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Abstract. Monte-Carlo Tree Search (MCTS) has been successfully ap-
plied to many games, particularly in Go. In this paper, we investigate
the performance of MCTS in Tron, which is a two-player simultaneous
move game. We try to increase the playing strength of an MCTS program
for the game of Tron by applying several enhancements to the selection,
expansion and play-out phase of MCTS.
Based on the experiments, we may conclude that Progressive Bias, al-
tered expansion phase and play-out cut-off all increase the overall playing
strength, but the results differ per board. MCTS-Solver appears to be a
reliable replacement for MCTS in the game of Tron, and is preferred over
MCTS due to its ability to search the state space for a proven win. The
MCTS program is still outperformed by the best αβ program a1k0n,
which uses a sophisticated evaluation function, indicating that there is
quite some room for improvement.

1 Introduction

The classic way of exploring the game tree is using αβ-search [9] with a domain-
specific evaluation function. However, for games that require a complex posi-
tional evaluation function, this approach might not be the best way. An al-
ternative approach is Monte-Carlo Tree Search (MCTS) [6, 10]. In contrast to
αβ-search, MCTS does not require a positional evaluation function as it relies
on stochastic simulations. MCTS has proven itself to be a viable alternative in,
for instance, the board games Go [6], Hex [1], Amazons [11] and Lines of Action
[19].

A challenging new game is Tron. It is a two-player game that bears resem-
blance to Snake, except that in Tron, players leave a wall behind at each move.
An interesting aspect of Tron is that it is a simultaneous move game, rather
than the usual turn-taking game. In 2010, the University of Waterloo Computer
Science Club organized an AI tournament for the game of Tron [18]. Overall,
the MCTS programs were outperformed by αβ programs. In this paper, the
performance of MCTS in Tron is investigated, continuing the pioneering work
performed by Samothrakis et al. [12]. We examine approaches to improve the
program’s playing strength, by trying out different evaluation functions and
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Fig. 1. A Tron game on a board with obstacles after 13 moves. The blue player (1) has
cut off the upper part of the board, restricting the space the red player (2) can fill.

MCTS enhancements. Our MCTS program equipped with the enhancements is
subsequently matched against the top αβ program a1k0n.

This paper is organized as follows. Section 2 gives a brief description of the
game of Tron and the difficulties that a program has to be able to handle, to play
at a decent skill level. Section 3 explains the MCTS and MCTS-Solver method
applied to Tron. The enhancements applied to MCTS regarding the selection
strategy are described in Section 4, followed by an enhanced expansion strategy
in Section 5. Play-out strategies are described in Section 6. Experiments and
results are given in Section 7. Finally, in Section 8, conclusions from the results
are drawn and future research is suggested.

2 The Game of Tron

The game of Tron originates from the movie Tron, released by Walt Disney
Studios in 1982. The movie is about a virtual world where motorcycles drive at
a constant speed and can only make 90◦ angles, leaving a wall behind them as
they go. The game of Tron investigated in this paper is a board version of the
game played in the movie.

Tron is a two-player board game played on an m × n grid. It is similar to
Snake: each player leaves a wall behind them as they move. In Snake, the player’s
wall is of a limited length, but Tron does not have such a restriction. At each
turn, the red and blue player can only move one square straight ahead, or to the
left or right. Both players perform their moves at the same time; they have no
knowledge of the other player’s move until the next turn. Players cannot move to
a square that already contains a wall. If both players move to the same square, it
is considered a draw. If a player moves into a wall, he loses and the other player
wins. Usually the boards are symmetric, such that none of the players has an
advantage over the other player. A typical board size is 13× 13.

The game is won by outlasting your opponent such that the opponent has
no moves left other than moving into a wall. At the early stage of the game, it
is difficult to find good moves as the number of possible move sequences is quite
large and it is difficult to predict what the opponent will do. Boards can contain
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obstacles (see Figure 1), further increasing the difficulty of the game because
filling the available space becomes a more difficult task. Obstacles can provide
opportunities to cut off an opponent, reducing the opponent’s free space while
maximizing your own.

3 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is a best-first search method that constructs
a search tree using many simulations (called play-outs) [6, 10]. Play-outs are
used to evaluate a certain position. Positions with a high winning percentage
are preferred over those with a lower winning percentage. MCTS constructs
a search tree consisting of nodes, where each node represents a position of the
game. Each node i has a value vi and a visit count ni. The search starts from the
root node, which represents the current position. The tree is explored at random,
but as the number of simulated nodes increases, it gains a better evaluation of
the nodes and can focus on the most promising nodes.

Although Tron is a simultaneous move game, it is possible to represent it
as a turn-taking game. The player under consideration is always first to move
inside the tree, followed by the other player. An issue arises when the players
can run into each other. A solution is given in Subsection 3.1.

MCTS is divided into four phases [5]. These phases are executed until time
is up. The phases are illustrated in Figure 2. We explain the phases in detail
below.

Repeated X times

Selection Expansion Play-out Backpropagation

The selection strategy is
applied recursively until a leaf
node is reached

One simulated
game is played

The result of this game 
is backpropagated in 
the tree

Nodes are added to 
the tree

Fig. 2. Outline of the Monte-Carlo Tree Search [5].
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Selection. In the selection phase, a child node of a given node is selected ac-
cording to some strategy until a leaf node is reached. The selection task is an
important one, as the goal is to find the best move. Because moves are evalu-
ated by simulation, promising nodes should be played (exploited) more often
than unpromising nodes. However, to find these nodes, unvisited nodes have
to be tried out as well (exploration). Considering that in Tron, a player has
at most 3 different moves at any turn (except for the first turn, where there
could be 4 moves), this is not a problem. Because the number of simulations
that can be performed is limited, a good balance has to be found between
exploring and exploiting nodes. The simplest selection strategy is selecting a
child node at random. A selection strategy that provides a balance between
exploration and exploitation, is UCT (Upper Confidence Bound applied to
Trees) [10]. It is based on the UCB1 algorithm (Upper Confidence Bound)
[2]. UCT selects a child node k from node p as follows:

k ∈ argmaxi∈I

(
vi + C ×

√
lnnp
ni

)
(1)

C is a constant, which has to be tuned experimentally. Generally, UCT is
applied after the node has first been visited a certain number of times T , to
ensure all nodes have been sufficiently explored to apply UCT. If a node has
a visit count less than T , the random-selection strategy is applied [6].

Expansion. In the expansion phase, the selected leaf node p is expanded. Since
the number of child nodes is at most 3 in Tron, all nodes are added. The
selection strategy is then applied to node p, returning the node from which
the play-out starts.

Play-out. In this phase, the game is simulated in self-play, starting from the
position of the selected node. Moves are performed until the game ends, or
when the outcome can be estimated reliably. In contrast to the selection
phase, both players move simultaneously in the play-out phase. The strat-
egy used for selecting the moves to play can either be performing random
moves, or using domain-specific knowledge that increases the quality of the
simulation. The play-out phase returns a value of 1, 0 or -1 for the play-
out node p, depending on whether the simulated game resulted in a win,
draw, or loss, respectively. The same values are awarded to terminal nodes
in the search tree. If the play-out node belongs to the player under consid-
eration, the other player will first perform a move, such that both players
have performed the same number of moves.

Backpropagation. The result of the simulation is backpropagated from the
leaf node all the way back to the root node of the search tree. The values of
the nodes are updated to match the new average of the play-outs.

After the simulations, the final move to be played by the MCTS program
has to be chosen. The move is selected by taking the most ‘secure’ child of the
root node [5]. The secureness of a node i is defined as: vi + A√

ni
, where A is a

constant. In the experiments, based on trial-and-error for the MCTS program,
A = 1 is used.
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3.1 Handling Simultaneous Moves

Treating Tron as a turn-taking game inside the tree works out quite well in
almost every position of the game. However, if a position arises where the MCTS
program has the advantage, but the players are at risk of crashing into each other,
the program might play the move that leads to a draw. This happens because
inside the search tree, the root player is always the first to move (as done in
[12]). Because the root player already moved to the square that was accessible
to both, the non-root player can no longer move to this square.

This problem is solved by adding an enhancement to the expansion strategy:
if a node n belongs to the root player, and the non-root player could have moved
to the square the root player is currently at, a terminal node is added to n with
the value of a draw (i.e., 0). An example is shown in Figure 3.

Fig. 3. A game tree of Tron. In the left-most branch, both players moved to the same
square, resulting in a terminal node that ends in a draw.

3.2 Monte-Carlo Tree Search Solver

Monte-Carlo Tree Search Solver (MCTS-Solver) [19] is an enhancement for
MCTS that is able to prove the game-theoretic value of a position. MCTS com-
bined with UCT may require significantly more time to find the best move, be-
cause it requires a large number of play-outs to converge to the game-theoretic
value. Running MCTS-Solver requires a negligible amount of additional compu-
tation time on top of MCTS. Since proven positions do not have to be evaluated
again, time can be spent on other positions that have not been proven yet. The
original MCTS-Solver only considered win and loss outcomes, because in the
test domain Lines of Action draws are exceptional [19]. Since draws occur often
in Tron, an enhanced MCTS-Solver is used that does handle draws.

The Score-Bounded MCTS-Solver [4] extends MCTS-Solver to games that
have more than two game-theoretic outcomes. It attaches an interval to each
node, as done in the B* algorithm [3]. The interval is described by a pessimistic
and optimistic bound. The pessimistic score represents the lowest achievable out-
come for the root player, and the optimistic score represents the best achievable
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outcome for the root player. Given sufficient time, the pessimistic and optimistic
score of a node n will converge to its true value. An advantage of Score-Bounded
MCTS is that the bounds enable pruning as in αβ search, skipping unpromising
branches. The initial bound of a node is set to [−1.0, 1.0]. Score-Bounded MCTS
has been shown to solve positions considerably faster than MCTS-Solver [4].

3.3 Progressive Bias

Although UCT gives good results compared to other selection strategies that
do not use knowledge of the game, there is room for improvement. The random
strategy applied when the visit count of the node is small, can be replaced by
the more promising play-out strategy. Since the accuracy of the UCT selection
strategy increases as the number of visits increases, it is desirable to introduce a
so-called ‘progressive strategy’. The progressive strategy provides a soft transi-
tion between the two strategies [5]. A popular choice is progressive bias (PB) that
combines heuristic knowledge with UCT to select the best node [5]. By using
Tron knowledge, node selection can be guided in a more promising direction, one
that might not have been found by using play-outs only. This domain knowledge
can be computationally expensive. A trade-off has to be made between simulat-
ing more games and spending more time for computing the domain knowledge.

When few games have been played, the heuristic knowledge has a major
influence on the decision. The influence gradually decreases when the node is
visited more often. The PB formula is as follows: W×Pmc

li+1 [19]. W is a constant
(set to 10 in the experiments). Pmc is the transitional probability of a move
category mc [17]. li denotes the number of losses in node i, this way, nodes that
do not turn out well are not biased for too long. The formula of UCT and PB
combined is:

k ∈ argmaxi∈I

(
vi + C ×

√
lnnp
ni

+
W × Pmc

li + 1

)
(2)

The transitional probability of each move category is acquired from games
played by expert players. Since no such games are available, the probabilities
are obtained from self-play experiments of the MCTS program. The transitional
probability Pmc of a move belonging to the move category mc is given by:

Pmc =
nplayed(mc)

navailable(mc)
(3)

nplayed(mc) denotes the number of positions in which a move belonging to move
category mc was played. navailable(mc) is the number of positions where a move
belonging to move category mc could have been played.

We distinguish six move features in Tron:

– Passive: The player follows the wall that it is currently adjacent to.
– Offensive: The player moves towards the other player, when close to each

other.
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– Defensive: The player moves away from the other player, when close to each
other.

– Territorial: The player attempts to close off a space by moving across open
space towards a wall.

– Reckless: The player moves towards a square where the other player could
have moved to, risking a draw.

– Obstructive: The player moves to a square that contains paths to multiple
subspaces, closing off these spaces (at least locally).

4 Heuristic Knowledge in Tron

Estimating the remaining available space of a player is a useful heuristic in Tron
because the game is won by filling a larger space than the opponent. Space
estimation is valuable when, for instance, the program is at a square where it
has to choose between two spaces. Biasing the selection towards moving to larger
spaces saves time on simulating less-promising nodes that lead towards smaller
spaces. We only focus on estimating the number of moves a player can make in
a space that is not reachable by the other player.

Counting the number of empty squares does not always give an accurate
estimation of the number of moves a program requires to fill the available space.
Spaces can contain squares that can be reached, but offer no path back to fill
the rest of the space.

One way to get an estimation of the available space is by filling up the
space in a single-player simulation, and counting the number of moves [13]. The
simulation uses a greedy wall-following heuristic. This heuristic works as follows.
A move is selected such that the player moves to a square that lies adjacent to
one or more walls (excluding the wall at its current square). If any of the moves
cuts the player off from the other possible moves, the available space of each
move is estimated and the move leading having the largest available space is
selected. If there are multiple possible moves of equal score, a move is selected
at random. This method does not always give the correct number of moves, but
it gives a good lower bound on the amount of available space.

Instead of counting the number of empty squares, a tighter upper bound
can be obtained by treating the board as a checker board. The difference in the
number of grey and white squares gives an indication of the number of moves
that can be performed [7]. The estimated number of moves M is computed
by: M = Z − |cg − cw|. Z is the total available space, cg is the number of
grey tiles (including the one the player is currently standing on), and cw is the
number of white tiles. The estimated number of moves can be substantially off
if the space contains large subspaces that offer no way back to other subspaces.
Three example spaces are shown in Figure 4. The estimated number of moves for
boards a, b and c are 13, 9 and 11, respectively. The true number of moves for
the boards are 13, 9 and 10. Note that the estimation of board c is off because
of the two separated subspaces. Had Z been solely used as the move estimation,
the estimated number of moves would have been 14, 10 and 12.
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Fig. 4. Three example boards where the player is isolated from the other player. The
player starts at square S.

5 Predictive Expansion Strategy

In Tron, players will often get separated from each other (if not, the game ends
in a draw). If a game is in such a position, the outcome of a game can be
predicted in reliable way. The predictive expansion strategy uses space estimation
to predict the outcome of a position. It has to be noted that only nodes of the
non-root player are evaluated, so both players have performed their moves when
the position is evaluated.

If the outcome of a node can be predicted with certainty, the node does
not have to be simulated, and is treated as a terminal node. This works as
follows. The node candidate for expansion is evaluated using the space estimation
heuristic. If there is a way for the players to reach each other, the node is
expanded in the default way. If the players are isolated from each other and
the outcome can be predicted, the node is not expanded and it is treated as a
terminal node. The result of the prediction is backpropagated.

This strategy has two advantages over the old expansion strategy. First,
applying space estimation is faster than performing a play-out. If a sufficient
number of games are cut off, the time spent on space estimation is regained, and
more time can be spent on searching through other parts of the tree. Second,
the outcome prediction is more reliable than performing multitudes of play-outs.
This prevents the program from underestimating positions where one or more
players are closed off in a large space.

Once the game reaches the endgame phase, the enhanced expansion strategy
is no longer applied since the MCTS program is has shown to be capable of
efficiently filling up the remaining space.

6 Play-out Strategies

The simplest play-out strategy is the random-move strategy. During the play-
out, players perform a random move. Moves that result in an immediate defeat
are excluded from the selection.

The authors observed that play-outs performed using a random-move strat-
egy give surprisingly good results in Tron, considering that the randomly moving
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Tron programs frequently trap themselves. The reliability of the play-outs can
be further increased by using a more advanced play-out strategy [8].

We propose six play-out strategies. The resulting playing strength of each of
these strategies is determined in the experiments.

Wall-following strategy. This strategy is inspired by the wall-following heuris-
tic described in Section 4. The strategy selects the move leading to the square
with the most number of walls (but smaller than 3). If multiple of moves lead
to squares of the same number of walls, one of the moves is randomly se-
lected. A problem with the wall-following strategy is that it does not leave
much room for a rich variety of simulations. During each play-out, the moves
performed will roughly be the same. It means that running more simulations
does not necessarily increase the accuracy of the move value.

Offensive strategy. The offensive strategy selects moves that bring the player
closer to the opponent player. If more than one move brings the player closer,
one of the moves is selected at random. If there is no move that brings it
closer to the opponent, a random move is performed.

Defensive strategy. This play-out strategy selects the move that increases the
distance to the opponent player. If there is no such move, a random move is
performed. If more than one move increases the distance from the opponent
player, one of the moves is played at random.

Mixed strategy. The mixed strategy is a combination of the random play-out
strategy and the previously mentioned strategies. At each move, a strategy
is randomly selected according to a certain probability. The reasoning be-
hind this strategy is that none of the strategies are particularly strong, and
combining them may give better results.

The wall-following strategy has a 50% probability of being played, whereas
the random-move, defensive and offensive are played 20%, 25% and 5% of
the time, respectively.

Move-category strategy. This strategy uses the move category statistics used
by the Progressive Bias enhancement to select a move. Moves are selected
by roulette-wheel selection.

ε-greedy strategy. This strategy has a probability of 1−ε (i.e. 90%) of playing
the wall-following strategy, and a probability of ε (i.e. 10%) of playing a
random other play-out strategy [14, 15].

6.1 Endgame Strategies

The game of Tron can be split into two phases: the phase where players try to
maximize their own available free space, and the phase where the players are
isolated and attempt to outlast the other player by filling the remaining space
as efficiently as possible, referred to as the endgame phase.

During the endgame phase, the same play-out strategies as mentioned above
can be used, with the exception of the offensive and defensive strategy since
there is no point in biasing the move on the position of the other player.
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Fig. 5. The three boards used in the experiments.

6.2 Play-out Cut-Off

Although a Tron game is guaranteed to terminate, as each move brings the game
moves closer to a terminal position, the number of moves performed during the
play-out phase can be reduced. This saves time, leaving room for more simula-
tions. Using heuristic knowledge, the result of a game can be predicted without
the need to completely simulate it. A major problem with applying heuristic
knowledge is that it costs much computation time compared to playing moves.
Therefore, the positions are only evaluated once every 5 moves. An additional ad-
vantage of predicting the play-out outcome is that the accuracy of the play-outs
is increased, because the player with the largest space can still lose a portion
of the simulated games due to the weak play of the play-out strategies. The
heuristic to predict the outcome of a game is the same as used in Subsection 4.

7 Experiments and Results

In this section, the proposed enhancements of Section 4, 5 and 6 are tested in
our MCTS program [16]. The experiments are conducted on a 2.4 GHz AMD
Opteron CPU with 8 GB of RAM. Experiments are conducted for three different
boards, each providing different difficulties for MCTS. The boards are shown
in Figure 5. Although all boards are symmetric, experiments are run for both
colours to eliminate the possibility that the playing strength of the program is
affected by its colour.

The following settings are used for the experiments, unless mentioned other-
wise. In each experiment, 100 games are played on each board for both setups.
In total 600 games are played. The time players can spend on computing the
next move is 1 second. The programs have no knowledge about the move the
other program will be performing.

Progressive Bias is tested in Subsection 7.1. Next, Subsection 7.2 describes
the results of the various play-out strategies. Subsequently, Subsection 7.3 eval-
uates the play-out cut-off enhancement. The Predictive Expansion strategy is
reported in Subsection 7.4. The playing strength of MCTS-Solver is tested in
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Subsection 7.5. Finally, MCTS programs combined with the enhancements are
tested against the winning program of the Tron Google AI Challenge in Subsec-
tion 7.6.

7.1 Progressive Bias

In the first series of experiment the Progressive Bias (PB) strategy is tested
for different values of W . The MCTS-PB program is tested against the MCTS-
UCT program [16]. Table 1 shows the transitional probabilities, obtained from
600 self-play games by the MCTS-UCT program at the three boards (200 games
per board).

Table 2 shows that Progressive Bias does not improve the playing strength
at boards a and b for any of the tested values of W , but it noticeably increases
the playing strength at board c. Furthermore, the exact value of W does not
seem to matter that much.

Table 1. Move categories and their respec-
tive transitional probabilities.

Move category Pmc

Defensive 28.9%
Defensive/Territorial 36.2%

Offensive 29.6%
Offensive/Reckless 0.0%
Offensive/Territorial 21.6%

Passive/Defensive 77.1%
Passive/Defensive/Obstructive 92.8%

Passive/Offensive 78.9%
Passive/Offensive/Obstructive 86.5%
Passive/Offensive/Reckless 6.6%
Passive/Off./Obs./Reck. 15.9%

Table 2. Win rates of MCTS-PB vs.
MCTS-UCT.

W Board a Board b Board c Total

0.5 45% 48% 65% 53 ± 4 %
1 49% 45% 67% 54 ± 4 %
5 55% 45% 63% 54 ± 4 %
10 48% 49% 63% 53 ± 4 %
20 36% 52% 66% 51 ± 4 %

7.2 Play-out Strategy Experiments

In the next of series of experiments the various play-out strategies proposed are
tested in the MCTS program. They are matched against each other in a round-
robin tournament. The tournament is run at all three boards. Table 3 gives the
results for each board. Table 4 shows the averaged results over all three boards.

The results show that the boards have a large influence on the effectiveness
of the strategies. As such, it is difficult to select the best strategies based on
these results. Overall, the random-move, defensive and wall-following strategies
seem to be the best strategies. The random-move strategy performs well for all
boards, whereas the defensive strategy stands out for board c. The wall-following
strategy works well against the random-move strategy on board b. The random-
move strategy is used in the experiments of the next subsections.
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Table 3. Play-out strategy results for board a, b and c.

Board a Rand. Wall Off. Def. Mixed Cat. ε-g.

Random 58% 90% 83% 71% 67% 52%
Wall 42% 90% 52% 21% 40% 26%

Offensive 10% 10% 31% 16% 13% 12%
Defensive 17% 48% 69% 55% 35% 32%
Mixed 29% 79% 84% 45% 49% 28%

Category 33% 60% 87% 65% 51% 38%
ε-greedy 48% 74% 88% 68% 72% 62%

Board b Rand. Wall Off. Def. Mixed Cat. ε-g.

Random 15% 100% 70% 56% 53% 58%
Wall 85% 99% 50% 78% 86% 88%

Offensive 0% 1% 0% 0% 0% 0%
Defensive 30% 50% 100% 77% 96% 51%
Mixed 44% 22% 100% 23% 37% 45%

Category 47% 14% 100% 4% 63% 36%
ε-greedy 42% 12% 100% 49% 55% 64%

Board c Random Wall Off. Def. Mixed Cat. ε-g.

Random 91% 98% 18% 43% 50% 49%
Wall 9% 81% 15% 7% 44% 9%

Offensive 2% 19% 9% 20% 12% 15%
Defensive 82% 85% 91% 76% 80% 90%
Mixed 57% 93% 80% 24% 40% 50%

Category 50% 56% 88% 20% 60% 57%
ε-greedy 51% 91% 85% 10% 50% 43%

7.3 Play-out Cut-off

The play-out cut-off (PC) enhancement is tested by matching the MCTS-PC
program against the MCTS-UCT program. MCTS-PC runs considerably fewer
play-outs (25,000 per second on average) due to the computation time required
by the play-out cut-off heuristic.

Table 5 shows the win rate for MCTS-PC against MCTS-UCT. At boards
a and b, 800 games were run to ensure that the observed win rate was not
influenced too much by statistical noise. 400 games were run for board c. The
bad performance at board c might have to do with the difficulty for a player to
isolate itself on this board.

7.4 Expansion Strategy Experiments

In the subsequent series of experiments are conducted for the predictive expan-
sion (PDE) strategy. The MCTS-PDE program is tested against the MCTS-UCT
program. The MCTS-PDE program ran 60,000 play-outs per second on average.
The results are shown in Table 6. For each board, 600 games were run.

Similar to the results of the play-out cut-off experiment, the MCTS-PDE
program appears to be slightly better than the MCTS-UCT program at board a
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Table 4. Averaged play-out strategy results for all boards.

Random Wall Off. Def. Mixed Cat. ε-g.

Random 55% 96% 57% 56% 57% 53%
Wall 45% 90% 39% 35% 57% 41%

Offensive 4% 10% 13% 12% 8% 9%
Defensive 43% 61% 87% 69% 71% 58%
Mixed 44% 65% 88% 31% 42% 41%

Category 43% 43% 92% 29% 58% 44%
ε-greedy 47% 59% 91% 42% 59% 56%

Table 5. Win rates of MCTS-PC vs. MCTS-UCT.

Board a Board b Board c Total

Win 54% 56% 33% 48 ± 2 %

and b. The poor win rate at board c is likely caused by the behaviour of MCTS
for this board. The programs spiral around the centre, leaving the outer edges
of the board open. Because the space estimation heuristic used by the predictive
expansion strategy is only applicable when the players are isolated from each
other, the MCTS-PDE program is squandering computation time on a mostly
useless heuristic. Since the MCTS-UCT program spends all of its time on the
play-outs, it can look further ahead and therefore has an advantage over the
MCTS-PDE program.

7.5 MCTS-Solver Experiments

In this series of experiments the Score-Bounded MCTS-Solver is tested. The
MCTS-Solver program ran at the same speed as the MCTS-UCT program. In
the experiments of MCTS-Solver, MCTS-Solver-PDE and MCTS-Solver-PDE-
PC, 400 games were run on each board.

As shown in Table 7, the MCTS-Solver program shows a slight improvement
over MCTS-UCT. MCTS-Solver in combination with PDE or PDE-PC performs
poorly at board a because it tends to cut off one side of the board, and due to
lower number of simulations, cannot look ahead far enough to see the resulting
outcome (i.e. loss). PDE and PDE-PC perform well at boards b and c, probably
due to the obstacles and mistakes made by MCTS-UCT.

In terms of computation time and playing style, the MCTS-Solver program is
the preferred choice since it requires no additional computations once a move has
been proven to lead to a guaranteed win (or draw, when this is the best achievable
outcome). Furthermore, the program can look up and play the shortest move
sequence leading to a win by searching for the shortest winning path in the tree.

7.6 Playing against an αβ program

In the final series of experiment, the MCTS program is tested against the winning
program of the Tron Google AI Challenge, a1k0n [13]. The a1k0n program uses



14 N.G.P. Den Teuling and M.H.M. Winands

Table 6. Win rates of MCTS-PDE vs. MCTS-UCT.

Board a Board b Board c Total

Win 53% 58% 48% 53 ± 2 %

Table 7. Win rates of MCTS-Solver variants against MCTS-UCT.

Win Board a Board b Board c Total

Solver 50% 52% 57% 53 ± 3 %
Solver-PDE 32% 74% 53% 53 ± 3 %
Solver-PDE-PC 30% 82% 70% 61 ± 3 %

αβ-search [9] together with a good evaluation function that is primarily based
on the tree of chambers heuristic.

Table 8. Win rates of various MCTS players against a1k0n.

Board a Board b Board c Total

MCTS-UCT 40% 0% 0% 14 ± 3 %
MCTS-PDE 44% 0% 0% 15 ± 3 %
Solver-PDE 13% 12% 0% 8 ± 3 %

Solver-PDE-PC 28% 10% 16% 18 ± 3 %
Solver-PDE-PC-PB 12% 18% 0% 10 ± 3 %

As can be seen in Table 8, a1k0n is the stronger player by far, achieving a
win rate of 82% against MCTS-Solver-PDE-PC and a win rate higher than 85%
against the other MCTS programs. Applying PB to MCTS-Solver does not seem
to give an improvement in overall playing strength. Although the MCTS-Solver
reaches a decent level of play, it still makes mistakes, mainly due to the fact
that the reliability of the play-outs rapidly drops as the players get more distant
from each other. By the time MCTS-Solver sees that it is in a bad position, it
is already too late to correct.

8 Conclusion and Future Research

In this paper we developed an MCTS program for the game of Tron. Several
enhancements were made to the selection, expansion and play-out phase. All of
the enhancements were tested against an MCTS-UCT program.

The enhancement made to the selection phase, the progressive bias strategy,
showed no improvement over UCT at two out of three boards. At board c the
enhancement scored a consistent win rate of over 63%.

The experiments of the play-out strategies have shown that the board config-
uration has a large influence on the game and the effectiveness and accuracy of
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the play-out strategies. The random-move strategy appeared to be the most ro-
bust choice, doing reasonably well on all three boards. The wall-following strat-
egy outperformed the other strategies only at board b, whereas the defensive
strategy outperformed the other strategies at board c.

Applying play-out cut-off showed an increase in playing strength at boards
a and b (54% and 56%, respectively), but significantly decreased the playing
strength at board c. The bad performance at board c may have to do with the
difficulty for a player to isolate itself on this board.

Similar to the play-out cut-off enhancement, the predictive expansion strat-
egy showed a slight increase in playing strength at board a (53%) and b (58%),
but not at board c. The poor win rate at board c is likely caused by the be-
haviour of MCTS for this board. The MCTS programs keep a large space open
behind them, up until late in the game. In such positions, the space estimation
heuristic used is not helpful.

The Score-Bounded MCTS-Solver was tested against MCTS, and turned out
to be an improvement, although MCTS-Solver with PDE performs poorly at
board a, in comparison to MCTS-PDE. MCTS-Solver is preferred for its ability
to look up the shortest path leading to a win (or draw, when a draw is the best
achievable outcome) once one or more moves have been proven. In contrast,
MCTS-UCT usually postpones the victory.

Using PDE on MCTS-Solver enables the program to prove a position more
quickly, however, the extra time spent on computing the heuristic did not work
out well for all boards. PDE and PC in combination with MCTS-Solver further
increased the overall playing strength of the program. MCTS-Solver-PDE-PC
achieves a surprisingly high win rate on board c (70%), where MCTS-PC only
scored (33%).

The experiment involving the αβ program showed that the MCTS programs
struggle at evaluating positions where the players are distant from one another
(further than 10 steps away). Overall, the Solver-PDE-PC program is the best
performing program, winning approximately 1 out of 5 games on average against
the αβ program, and achieving a win rate of 61% against MCTS-UCT.

The experiments show that the board configuration has a large influence on
the playing strength of the enhancements tested. Since our goal was to create a
Tron program capable of playing on any 13 × 13 map, the experiments should
be conducted for many more boards.

As future research, applying a more sophisticated play-out strategy may in-
crease the playing strength of MCTS in Tron. It would be interesting to see
whether the play-out strategy and selection strategy can be improved such that
MCTS can correctly look far ahead. The play-out phase might even have to be
replaced completely by a sophisticated evaluation function (e.g. tree of cham-
bers), as used by the αβ program a1k0n.
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