
Time Management for
Monte-Carlo Tree Search in Go

Hendrik Baier and Mark H.M. Winands

Games and AI Group, Department of Knowledge Engineering
Maastricht University, Maastricht, The Netherlands

{hendrik.baier,m.winands}@maastrichtuniversity.nl

Abstract. The dominant approach for programs playing the game of
Go is nowadays Monte-Carlo Tree Search (MCTS). While MCTS allows
for fine-grained time control, little has been published on time man-
agement for MCTS programs under tournament conditions. This paper
investigates the effects that various time-management strategies have on
the playing strength in Go. We consider strategies taken from the lit-
erature as well as newly proposed and improved ones. We investigate
both semi-dynamic strategies that decide about time allocation for each
search before it is started, and dynamic strategies that influence the dura-
tion of each move search while it is already running. In our experiments,
two domain-independent enhanced strategies, EARLY-C and CLOSE-N,
each provide a significant improvement over the state of the art.

Keywords: Monte-Carlo Tree Search, time management, Go

1 Introduction

In tournament gameplay, time is a limited resource. Sudden death, the simplest
form of time control, allocates to each player a fixed time budget for the whole
game. If a player exceeds this time budget, he loses the game immediately. Inas-
much as longer thinking times result in stronger moves, the player’s task is to
distribute his time budget wisely among all moves in the game. This is a chal-
lenging task both for human and computer players. Previous research on this
topic [1, 7, 14, 19, 21] has mainly focused on the framework of αβ search with
iterative deepening. In a number of game domains however, this algorithm is
more and more losing its appeal.

After its introduction in 2006, Monte-Carlo Tree Search (MCTS) [5, 15] has
quickly become the dominant paradigm in computer Go [17] and many other
games [18]. Unlike for αβ search, relatively little has been published on time
management for MCTS [3, 13]. MCTS however allows for much more fine-grained
time-management strategies due to its anytime property. It can be stopped after
every playout and return a move choice that makes use of the complete search
time so far, while αβ searchers can only make use of completely explored root
moves of a deepening iteration.



2 H. Baier, M.H.M. Winands

In this paper, we systematically test and compare a variety of time-manage-
ment strategies for MCTS in computer Go. We include newly proposed strategies
as well as strategies described in [3] and [13], partly in enhanced form. Experi-
ments in 13×13 and 19×19 Go are described, and a significant improvement of
the state of the art is demonstrated.

This paper is organized as follows. Section 2 gives an overview of related work
on time management for game-playing programs in general and Go programs in
particular. Section 3 outlines the approaches to time management studied in
this paper, while Section 4 presents experimental results in Go. Conclusions and
future research follow in Section 5.

2 Time Management

The first publication to address the topic of time management in computer games
was by Hyatt [14]. He observed that human chess grandmasters do not use an
equal amount of time per move, but play standard openings quickly, think longest
directly after coming out of the opening, and then play increasingly fast towards
the end of the game. He also suggested a technique that lets αβ search explore
a position longer to find a better move if the best move of the last deepening
iteration turns out to lose material.

Donninger [7] gave four “golden rules” for the use of time during a chess
game, both for human and computer players: “a) Do not waste time in easy
positions with only one obvious move. b) Use the opponent’s thinking time
effectively. c) Spend considerable time before playing a crucial move. d) Try to
upset the opponent’s timing.” He considered rule c) to be the most important
one by far, but also the hardest. In this paper, we try to approach rules a)
and c) simultaneously by attempting to estimate the difficulty of a position and
adjusting search time accordingly.

Althöfer et al. [1] published the first systematic evaluation of time-manage-
ment algorithms for chess. Amongst others, strategies were proposed to identify
trivial moves that can be made quickly, as well as troublesome positions that
require more thinking. The time controls considered, typical for chess, specify a
given amount of time for a given number of moves. They are insofar different
from sudden death as used in this paper as it here does not refer to the number
of moves by the player, but only to the total amount of time per game.

Markovitch and Sella [19] used the domain of checkers to automatically ac-
quire a simple time-allocation strategy, distributing a fixed number of deep
searches among the moves of a game. The authors divided time-management
strategies into three categories. (1) Static strategies decide about time alloca-
tion to all future moves before the start of the game. (2) Semi-dynamic strategies
determine the computation time for each move before the start of the respec-
tive move search. (3) Dynamic strategies make “live” timing decisions while the
search process is running. This categorization is used in the remainder of this
paper.



Time Management for Monte-Carlo Tree Search in Go 3

Šolak and Vučković [21] devised and tested a number of time-management
models for modern chess engines. Their model M2a involved the idea of estimat-
ing the remaining number of moves, given the number of moves already played,
from a database of master games. We use a similar approach as the basis for our
strategies. In more sophisticated models, Šolak and Vučković developed defini-
tions for the complexity of a position—based on the number of legal moves—and
allocated time accordingly. Since the number of legal moves is not a suitable mea-
sure in the game of Go, we use the concept of criticality [6] instead to identify
important positions.

Kocsis et al. [16] compared temporal difference learning and genetic algo-
rithms for training a neural network to make semi-dynamic timing decisions in
the game Lines of Action. The network could set the underlying αβ program to
one of three predefined search depths.

For the framework of MCTS, only two publications exist so far. Huang et al.
[13] evaluated a number of time-management heuristics for 19×19 Go, assuming
sudden-death time controls. As described in Subsection 4.1, we implemented
and optimized their heuristics as a baseline for our approaches. The ideas of the
“unstable evaluation” heuristic (UNST) and the “think longer when behind”
heuristic (BEHIND) were first described and tested in [13].

During the preparation of this paper, Baudǐs [3] published remarks on time
management for the state-of-the-art Go program Pachi in his Master’s the-
sis. Ideas similar to our “close second” (CLOSE) and “early exit” heuristics
(EARLY) were here formulated independently.

3 Time-Management Strategies

In this section, we describe first the semi-dynamic (3.1), and then the dynamic
time-management strategies (3.2) investigated in this paper.

3.1 Semi-Dynamic Strategies

The following five strategies determine the search time for each move directly
before the search for this move is started.

EXP. The simple EXP strategy for time allocation, used as the basis of all
further enhancements in this paper, divides the remaining thinking time for
the entire game (tremaining) by the expected number of remaining moves for
the player (mexpected) and uses the result as the search time for the next
move (tnextmove). The formula is as follows:

tnextmove =
tremaining

mexpected
(1)

mexpected can be estimated in various ways. Three heuristics are investigated
in this paper, two of them game-independent and one game-specific. The
first game-independent heuristic (EXP-MOVES) estimates the number of



4 H. Baier, M.H.M. Winands

remaining moves given the number of moves already played. The second
game-independent heuristic (EXP-SIM) estimates the number of remaining
moves given the length of simulated games in the preceding move search.
The third heuristic (EXP-STONES) is specific to the game of Go and uses
the number of stones on the board as an estimator of remaining game length.
Other games may or may not provide other indicators. The parameters for all
three heuristics, e.g. the precise mapping from played moves to remaining
moves for EXP-MOVES, are set to their average values in a large set of
games played in self-play.

OPEN. The OPEN strategy puts emphasis on the opening phase of the game.
Formula 2 modifies the search time for every move in the game by multiplying
it with a constant “opening factor” fopening > 1.

tnextmove = fopening ·
tremaining

mexpected
(2)

This results in more time per move being used in the beginning of the game
than at the end. As opposed to the implicit assumption of Formula 1 that
equal time resources should be allocated to every expected move, here it is
assumed that the first moves of a game have greater influence on the final
outcome than the last moves and thus deserve longer search times.

MID. Instead of moves in the opening phase, the MID strategy increases search
times for moves in the middle game, which can be argued to have the highest
decision complexity of all game phases [13]. For this purpose, the time as
given by Formula 1 is increased by a percentage determined by a Gaussian
function over the set of move numbers, using three parameters a, b and c for
height, position and width of the “bell curve”.

fGaussian(x) = ae−
(x−b)2

2c2 (3)

tnextmove = (1 + fGaussian(current move number)) · tremaining

mexpected
(4)

KAPPA-EXP. In [6], the concept of criticality was suggested for Go—as some
intersections on the board are more important for winning the game than
others, these should be recognized as “critical” or “hot”, and receive special
attention or search effort. To identify critical points, statistics are collected
during playouts on which player owns which intersections at the end of each
simulation, and on how strongly this ownership is correlated with winning
the simulated game. Different formulas have since been suggested to compute
the strength of this relationship [6, 20]. In the KAPPA-EXP strategy, we
use a related concept for identifying not only “hot” intersections from the
set of all intersections of a board, but also “hot” boards from the set of all
positions in a game. The KAPPA-EXP strategy distributes time proportional
to the expected maximum point criticality given the current move number,
as estimated from a database of games played by the program itself. The idea
is that the maximum point criticality, taken over the set of all intersections



Time Management for Monte-Carlo Tree Search in Go 5

I on the board, indicates how crucial the current move choice is. We chose
Formula 5 to represent the criticality of an intersection i in move m—the
kappa statistic, a chance-corrected measure of agreement typically used to
quantify inter-rater reliability [4]. Here, it is employed to quantify agreement
between the variables “intersection i is owned by the player at the end of a
playout during m’s move search” and “the player wins a playout during m’s
move search”.

κm(i) =
agreementmobserved − agreementmexpected

1− agreementmexpected

=
omwinner(i)

n − (omwhite(i)o
m
black(i) + wmwhitew

m
black)

1− (omwhite(i)o
m
black(i) + wmwhitew

m
black)

(5)

where n is the total number of playouts, omwinner(i) is the number of playouts
in which point i ends up being owned by the playout winner, omwhite(i) and
omblack(i) are the numbers of playouts in which point i ends up being owned
by White and Black, respectively, and wmwhite and wmblack are the numbers
of playouts won by White and Black, respectively. All numbers refer to the
search for move m.
For application at move number m during a game, the average maximum
point criticality κavg = 1

g

∑g
j=1 maxi∈I κ

m
game j(i) is precomputed from a

database of g games, linearly transformed using parameters for slope and
intercept sκavg

and iκavg
, and finally multiplied with the search time result-

ing in Formula 6.

tnextmove = (κavg · sκavg
+ iκavg

) · tremaining

mexpected
(6)

KAPPA-LM. Instead of using the expected criticality for the current move
number as defined above, the KAPPA-LM strategy uses the observed criti-
cality as computed during the search for the player’s previous move in the
game. This value κlastmove = maxi∈I κ

m−2
current game(i) is again linearly trans-

formed using parameters sκlastmove
and iκlastmove

, and multiplied with the base
search time. The formula is as follows:

tnextmove = (κlastmove · sκlastmove
+ iκlastmove

) · tremaining

mexpected
(7)

For both KAPPA-EXP and KAPPA-LM, lower and upper bounds for the κ
factor ensure reasonable time allocations even in extreme positions.

3.2 Dynamic Strategies

The following five strategies make time-allocation decisions for a move search
while the respective search process is being carried out.



6 H. Baier, M.H.M. Winands

BEHIND. As suggested by [13] as the “think longer when behind” heuristic,
the BEHIND strategy prolongs the search by a factor fbehind if the player
is falling behind. It triggers if after the regular search time—as computed
by the semi-dynamic strategies described above—the win rate of the best
move at the root is lower than a threshold vbehind. The rationale is that
by using more time resources, the player could still find a way to turn the
game around, while saving time for later moves is less important in a losing
position.

UNST. The UNSTABLE strategy, called “unstable evaluation” heuristic in
[13], prolongs the search by a factor funstable if after the regular search
time the most-visited move at the root is not the highest-valued move as
well. This indicates that by searching longer, a new move could become
the most-visited and thus change the final move choice. We have modified
this heuristic to check its condition for search continuation repeatedly in a
loop. The maximum number of loops until the search is terminated is bound
by a parameter lunstable. The single-check heuristic is called UNST-1, the
multiple-check heuristic UNST-N in the following.

CLOSE. Similar to a strategy developed independently in [3], the CLOSE strat-
egy prolongs the search by a factor fclosesecond if after the regular search time
the most-visited move and the second-most-visited move at the root are “too
close”, defined by having a relative visit difference lower than a threshold
dclosesecond. Like the UNST strategy, CLOSE aims to identify difficult deci-
sions that can make efficient use of an increase in search time. In our im-
plementation, this strategy can either be triggered only once (CLOSE-1) or
repeatedly (CLOSE-N) after the regular search time is over. For CLOSE-N,
a parameter lclosesecond defines the maximum number of loops.

KAPPA-CM. Unlike the three dynamic strategies described above, the KAPPA-
CM strategy does not wait for the regular search time to end. Instead, it
uses the first e.g. 100 milliseconds of the search process to collect play-
out data and then uses the maximum point criticality of the current move
κcurrentmove = maxi∈I κ

m
current game(i) to modify the remaining search time.

The formula is as follows:

tcurrentmove = (κcurrentmove · sκcurrentmove
+ iκcurrentmove

) · tremaining

mexpected
(8)

The remaining search time can be either reduced or increased by this strat-
egy. Upper and lower limits to the total search time apply.

EARLY. The “early exit” (EARLY-A) strategy, mentioned independently—
but not evaluated—in [3], is based on the idea of terminating the search
process as early as possible in case the best move cannot change anymore.
Therefore, the search speed in playouts per second is measured, and in reg-
ular intervals (e.g. 50 playouts) it is checked how many playouts are still
expected in the remainder of the total planned search time as determined by
the various strategies described above. If the number of playouts needed for
the second-most-visited move at the root to catch up to the most-visited one



Time Management for Monte-Carlo Tree Search in Go 7

exceeds this expected number of remaining playouts, the search can safely
be terminated without changing the final outcome.
If the expected time savings by this strategy are not taken into account
when computing planned search times, savings will accumulate throughout
the game and early moves cannot benefit from them. In order to achieve a
more equal distribution of the resulting time savings among all searches in
the game, planned search times can be multiplied with a factor fearlyexit that
is based on average time savings (EARLY-B strategy).
Because in general, not all of the remaining playouts in a search will start
with the second-most-visited move, we implemented a parameter pearlyexit
representing an estimate of the proportion of remaining playouts that actu-
ally sample the second-most-visited move (EARLY-C strategy). When using
this parameter, the search is terminated if the number of playouts needed for
the second-most-visited move at the root to catch up to the most-visited one
exceeds the expected number of remaining playouts multiplied with pearlyexit.
In this case, an unchanged final outcome is no longer guaranteed.

4 Experimental Results

All time-management strategies were implemented in Orego [8] version 7.08.
Orego is a Go program using a number of MCTS enhancements like a trans-
position table [12], RAVE [10], a simulation policy similar to that proposed in
[11], and LGRF-2 [2]. The program ran on a CentOS Linux server consisting of
four AMD Twelve-Core OpteronT 6174 processors (2.2 GHz). Unless specified
otherwise, each experimental run involved 5000 games (2500 as Black and 2500
as White) of Orego against the classic (non-MCTS-based) program GNU Go
3.8 [9], played on the 13×13 board, using Chinese rules (area scoring), posi-
tional superko, and 7.5 komi. GNU Go ran at its default level of 10, with the
capture-all-dead option turned on. Orego used a single thread and no ponder-
ing. Orego used a time limit of 30 seconds per game unless specified otherwise,
while Gnu Go had no time limit.

The remainder of this section is structured as follows. In 4.1, the strategies
in [13] are tested as a baseline. Next, 4.2 presents results of experiments with
semi-dynamic strategies. Dynamic strategies are tested in 4.3. Finally, in 4.4 the
best-performing strategy is compared to the baseline in self-play, as well as to
Orego with fixed time per move.

4.1 ERICA-BASELINE

In order to compare our results to a state-of-the-art baseline, the strategies
described in [13] were implemented and evaluated. The thinking time per move
was computed according to the “basic formula”

tnextmove =
tremaining

C
(9)



8 H. Baier, M.H.M. Winands

Table 1. Performance of Erica’s time management according to [13].

Player Win rate against GNU Go 95% conf. int.

Basic formula 28.6% 27.3%–29.9%

Enhanced formula 31.4% 30.1%–32.7%

ERICA-BASELINE 34.3% 33.0%–35.7%

as well as the “enhanced formula”

tnextmove =
tremaining

C + max(MaxPly−MoveNumber, 0)
(10)

where C = 30 and MaxPly = 40 were found to be optimal values for Orego. The
“unstable evaluation” heuristic, using a single loop as proposed in [13], worked
best with funstable = 1. The “think longer when behind” heuristic, however, did
not produce significant improvements for any of the tested settings for vbehind
and fbehind. This seems to be due to differences between Orego and the Erica
program used in [13]. Preliminary tests showed that positive effects for this
heuristic could not be achieved on any board size.

Erica’s time management strategies were tested against GNU Go using the
basic formula, using the enhanced formula, and using the enhanced formula plus
“unstable evaluation” heuristic (called ERICA-BASELINE from now on). Table
1 presents the results—the enhanced formula is significantly stronger than the
basic formula (p<0.01), and ERICA-BASELINE is significantly stronger than
the enhanced formula (p<0.01).

4.2 Semi-Dynamic Strategies

EXP-MOVES, EXP-SIM and EXP-STONES. As our basic time-manage-
ment approach, EXP-MOVES, EXP-SIM and EXP-STONES were tested.
The first three rows of Table 2 show the results. As EXP-STONES per-
formed best, it was used as the basis for all further experiments.

OPEN. According to preliminary experiments with OPEN, the “opening fac-
tor” fopening = 2.5 seemed most promising. It was subsequently tested
against GNU Go. Table 2 shows the result: EXP-STONES with OPEN
is significantly stronger than plain EXP-STONES (p<0.001).

MID. Initial experiments with MID showed Formula 3 to perform best with
a = 2, b = 40 and c = 20. It was then tested against GNU Go. As Table 2
reveals, EXP-STONES with MID is significantly stronger than plain EXP-
STONES (p<0.001).

KAPPA-EXP. The best parameter setting for KAPPA-EXP found in prelim-
inary experiments was sκavg

= 8.33 and iκavg
= −0.67. Lower and upper

bounds for the kappa factor were set to 0.5 and 10, respectively. Table 2
presents the result of testing this setting. EXP-STONES with KAPPA-EXP
is significantly stronger than plain EXP-STONES (p<0.001).



Time Management for Monte-Carlo Tree Search in Go 9

Table 2. Performance of the semi-dynamic strategies investigated.

Player Win rate against GNU Go 95% conf. int.

EXP-MOVES 24.0% 22.9%–25.2%

EXP-SIM 13.0% 12.0%–13.9%

EXP-STONES 25.5% 24.3%–26.7%

EXP-STONES with OPEN 32.0% 30.8%–33.4%

EXP-STONES with MID 30.6% 29.3%–31.9%

EXP-STONES with KAPPA-EXP 31.7% 30.5%–33.0%

EXP-STONES with KAPPA-LM 31.1% 29.9%–32.4%

ERICA-BASELINE 34.3% 33.0%–35.7%

KAPPA-LM. Here, sκlastmove
= 8.33 and iκlastmove

= −0.67 were chosen for
further testing against GNU Go as well. Lower and upper bounds for the
kappa factor were set to 0.25 and 10. The test result is shown in Table 2.
EXP-STONES with KAPPA-LM is significantly stronger than plain EXP-
STONES (p<0.001).

4.3 Dynamic Strategies

BEHIND. We tested all possible combinations of fbehind = {0.25, 0.5, 0.75, 1.0,
1.5, 2.0} and vbehind = {0.35, 0.4, 0.45}. However, just like the “enhanced
formula” of [13], EXP-STONES was not found to be significantly improved
by BEHIND in Orego. The best parameter settings in preliminary experi-
ments were fbehind = 0.75 and vbehind = 0.45. Detailed results are given in
Table 3.

UNST. The best results in initial experiments with UNST-1 were achieved with
funstable = 1.5. For UNST-N, funstable = 0.75 and lunstable = 2 turned out to
be promising values. These settings were tested against Gnu Go; Table 3
shows the results. EXP-STONES with UNST-1 is significantly stronger than
plain EXP-STONES (p<0.001). EXP-STONES with UNST-N, in turn, is
significantly stronger than EXP-STONES with UNST-1 (p<0.05).

CLOSE. The best-performing parameter settings in initial experiments with
CLOSE-1 were fclosesecond = 1.5 and dclosesecond = 0.4. When we introduced
CLOSE-N, fclosesecond = 0.5, dclosesecond = 0.5 and lclosesecond = 4 appeared
to be most successful. Table 3 presents the results of testing both variants
against Gnu Go. EXP-STONES with CLOSE-1 is significantly stronger
than plain EXP-STONES (p<0.001). EXP-STONES with CLOSE-N, in
turn, is significantly stronger than EXP-STONES with CLOSE-1 (p<0.001).
EXP-STONES with CLOSE-N is also significantly stronger than ERICA-
BASELINE (p<0.05).

KAPPA-CM. The best parameter setting for KAPPA-CM found in prelimi-
nary experiments was sκcurrentmove

= 8.33 and iκcurrentmove
= −1.33. Lower and

upper bounds for the kappa factor were set to 0.6 and 10. Table 3 reveals the
result of testing this setting against GNU Go. EXP-STONES with KAPPA-
CM is significantly stronger than plain EXP-STONES (p<0.05). However,



10 H. Baier, M.H.M. Winands

it is surprisingly weaker than both EXP-STONES using KAPPA-EXP and
EXP-STONES with KAPPA-LM (p<0.001). The time of 100 msec used to
collect current criticality information might be too short, such that noise is
too high.

EARLY. First, the EARLY-A strategy was tested. Table 3 presents the result—
the improvement to plain EXP-STONES was not significant. Then, we intro-
duced fearlyexit in EARLY-B and found a value of fearlyexit = 2 to be promis-
ing in initial testing. This setting was used against Gnu Go in another 5000
games. Finally, pearlyexit was introduced in EARLY-C, which resulted in a
change in the best settings found: fearlyexit = 2.5 and pearlyexit = 0.4 were
tested. EXP-STONES with EARLY-B is significantly stronger than plain
EXP-STONES (p<0.001). EXP-STONES with EARLY-C in turn is signif-
icantly stronger than EXP-STONES with EARLY-B (p<0.01). This best-
performing version is also significantly stronger than ERICA-BASELINE
(p<0.001).

Table 3. Performance of the dynamic strategies investigated.

Player Win rate against GNU Go 95% conf. int.

EXP-STONES with BEHIND 25.6% 24.4%–26.9%

EXP-STONES with UNST-1 33.6% 32.3%–34.9%

EXP-STONES with UNST-N 35.8% 34.4%–37.1%

EXP-STONES with CLOSE-1 32.6% 31.3%–33.9%

EXP-STONES with CLOSE-N 36.5% 35.2%–37.9%

EXP-STONES with KAPPA-CM 27.3% 26.1%–28.6%

EXP-STONES with EARLY-A 25.3% 24.1%–26.5%

EXP-STONES with EARLY-B 36.7% 35.4%–38.0%

EXP-STONES with EARLY-C 39.1% 38.0%–40.8%

EXP-STONES 25.5% 24.3%–26.7%

ERICA-BASELINE 34.3% 33.0%–35.7%

4.4 Strength Comparisons

Comparison with ERICA-BASELINE on 13×13. Our strongest time-man-
agement strategy on the 13×13 board, EXP-STONES with EARLY-C, was
tested in self-play against Orego with ERICA-BASELINE. Time settings
of 30, 60 and 120 seconds per game were used with 2000 games per data
point. Table 4 presents the results: For all time settings, EXP-STONES
with EARLY-C was significantly stronger (p<0.001).

Comparison with ERICA-BASELINE on 19×19. In this experiment, we
pitted EXP-STONES with EARLY-C against ERICA-BASELINE on the
19×19 board. The best parameter settings found were C = 80, MaxPly =
110 and funstable = 1 for ERICA-BASELINE, and fearlyexit = 2.2 and



Time Management for Monte-Carlo Tree Search in Go 11

Table 4. Performance of EXP-STONES with EARLY-C vs. ERICA-BASELINE,
13×13 board.

Time setting Win rate against ERICA-BASELINE 95% conf. int.

30 sec sudden death 61.4% 59.2%–63.5%

60 sec sudden death 59.9% 57.7%–62.0%

120 sec sudden death 62.5% 60.4%–64.6%

pearlyexit = 0.45 for EARLY-C. Time settings of 300 and 900 seconds per
game were used with 2000 games per data point. The results are shown in
Table 5—for both time settings, EXP-STONES with EARLY-C was signifi-
cantly stronger (p<0.001).

Table 5. Performance of EXP-STONES with EARLY-C vs. ERICA-BASELINE,
19×19 board.

Time setting Win rate against ERICA-BASELINE 95% conf. int.

300 sec sudden death 62.1% 60.0%–64.2%

900 sec sudden death 59.5% 57.4%–61.7%

Comparison with fixed time per move. To illustrate the effect of success-
ful time management, two additional experiments were conducted with Ore-
go using fixed time per move in 13×13 Go. In the first experiment, the time
per move (650 msec) was set so that approximately the same win rate against
GNU Go was achieved as with EXP-STONES and EARLY-C at 30 seconds
per game. The result of 2500 games demonstrated that the average time
needed per game was 49.0 seconds—63% more than needed by our time-
management strategy. In the second experiment, the time per move (425
msec) was set so that the average time per game was approximately equal to
30 seconds. In 2500 games under these conditions, Orego could only achieve
a 27.6% win rate, 11.5% less than with EXP-STONES and EARLY-C.

5 Conclusion and Future Research

In this paper, we investigated a variety of time-management strategies for Monte-
Carlo Tree Search, using the game of Go as a testbed. Empirical results show that
of our proposed strategies, EXP-STONES with EARLY-C and EXP-STONES
with CLOSE-N each provide a significant improvement over the state of the art as
represented by ERICA-BASELINE in 13×13 Go. For sudden-death time controls
of 30 seconds per game, EXP-STONES with EARLY-C increases Orego’s win
rate against GNU Go from 34.3% to 39.1%. In self-play, this strategy wins
approximately 60% of games against ERICA-BASELINE, both in 13×13 and
19×19 Go under various time controls.



12 H. Baier, M.H.M. Winands

Several promising directions remain for future research. First, a natural next
step is the combined testing and optimization of all above strategies—in order
to determine to which degree their positive effects on playing strength can com-
plement each other, or to which degree they could be redundant or possibly
interfere. First naive attempts at combining strategies have not showed signif-
icant improvements. To account for possible interactions, a non-linear classifier
like a neural network could be trained to decide about continuing or aborting the
search in short intervals, using all relevant information used by above strategies
as input. The second direction is to develop enhanced strategies to measure the
complexity and importance of a position and thus to effectively use time where
it is most needed. Counting the number of independent fights on the board could
be one possible approach. Third, the most successful time-management strate-
gies should be tested in other games or sequential decision problems with time
limits in general. CLOSE-N, UNST-N as well as EARLY-C, for example, are
domain-independent MCTS enhancements.

Acknowledgment. This work is funded by the Netherlands Organisation for Sci-

entific Research (NWO) in the framework of the project Go4Nature, grant number

612.000.938.

References

1. Althöfer, I., Donninger, C., Lorenz, U., Rottmann, V.: On Timing, Permanent
Brain and Human Intervention. In: van den Herik, H.J., Herschberg, I.S., Uiterwijk,
J.W.H.M. (eds.) Advances in Computer Chess, vol. 7, pp. 285–297. University of
Limburg, Maastricht (1994)

2. Baier, H., Drake, P.: The Power of Forgetting: Improving the Last-Good-Reply
Policy in Monte Carlo Go. IEEE Transactions on Computational Intelligence and
AI in Games 2(4), 303–309 (2010)

3. Baudǐs, P.: MCTS with Information Sharing. Master’s thesis, Charles University,
Prague, Czech Republic (2011)

4. Cohen, J.: A Coefficient of Agreement for Nominal Scales. Educational and Psy-
chological Measurement 20(1), 37–46 (1960)

5. Coulom, R.: Efficient Selectivity and Backup Operators in Monte-Carlo Tree
Search. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M. (eds.) 5th Inter-
national Conference on Computers and Games (CG 2006). Revised Papers. Lecture
Notes in Computer Science, vol. 4630, pp. 72–83. Springer (2007)

6. Coulom, R.: Criticality: a Monte-Carlo Heuristic for Go Programs. Invited talk,
University of Electro-Communications, Tokyo, Japan. (2009)

7. Donninger, C.: A la recherche du temps perdu: ’That was easy’. ICCA Journal
17(1), 31–35 (1994)

8. Drake, P., et al.: Orego Go Program, 2011. Available online:
http://legacy.lclark.edu/˜drake/Orego.html

9. Free Software Foundation: GNU Go 3.8, 2009. Available online:
http://www.gnu.org/software/gnugo/ (2009)



Time Management for Monte-Carlo Tree Search in Go 13

10. Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: Ghahra-
mani, Z. (ed.) Proceedings of the Twenty-Fourth International Conference on Ma-
chine Learning (ICML 2007). ACM International Conference Proceeding Series,
vol. 227, pp. 273–280. ACM (2007)

11. Gelly, S., Wang, Y., Munos, R., Teytaud, O.: Modification of UCT with Patterns
in Monte-Carlo Go. Tech. rep., HAL - CCSd - CNRS (2006)

12. Greenblatt, R., Eastlake III, D., Crocker, S.D.: The Greenblatt Chess Program.
In: Proceedings of the Fall Joint Computer Conference. pp. 801–810 (1967)

13. Huang, S.C., Coulom, R., Lin, S.S.: Time Management for Monte-Carlo Tree Search
Applied to the Game of Go. In: International Conference on Technologies and
Applications of Artificial Intelligence. pp. 462–466. IEEE Computer Society, Los
Alamitos, CA, USA (2010)

14. Hyatt, R.M.: Using Time Wisely. ICCA Journal 7(1), 4–9 (1984)
15. Kocsis, L., Szepesvári, C.: Bandit Based Monte-Carlo Planning. In: Fürnkranz,

J., Scheffer, T., Spiliopoulou, M. (eds.) 17th European Conference on Machine
Learning (ECML 2006). Lecture Notes in Computer Science, vol. 4212, pp. 282–
293. Springer (2006)

16. Kocsis, L., Uiterwijk, J.W.H.M., van den Herik, H.J.: Learning Time Allocation
Using Neural Networks. In: Marsland, T.A., Frank, I. (eds.) Computers and Games,
Second International Conference (CG 2000). Lecture Notes in Computer Science,
vol. 2063, pp. 170–185. Springer, Berlin/Heidelberg, Germany (2001)

17. Lee, C.S., Wang, M.H., Chaslot, G.M.J.B., Hoock, J.B., Rimmel, A., Teytaud,
O., Tsai, S.R., Hsu, S.C., Hong, T.P.: The Computational Intelligence of MoGo
Revealed in Taiwan’s Computer Go Tournaments. IEEE Transactions on Compu-
tational Intelligence and AI in Games 1(1), 73–89 (2009)

18. Lee, C.S., Müller, M., Teytaud, O.: Special Issue on Monte Carlo Techniques and
Computer Go. IEEE Transactions on Computational Intelligence and AI in Games
2(4), 225–228 (2010)

19. Markovitch, S., Sella, Y.: Learning of Resource Allocation Strategies for Game
Playing. Computational Intelligence 12(1), 88–105 (1996)

20. Pellegrino, S., Hubbard, A., Galbraith, J., Drake, P., Chen, Y.P.: Localizing Search
in Monte-Carlo Go Using Statistical Covariance. ICGA Journal 32(3), 154–160
(2009)

21. Šolak, R., Vučković, V.: Time Management during a Chess Game. ICGA Journal
32(4), 206–220 (2009)


