02/0:& 3.1 59.7‘;/0:& 3.0 76.23@:& 2.6 83.42/0:|: 2.3
1 23.1%-+ 2.6 22.6%% 2.6 50.7%=% 3.1 49.7%+ 3.1 0.2 49.6%+ 3.1 64.5%+ 3.0 74.2%+ 2.7 75.3%+ 2.7

0.3 | 49.9%+ 3.1 64.1%+ 3.0 72.1%+ 2.8 72.8%=+ 2.8

0.4 | 55.6%+ 3.1 58.7%+ 3.1 64.9%+ 3.0 68.6%+ 2.9
r 05 | 51.6%+ 3.1 585%+ 3.1 65.0%+ 3.0 60.1%=+ 3.0
play at least as strong with Coalition Reduction than withou 06 | 48.7%+3.1 524%+3.1 52.9%+ 3.1 56.4%=+ 3.1

this enhancement. I is _incr(_aased further, the performance 8;; ;‘g;;ﬁjgi g:(l) gg:%‘i g:é ;‘g;?ﬂfg g:é ﬁ:gfy/‘gi gi
of the seekers drops significantly. With these settings, the 09 | 35.0%+ 3.0 37.0%+ 3.0 32.3%+ 2.9 32.7%% 2.9
detectives no longer cooperate well to strategically cliose 1 26.0%+ 2.7 24.3%+ 2.7 23.1%+ 26 27.6%+ 2.8
on the hider, allowing the hider to escape rather easily. If
there is no cooperation, the win rate of the detectives dirops
22.6%- 2.6. To validate these numbers, we also test CoalitiddCTS seekers, we use UCT with Progressive History, single-
Reduction against the paranoid hider. Again, the best teesifee determinizationg-greedy playouts, Coalition Reduction
are achieved withr = 0.1, so it turns out that this is a gooawith r = 0.1 and Location Categorization with the minimum-
value that works well against different hiders. distance general table and 1-step selection. For the pdrano
Finally, we test Coalition Reduction with different timehider, we use killer moves, the history heuristic and move
Settings_ Add|t|ona||y’ we give the MCTS seekers with Lotllterlng For the eXpeCtimaX seekers, we use killer moves,
cation Categorization and the MCTS hider 1000, 2500 afi@e history heuristic and Location Categorization with the
100000 Samp|es per move. The results are given in Ta[ﬂénimum'distance general table. All players receive 1 sdco
X and Fig. 8. With 1000 samples per move for the hid&f thinking time per move. Against the paranoid hider, the
and the seekers, better results are achieved with a high¥Pectimax seekers won 76.2% 2.6 of the games and the
value of r. With » = 0.5, a win rate of 55.6%¢+ 3.1 is MCTS seekers won 94.9% 1.4. Against the MCTS hider,
achieved. When providing 2500 samples, the seekers achiti¥@ expectimax seekers managed to win 45:0%.1 and the
the highest win rate with- = 0.2 andr = 0.3. With these MCTS seekers 81.2% 2.4 of the games. Consequently, the
time settings they win 64.5% 3.0 and 64.1%t 3.0 of the Paranoid hider won 23.8% 2.6 of the games against the
games, respectively. If 100 000 samples per move are prbvidXpectimax seekers, while the MCTS hider won 55.898.1
for both player types, Coalition Reduction is still a sigrafnt Of the games. Against the MCTS seekers, the paranoid hider
improvement withr = 0.1. The results are similar to 10 000von only 5.1%x 1.4 of the games, while the MCTS hider
Samp|es per move. In Condusion' these numbers show th&N 18.8%+ 2.4. The results are summarized in Table XI.
Coalition Reduction increases the performance of the seek&hese results show that for both the hider and the seekers,
significantly. However, cooperation is still important det MCTS works far better than the minimax-based players.
performance decreasessifbecomes larger than 0.3. If less

time is provided, the value of should be increased. H. Performance against the Nintendo DS program
o ) To test the strength of the MCTS-based program, it is
G. MCTS vs. minimax-based techniques matched against the Scotland Yard program on the Nintendo

In this set of experiments, we compare the MCTS playeBS. The Al of this program is considered to be rather strong
to the minimax-based players and determine which techniqid®].
performs best. For the MCTS hider, we use UCT with Pro- For the hider and the seekers, we use the same settings
gressive Historye-greedy playouts and move filtering. For theand enhancements as described in Subsection VI-G. It is not
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100 location of the hider. We introduced three types of categori

90 tion: minimum-distanceaverage-distancandstation The ex-

80 periments revealed that the minimum-distance categvizat
70 performs best. It significantly increases the playing giten
of both the MCTS and the expectimax seekers. Location

S 60
% % Categorization proved to be a robust technique, as theddarn
§ 0 weights work for both players types against two differempiety
E of hider.
TS e We also observed that the performance of the MCTS seek-
201 10000 samples ers can be improved by applying Coalition Reduction. This
10| -4 100 000 samples technique allows the seekers to cooperate more effectinely
0 the coalition, by preventing them from becoming too lazy or

0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1

r

too selfish. It also became clear that cooperation is impgrta

because the performance of the seekers drops significantly
Fig. 8. Graphical representation of Table X. when the reduction becomes too large. Furthermore, if less
playouts per move are provided, better results are achieved

TABLE XI . .
WIN RATES OF THE DIFFERENT SEEKERS AGAINST DIFFERENT HIDERS Wlth a hllgher Value O_ﬁﬂ' )
hider In a direct comparison, it turned out that MCTS performs
seekers ‘ MCTS | Paranoid considerably better than paranoid search for the hider and
MCTS 812%+ 24 | 94.9%=+ 14 expectimax for the seeker. A comparison between MCTS and
Expectimax | 45.0%+ 3.1 | 76.2%+ 2.6

minimax-based techniques is not easy because each teehniqu
can be enhanced in different ways and the efficiency of the

possible to set the thinking time of the Nintendo DS player "mplementations may differ. However, the results do give an
) . . X : f the playi t th of the diff t h techesq
often plays immediately, but it sometimes takes 5-10 sexo0 ca of Ihe playing strength of fhe ciierent search te

o find To h fai . t the thinki d we can also conclude that MCTS is easier to define and
0 find a move. 10 have a falr comparison, we set the thin "b%timize than the minimax-based search techniques. Finall
time of the MCTS program to 2 seconds.

showed that MCTS, a technique which uses only basic
Because these games have to be played manually, only (??nain knowledge, was able to play Scotland Yard on a
games are played, where each program plays 25 times ast '
C

X . er level than the Nintendo DS program, which is gengrall
seekers and 25 times as the hider. Out of these 50 games sidered to be a strong player.

games are won by our program. 23 of these games are WORre define three possible directions for future research.

as theles eekers anfd lhl' ?‘sze hltc;]er. Thi Nlnterédg Dstﬁror?{ft% first is to improve Location Categorization. New types
wins 16 games, ot whic as he seexers and 2 as the hi ‘?r'categorization may be tested or different categorimatio

Thesg results show that the MCTS program plays stronger ﬂ}ﬁﬁy be combined. This can de done by introducing three-step
the Nintendo DS program. selection. The first two steps are used to select two catgori
using two different categorizations. In the third step, agilole
VII.  CONCLUSIONS AND FUTURE RESEARCH location is selected which belongs to both selected caiesgjor

In this article we investigated how MCTS can be appliednother way of combining two categorizations is by taking th
to play the hide-and-seek game Scotland Yard, how it can Gartesian product of the categories of both categorizatitin
enhanced to improve its performance, and how it comparescan also be interesting to test Location Categorizatiorttiero
minimax-based search techniques. hide-and-seek games, for instance Battleship, a two-playe

Using e-greedy playouts to incorporate some basic knowfame where both players act both as an immobile hider and
edge into the MCTS algorithm considerably improves theeeker. A similar technique may also be applied for Stratego
performance of both the seekers and the hider. We obsertedjuess the ranks of the opponent’s unknown pieces.
that using different values and different playout strategies The second future research direction is to continue the
for the different players in the playouts performs sigirfidy recent work of Silver and Veness [59], who extended MCTS to
better than random playouts. Partially Observable Markov Decision Processes (POMDPS).

For handling the imperfect information, we investigate@heir technique, Partially Observable Monte-Carlo Plagni
two different determinization techniques, namely singéee (POMCP), was successfully applied to Battleship and a par-
determinization and separate-tree determinization. Wkergu tially observable variant of PacMan. Their technique could
separate trees, majority voting for selecting the best moke applied to Scotland Yard as well. With POMDPs, the
produces a higher win rate than calculating the average oweeoretical shortcomings of determinization can be awhide
all trees. Single-tree determinization has a slight ovadhéut However, Scotland Yard may be too complex to model as a
even when taking this into account, it performs significantPOMDP and use it for planning in a reasonable amount of
better than using separate trees. time.

Furthermore, we proposed Location Categorization, a tech-The third possible future research topic is modeling Scot-
nique that can be used by both the MCTS and the expectinlard Yard as a Bounded Horizon Hidden Information Game
seekers in Scotland Yard to give a better prediction for t{BHHIG) [60]. This technique does not have the theoretical
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shortcomings of determinization, but it is also slower. Aui5]
BHHIG can be used for modeling partially observable games
in which information is regularly revealed. Teytaud andriflo [16]
showed that each BHHIG can be represented as a Game with
Simultaneous Actions (GSA) and that the UCT algorithm can
be adapted to such games. However, similar to POMDI$137,]
Scotland Yard may be too complex to model as a BHHIG
because the maximum number of moves between two ful[%]
observable nodes is 30, which may be too large.
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