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Abstract

This article analyses quiescence search in an imperfect-information game, Stratego. We point out that
there are two key problems. The first problem is the search overhead, and the second problem is the limited
information gain. A possible solution to the first and second problem is an Evaluation-Based Quiescence
Search (EBQS). Experiments show that this solution improves the playing strength of a Stratego program.

1 Introduction

Chess programs perform an exhaustive search on a limited part of the game tree. At a leaf node, a second
search is sometimes performed, the so-called quiescence search (QS) [9, 13, 14, 20]. The purpose of this
search is that only ‘quiet’ positions are evaluated (i.e., with no wild swings in the future). Performing such a
QS will largely reduce the horizon effect. The need for evaluating quiet positions has been identified in the
literature for quite some time [21, 25].

In spite of the fact that quite some research has been done for QS in perfect-information games, the
effect of QS in imperfect-information games remains unknown. The imperfect-information game we have
chosen is Stratego.! Just like in Chess, gaining material is an important factor. A horizon effect may arise for
positions where an exchange of material is possible due to capturing. Stratego is therefore a good candidate
for applying QS. In this article we will reveal two problems of using QS in Stratego. The first problem is
the search overhead, and the second problem is the limited information gain. We propose Evaluation-Based
Quiescence Search (EBQS) to solve these problems.

This article will first explain the rules of Stratego in Section 2. Next, the standard search technique
for non-deterministic board games, called EXPECTIMAX, is described in Section 3. This technique can be
applied to imperfect-information games as well. Thereafter, Section 4 presents QS. We discuss the problems
and the possible solution EBQS in Section 5. Finally, Section 6 shows the experiments and Section 7 presents
the conclusions.

2 Stratego

Stratego is an imperfect-information zero-sum game. It was developed at least as early as 1942 by Mogen-
dorff. The game was sold by the Dutch publisher Smeets and Schippers between 1946 and 1951 [8]. In this
section, we will first briefly describe the rules of the game (2.1) and thereafter present related work (2.2).
Finally, in Subsection 2.3 the evaluation function is briefly discussed.

2.1 Rules

The following rules are an edited version of the Stratego rules published by the Milton Bradley Company in
1986 [5]. Stratego is played on a 10x 10 board. The players, Red and Blue, place each of their 40 pieces in
a 4x10 area, in such a way that the back of the piece faces the opponent. The movable pieces are divided
in ranks (from the lowest to the highest): Spy, Scout, Miner, Sergeant, Lieutenant, Captain, Major, Colonel,
General and Marshal. Each player has also two types of unmovable pieces, the Flag and the Bomb.

1StrategoTM is a registered trademark of Hausemann & Hotte N.V., Amsterdam, The Netherlands. All Rights Reserved.
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Players move alternately, starting with Red. Passing is not allowed. Pieces are moved to orthogonally-
adjacent vacant squares. The Scout is an exception to this rule, and may be moved like a Rook in chess. The
Two-Squares Rule and the More-Squares Rule prohibit moves which result in repetition.” The lakes in the
centre of the board contain no squares; therefore a piece can neither move into nor cross the lakes. Only one
piece may occupy a square.

A piece, other than a Bomb or a Flag, may attempt to capture an orthogonally adjacent opponent’s piece;
a Scout may attempt to capture from any distance. When attempting a capture, the ranks are revealed and
the weaker piece is removed from the board. The stronger piece will be positioned on the square of the
defending piece. If both pieces are of equal rank, both are removed. The following special rules apply to
capturing. The Spy defeats the Marshal if it attacks the Marshal. Each piece, except the Miner, will be
captured when attempting to capture the bomb.

The game ends when the Flag of one of the players is captured. The player whose Flag is captured loses
the game. A player also loses the game if there is no possibility to move. The game is drawn if both players
cannot move.

2.2 Previous Work

Stratego has received limited scientific attention in the past. De Boer [6, 7] describes the development of an
evaluation function using an extensive amount of domain knowledge for a 1-ply search. Treijtel [24] created
a player based on multi-agent negotiations. Stengard [23] investigates different search techniques for this
game. Schadd et al. [18] developed a forward-pruning technique for chance nodes ,which was tested in
Stratego. At this moment, computers play Stratego at an amateur level [17]. An annual Stratego Computer
Tournament? is held on Metaforge.*

2.3 Evaluation Function

A well-performing evaluation function is an important factor for the playing strength. For our program, we
have chosen a material-based approach, partially based on De Boer [6]. The evaluation function is bound to
[-1,000, 1,000] which corresponds to losing or winning the game. The piece value is shown in Table 1.

Table 1: Piece values

Spy Scout Miner | Sergeant | Lieutenant | Captain
100(10) 10 100 20 50 100
Major | Colonel | General | Marshal Bomb Flag

140 175 300 400 75 1,000

When the opponent’s Marshal is captured, the value of the Spy is reduced to 10. Furthermore, each
position on the board is assigned a value of importance (i.e., increase the distance of the opponent to the
own Flag, while decreasing the own distance to the opponent’s Flag). The value of a position can be up to
50 points. A bonus is given if information of a piece is hidden. This bonus is set to 30% of the value of
the piece. A small random factor is introduced to model the mobility. Furthermore, a variable counts the
number of subsequent moves without capturing. For each two non-capture moves, the evaluation score is
reduced by 1 point. Using this factor, more risk is taken when nothing happens in the game.

3 EXPECTIMAX

EXPECTIMAX [15] is a brute-force, depth-first game-tree search algorithm that generalizes the MINIMAX
concept [27] to non-deterministic games,” by adding chance nodes to the game tree (in addition to MIN
and MAX nodes). At chance nodes, the heuristic value of the node (or EXPECTIMAX value) is equal to the

2For details of these rules we refer to the International Stratego Federation (ISF), www.isfstratego.com.
3http://www.strategousa.org/wiki/index.php/Main_Page

“http://www.metaforge.net/

5 An imperfect-information game such as Stratego can be treated as a non-deterministic game.



Quiescence Search for Stratego 227

weighted sum of the heuristic values of its successors. For a state s, its EXPECTIMAX value is calculated
with the function:

EXPECTIMAX(s) = Z P(c;) x V()

where ¢; represents the ith child of s, P(c) is the probability that state ¢ will be reached, and V' (¢) is the
value of state c.

We explain EXPECTIMAX in the following example. Figure 1 depicts an EXPECTIMAX tree. In the
figure, squares represent chance nodes, regular triangles MAX nodes and inversed triangles MIN nodes.
Node A corresponds to a chance node with two possible events, after which it is the MIN player’s turn.
The value of node A is calculated by weighting the outcomes of both chance events. In this example,
EXPECTIMAX(A) = 0.9 x —250 + 0.1 x 250 = —200.

A =200 Chance

MIN

B C D E Chance

=250 -100 500 250

Figure 1: An example EXPECTIMAX tree

The basic idea of EXPECTIMAX is sound but slow [2]. STAR] and STAR2 exploit a bounded heuristic
evaluation function to generalize the a8 pruning technique to chance nodes [2, 12]. af pruning imposes
a search window (o) at each MIN or MAX node in the game tree. Remaining successor nodes can
be skipped as soon as the current node’s value is proven to fall outside the search window. STARI and
STAR2 apply this idea to chance nodes. These methods exploit a bounded evaluation function to calculate
theoretical lower and upper bounds for a chance node. After a child is searched, the bounds are updated and
it is checked whether the bounds fall outside the window. The difference is that the search cannot return
as soon as one successor falls outside the search window. The theoretical lower or upper bound has to fall
outside the window to stop the search prematurely at a node.

4 Quiescence Search

Chess programs perform an exhaustive search on a limited part of the game tree. At a leaf node, the so-
called quiescence search (QS) can be performed [9, 13, 14, 20]. The purpose of this search is that only
‘quiet’ positions are evaluated, where no tactical move exists. Performing a QS will largely reduce the
horizon effect. The need for evaluating quiet positions has been identified early in the literature [21, 25].
Only evaluating at the desired search depth can under- or overestimate positions. For example in Stratego, a
position may look advantageous because the player has a Marshal advantage. However, if the opponent has
the possibly to capture this Marshal with a Spy, it renders the position worthless.

Schriifer [20] formulated the following pseudo code: Let n be a MAX node. The set of n’s children is
denoted by SUCC(n) = {ny, na, ...,y }, and let TSUCC(n) C SUCC(n) denote the set of children reached
by ractical moves (e.g., capture moves).

In an exhaustive search, the MINIMAX value mm(n) of n is defined by the MINIMAX principle as:
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if n is a leaf of the exhaustive search
if n is a non-leaf MAX node )]
if n is a non-leaf MIN node

quiescence value of n
max{mm(n’) | n~ € SUCC(n)}
min{mm(n’) | n° € SUCC(n)}

mm(n) =
In the standard QS only a subset of the children of n, namely TSUCC(n), is considered more closely,
and the MINIMAX principle of (1) above then is replaced by the restricted-quiescence principle:

if n is a MAX node
if n is a MIN node

qv(n) = {max{eval(n), max{qv(n’) | n’ € TSUCC(n} o

min{eval(n), min{qv(n’) | n” € TSUCC(n}

where qv(n) denotes the quiescence value of n, and eval(n) denotes the value returned by the evaluation
function of the program. This means that if the tactical moves are not profitable, each player has the oppor-
tunity to stop the QS at each point of time. Therefore, the QS value at depth 1 is an upper bound for the real
QS value.

5 Quiescence Search and Stratego

In this section, we describe the application of QS in Stratego. Section 5.1 discusses problem 1, the search
overhead in the QS. Section 5.2 shows an analysis of problem 2, the effectiveness of QS in Stratego. Section
5.3 describes Evaluation-Based Quiescence Search (EBQS).

5.1 Problem 1: Search Overhead of QS

The first problem we discuss is the possible search overhead of QS for Stratego. The game has the property
of not turning quiet for many moves in certain positions. Imagine a position where Red has a General inside
the opponent’s base area, which almost completely filled with unknown pieces. If at this position a QS is
applied, the search will not return for a long time. The reason for this is the presence of chance nodes, which
are involved each time a capturing takes place. Each time that the red General attacks a blue piece, or is
getting attacked by an unknown blue piece, the majority of events result in the fact that the General is still on
the board. The search will have to continue until either (1) no new piece can be reached, or (2) all unknown
pieces are able to capture the General. At a position with many blue unknown pieces next to each other, a
large amount of time has to be invested. Typically, the more plies are searched, the higher the evaluation will
be. Due to the fact, that the opponent can choose not to re-capture, deep searches will likely not influence
the QS value. Furthermore, a high QS value might not propagate to the leaf node because it is averaged in a
chance node with other outcomes. Thus, a large effort is taken with possibly little result.

As a possible solution, we implemented a depth limit for QS. A choice is to limit the number of chance
nodes allowed in the search. Capturing of known pieces is faster and takes only little overhead. When the
search reaches the limit of chance nodes, the position is evaluated and the score is returned. We also forward
prune the Scout moves, which contribute significantly to the branching factor without making much gain.
Table 2 shows the overhead of the QS limited to one chance node. A search up to 4 ply was executed on 300
begin, middle and endgame positions, created during selfplay.®

Table 2: Quiescence Search Overhead

Ply Normal QS Limit 0 | QS Limit 1 QS Limit 2
1 8,413 13,302 60,944 434,385
2 231,591 369,279 955,552 4,602,505
3 2,187,222 | 3,434,674 | 15,506,365 | 101,132,268
4 | 48,610,457 | 79,610,578 | 156,966,429 | 684,607,920

We observe that the majority of nodes are allocated in the QS (e.g., 97.8% with depth limit 2 for a 3-ply
search). If the QS would not have been limited, a substantially larger number of nodes would be investigated.

6 All test positions for Stratego can be downloaded at http://www.personeel.unimaas.nl/Maarten-Schadd/TestSets.html
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5.2 Problem 2: Effectiveness of QS

In classic games, such as chess or checkers, capturing a piece may be quite advantageous (i.e., material is
the dominant factor). Due to this, QS has a large impact in the playing strength. In Stratego, capturing might
lead to the loss of an own piece. On top of this, evaluating a capturing move is twelve times as expensive,
due to the fact of considering each rank that the unknown opponent’s piece could be.

One might think of reducing the search effort by making a generalization. In each chance node only
3 cases might be considered (losing, draw, winning). However, revealing the position of the Marshal can
render losing a piece quite valuable, while revealing lower ranked pieces are not advantageous. This means
that an expensive search may result in a small information gain.

In the next experiment, we tested the regular QS for a chance node limit of 1. Table 3 shows the
difference range of QS value compared to the normal evaluation value. Bin is the range of change of the
QS value. For example, Bin 0 indicates that the QS returned a value change between -10 (excluding) and 0
(including).

Table 3: QS Value Difference for Chance-Node Limit 1

Bin -200 -190 -180 | -170 | -160 | -150 | -140 | -130 | -120 | -110
Amount | 269 50 19 34 7 2 4 24 41 42
Bin -100 -90 -80 -70 -60 -50 | -40 | -30 -20 -10
Amount 71 49 37 79 75 90 | 202 | 489 | 1,010 | 1,439
Bin 0 10 20 30 40 50 60 70 80 90
Amount | 29,590 | 19,836 | 2,510 | 518 | 1,278 | 567 | 102 | 255 | 463 416
Bin 100 110 120 | 130 140 | 150 | 160 | 170 | 180 190
Amount 169 113 34 5 1 4 5 3 10 9

We see in Table 3 that in the majority of situations a value close to O is returned. This means that the
gain of QS is small. Moreover, in more than half of the cases, the QS value is not even used, because it is
lower than the evaluation of the position under consideration.

Now the question remains, what the information gain is of the QS. For this we counted the number of
times the QS value was used, which is given in Table 3. In only 43.9% of the cases the QS value proved to
be useful. If the QS value is useful, the evaluation value is changed by 13.3 points on average (= value of a
Scout).

5.3 Solution: Evaluation-Based Quiescence Search

To overcome the problems described in the previous sections, a new approach for QS has to be used. Instead
of investing major efforts in exploring non-quiet positions in the tree, Evaluation-Based Quiescence Search
(EBQS) can be applied. This method is inspired by static exchange evaluators [16]. This method should be
fast to compute and give an accurate estimation of the real QS value.

For calculating the EBQS value we will evaluate each local encounter between pieces separately. We
distinguish between different levels of detail as follows. Level O: the result of encounters between two
known pieces is known. Level 1: there is one unknown piece involved. Level 2: two own pieces against 1
unknown piece of the opponent, and Level 3: two own pieces against 2 unknown pieces of the opponent.
Higher levels are possible, but rarely occur during a Stratego game.

In this article we will focus on the Level 0 and 1 approach. The pseudo code of EBQS is given in Algo-
rithm 1. This algorithm calculates the quiescence value for each of the pieces separately, using the gsEval()
function. This function is straightforward to implement in the case that both pieces are known (Level 0).
With one unknown piece (Level 1), gsEval() has to calculate the probability based on the remaining un-
known pieces. To increase the speed of the calculations, we note that the gsEval() function can use a hash
table.

In general, this function computes a quiescence value for the complete board, without taking re-capturing
into account. Using this fast function instead of an actual QS allows the search to overcome the horizon effect
without performing an actual QS.
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Algorithm 1 Evaluation-Based Quiescence Search
int EBQS(position)

int gsValue=0;

for all Pieces p in position do
int min = max = 0;
for all Neighbours(p) n do
if IsOpponent(n) then
int v = gsEval(p, n);
if v > max then

max = v,
end if
if v < min then
min = v;
end if
end if
end for
if RedPiece(p) then
gsValue += max;
end if
if BluePiece(p) then
gsValue -= min;
end if
end for

return qgsValue

6 Experiments

We implemented an EXPECTIMAX engine for Stratego, enhanced with the STAR1 and STAR2 pruning algo-
rithms [2, 10]. Furthermore, the History Heuristic [19], Killer Moves [1], Transposition Tables [9, 22] and
StarETC [26] are incorporated. Null-Move [3], ProbCut [4] and ChanceProbCut [18] are used as well.
Before we test EBQS, we first measured the performance of the classic QS, using selfplay experiments.
The time setting was one second per move. The results are given in Table 4, for different chance node limits.

Table 4: Games won by QS versus No QS, 1,000 games played

QS Limit 0 | QS Limit I | QS Limit2 | QS Limit3 | QS Limit 10 | QS No limit
No QS 478 501 503 505 515 513
QS 522 499 497 495 485 487

We can make two observations from this table. (1) QS does not improve the playing strength when
chance nodes are included. The regular search was better or equal to each setting, except for limit 0. (2)
Without depth limitation, only a slight decrease in performance is measured. The reason for this is that the
number of positions where the search explodes is rather low. This means that a suboptimal move is played
only in a few positions during the complete game. Considering the large number of moves during a Stratego
game, a player has enough time to correct his mistake. Even without a depth limitation on the number of
allowed chance nodes during QS, only a small decrease in playing strength is measured.

In the next experiment the performance of EBQS was tested. The time setting was one second per move.
The programs used initial setups in the same way as described in Subsection 5.2. The results are given in
Table 5. We observe an improvement, which is significant. A win rate of 52.4 % is achieved for 5,000 games
against a normal search, and 56.3% is achieved against the QS search with limit 0. This means that EBQS
is able to compute tactical information without a large time overhead. The results are quite good, because
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large improvements cannot be expected in the EXPECTIMAX framework [11, 12].

Table 5: Performance of EBQS
NoQS | 2,382 || QSLimit0 | 2,184
EBQS 2,618 EBQS 2,816

Win rate | 52.4% Winrate | 56.3%

7 Conclusions

In this article we pointed out two problems of quiescence search (QS) that occur in Stratego. The first
problem is the overhead of QS. The second problem is that information gained during the QS search is only
for a limited amount of cases useful.

To overcome both problems, we designed an algorithm to compute an Evaluation-Based Quiescence
Search (EBQS) value. The value estimates the effect of tactical moves in a leaf node. We showed that
EBQS is able to improve the playing strength of our Stratego program, while normal QS is not able to do so.

This research showed that EBQS may be used as a replacement for normal QS. However, this EBQS can
still be improved. At this point of time, re-capturing is not considered (Level 2). Including this, and possibly
even longer capturing sequences, a larger improvement might be obtained. We may conclude that EBQS is
an alternative for QS in Stratego.
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